
1.
2.

a.
b.
c.

d.

e.
f.

i.
3.

a.
i.

ii.

iii.

1.
2.

iv.
b.

c.
4.

Organizational Identity Source Plugins
See also: Writing Registry Plugins

Plugin Requirements
Supported Attributes

Example
Groupable Attributes

Example
Integration With Enrollment Flows

Authenticate Mode

Plugin Requirements

The name of the Plugin should match the format .FooSource
The Plugin should implement a model and a corresponding controller ().FooSource FooSourcesController

This model should .belongTo OrgIdentitySource
The controller should extend .SOISController
When a new Org Identity Source is created, a skeletal row in the corresponding table will be created. There is no opefoo_sources add
ration or view required. The skeletal row will point to the parent Org Identity Source.
When an Org Identity Source is edited, the entry point to the Plugin will be . This will be called foo_source/foo_sources/edit/#
immediately after the parent Org Identity Source is created.
Note has a (ie: 1 to 1) relationship with .OrgIdentitySource hasOne FooSource
The table foo_sources should include a foreign key to org_identity_sources:id.

Other tables used by the plugin should reference .foo_source:id
The Plugin should also implement a model named .FooSourceBackend

The backend is responsible for the implementation of the backend search and retrieval capabilities.
The raw record returned by the function should not change if the underlying backend record has not changed. retrieve()
Registry uses the raw record to determine when the related Org Identity record must be updated.
The Plugin should support (email address) as a searchable attribute. This capability is used by Enrollment Flows in mail
various configurations, see , below.Integration With Enrollment Flows
As of Registry v3.1.0, Plugins may also implement , which determines the set of changed records for a getChangeList()
given time period. When supported, OIS sync processes in Update Mode will run more efficiently.

As of Registry v3.2.0, if the task is used, cannot be used.forcesyncorgsources getChangeList()
Because is designed to facilitate updating existing records, backends should only return IDs for getChangeList()
records that were updated or deleted. The function should return IDs for records that were added, as the Sync Job not
will separately determine which records were added (using the backend's call), and if inventory() getChangeList

 returns these IDs they may be processed twice.()
See also , below.Supported Attributes

This model should extend , and implement the abstract functions defined in the parent model (see OrgIdentitySourceBackend app
)./Model/OrgIdentitySourceBackend.php

Note that the Plugin configuration for will be available to the backend in .FooSource $this->pluginCfg
Registry will automatically track the current backend data via the table.org_identity_source_records

Supported Attributes

The Org Identity Source Backend is expected to return both a raw record (directly representing the backend datasource), and a formatted record. The
formatted record is expected to represent an , in typical Cake array format, along with its associated Models. The Backend may return the OrgIdentity
following supported attributes:

Attribute Multi-valued? Required? Notes

Address Yes No See note below.

AdHocAttribute Yes No

EmailAddress Yes No See note below.

Identifier Yes No Does not automatically include the unique key (SORID). See note below.

Name Yes No At least one Name must be returned, and exactly one Name must be flagged primary. See note below.

OrgIdentity.affiliation No No Possible values may vary by CO; see CoExtendedType::definedTypes

OrgIdentity.title No No

OrgIdentity.o No No

The interface requirements for Organizational Identity Sources is considered , and may change across minor releases.Experimental

https://spaces.at.internet2.edu/display/COmanage/Writing+Registry+Plugins
https://spaces.at.internet2.edu/display/COmanage/cm_org_identity_sources
https://spaces.at.internet2.edu/display/COmanage/cm_org_identity_source_records
https://spaces.at.internet2.edu/display/COmanage/cm_org_identities
https://spaces.at.internet2.edu/display/COmanage/cm_addresses
https://spaces.at.internet2.edu/display/COmanage/cm_ad_hoc_attributes
https://spaces.at.internet2.edu/display/COmanage/cm_email_addresses
https://spaces.at.internet2.edu/display/COmanage/cm_identifiers
https://spaces.at.internet2.edu/display/COmanage/cm_names
https://spaces.at.internet2.edu/display/COmanage/cm_org_identities
https://spaces.at.internet2.edu/display/COmanage/cm_org_identities
https://spaces.at.internet2.edu/display/COmanage/cm_org_identities

1.

2.

OrgIdentity.ou No No

OrgIdentity.valid_from No No Must be in UTC time, and database format, eg via strftime("%F %T", ...)

OrgIdentity.valid_through No No Must be in UTC time, and database format, eg via strftime("%F %T", ...)

TelephoneNumber Yes No See note below.

Url Yes No See note below. Available from Registry v3.1.0.

Example

$myData = array(
 'OrgIdentity' => array(
 'title' => 'Researcher',
 'o' => 'University of Impossible Equations',
 'ou' => 'Department of Timey Wimey Stuff'
),
 'Name' => array(
 array(
 'given' => 'Pat',
 'family' => 'Lee',
 'type' => 'official',
 'primary_name' => true
)
),
 // Note below here are multi-valued arrays
 'Identifier' => array(
 array(
 'identifier' => 'plee@university.edu',
 'type' => 'eppn',
 'login' => true
)
),
 'EmailAddress' => array(
 array(
 'mail' => 'plee@university.edu',
 'type' => 'official',
 'verified' => true
),
 array(
 'mail' => 'plee@socialemail.com',
 'type' => 'personal',
 'verified' => false
)
)
);

Groupable Attributes

Is order to support , the Plugin must implement two functions in the Backend file.Group Mappings for Organizational Identity Sources

groupableAttributes() defines the set of attributes the Plugin knows about that may be used for generating group memberships. This may
be a static list of attributes, or (as of v3.1.0) it may be dynamically determined based on a given instantiation (via the configuration available in $th

).is->pluginCfg
resultToGroups() converts a raw result into an array of attribute value/pairs. Note the array is not itself the group mapping, but rather the
relevant attributes that will be used by the core code to determine if any group membership match. (This way the Plugin does not need to worry
about parsing the mapping configuration.)

For multi-valued attributes, only one attribute of a given type is currently supported. For example, there can only be one official
EmailAddress, though a second EmailAddress may be provided if (eg) of type .personal

Possible types may vary by CO, see for valid types.CoExtendedType::definedTypes

As of Registry v3.3.0, an identifier of type will automatically be added to the OrgIdentity generated by an Organizational Identity Source SORID
Plugin, using the using the Plugin's record key (the same value passed to).retrieve()

https://spaces.at.internet2.edu/display/COmanage/cm_org_identities
https://spaces.at.internet2.edu/display/COmanage/cm_org_identities
https://spaces.at.internet2.edu/display/COmanage/cm_org_identities
https://spaces.at.internet2.edu/display/COmanage/cm_telephone_numbers
https://spaces.at.internet2.edu/display/COmanage/cm_urls
https://spaces.at.internet2.edu/display/COmanage/Organizational+Identity+Sources

Example

public function groupableAttributes() {
 return array(
 'title' => _txt('fd.title');
);
}

public function resultToGroups($raw) {
 // The core code will use this data to determine if the configured
 // OIS Group Mapping rules are matched.

 return array(
 'title' => array(
 array(
 'value' => 'Professor of Mysterious Events',
 'valid_from' => '2017-08-01 00:00:00',
 'valid_through' => '2018-07-31 23:59:59'
);
);
);
}

Integration With Enrollment Flows

Organizational Source Plugins can be integrated with by way of . See the Enrollment Sources documentation for an Enrollment Flows Enrollment Sources
overview of the various modes and how they are used.

Authenticate Mode

Most modes are supported using the interfaces described in , above. However, mode requires OIS Plugins to implement Plugin Requirements Authenticate
an additional interface. (Plugins should use this interface to support mode, and not the general Enrollment Flow Plugin interface, since this Authenticate
interface will automatically handle configuration checking and plugin ordering.)

The Enrollment Flow will hand off control during the step to the entry point selectOrgIdentity foo_source/foo_source_co_petitions
 (where # is the relevant CO Petition ID, and ## is the Org Identity Source ID)./selectOrgIdentityAuthenticate/#/oisid:##

The easiest way to implement this is for the Plugin itself is to extend . This way, most of the overhead of processing the CoPetitionsController

request will be handled for you, and your plugin need only implement the function , where execute_plugin_selectOrgIdentityAuthenticate
control will be passed. Once your plugin is finished, it should return control to the flow by redirecting back to the main flow, using the URL passed in $onFi

. The redirect URL is also available in the view variable .nish $vv_on_finish_url

Prior to v3.2.0, the was poorly specified, allowing either a single value or a list of values. Beginning with v3.2.0, the resultToGroups()
interface has been clarified, and the result is now an array where the key is the attribute and the value is a list of array, each of which may
contain the following keys: (required, holds the actual value), , and . If specified, the latter two must be in value valid_from valid_through s

 format, and in UTC.trftime %F %T

Note that while it is possible for a backend to return multiple entries for the same group with different validity dates, these must be consolidated
down to a single CoGroupMember record. (While the data format theoretically allows multiple CoGroupMember records for the same CO
Person in the same CO Group with different validity windows, in practice this is not supported anywhere.) If multiple entries are found, the group
membership mapping code will attempt to pick the "best" one, which is generally the current record, or the one with the latest valid through date.
Plugins can implement more deterministic algorithms by setting the results from appropriately.resultToGroups()

https://spaces.at.internet2.edu/display/COmanage/Registry+Enrollment+Flow+Configuration
https://spaces.at.internet2.edu/display/COmanage/Enrollment+Sources
http://php.net/manual/en/function.strftime.php
http://php.net/manual/en/function.strftime.php

Sample Source Plugin

// Plugin/FooSource/Controller/FooSourceCoPetitionsController.php

App::uses('CoPetitionsController', 'Controller');
class FooSourceCoPetitionsController extends CoPetitionsController {
 public $name = "FooSourceCoPetitions";
 public $uses = array("CoPetition",
 // Your plugin will most likely need to use OrgIdentitySource to
 // create the OrgIdentity
 "OrgIdentitySource");

 /**
 * @param Integer $id CO Petition ID
 * @param Array $oiscfg Array of configuration data for this plugin
 * @param Array $onFinish URL, in Cake format
 * @param Integer $actorCoPersonId CO Person ID of actor
 */

 protected function execute_plugin_selectOrgIdentityAuthenticate($id, $oiscfg, $onFinish, $actorCoPersonId) {
 // Do some work here, then redirect when finished.
 // By default, Exceptions will be caught further up the stack, though you could catch them here.

 $myId = result_of_some_work();

 // Create an Org Identity
 $this->OrgIdentitySource->createOrgIdentity($oiscfg['OrgIdentitySource']['id'],
 $myId,
 $actorCoPersonId,
 $this->cur_co['Co']['id'],
 $actorCoPersonId);

 // Create some history
 $this->CoPetition->CoPetitionHistoryRecord->record($id,
 $actorCoPersonId,
 PetitionActionEnum::IdentityLinked,
 _txt('pl.foosource.linked', array($myId)));

 $this->redirect($onFinish);
 }
}

Standard MVC rules apply.

	Organizational Identity Source Plugins

