
1.
2.
3.

4.

5.
6.

a.

Enrollment Flow Plugins
See Also: and Writing Registry Plugins Plugin Execution

The name of the Plugin should match the format .FooEnroller

As of Registry v4.0.0, Enrollment Flow Plugins are instantiated, and as such, the Plugin should implement a model and a corresponding FooEnroller
controller ().FooEnrollersController

This model should .belongTo CoEnrollmentFlowWedge
The controller should extend .SEWController
When a new Enrollment Flow Wedge is created, a skeletal row in the corresponding table will be created. There is no operafoo_enrollers add
tion or view required. The skeletal row will point to the parent CO Enrollment Flow Wedge.
When an Enrollment Flow Wedge is edited, the entry point to the Plugin will be . This will be called foo_enroller/foo_enrollers/edit/#
immediately after the parent Enrollment Flow Wedge is created.
Note has a (ie: 1 to 1) relationship with .CoEnrollmentFlowWedge hasOne FooEnroller
The table foo_enrollers should include a foreign key to co_enrollment_flow_wedges:id.

Other tables used by the plugin should reference .foo_source:id

For all Registry versions, the entry point for Enrollment Flow Plugins is for the foo_enroller/foo_enroller_co_petitions/start/coef:# start
 step, and for all other steps (where # is the relevant CO Petition ID).foo_enroller/foo_enroller_co_petitions/ /#step

The easiest way to implement the Plugin functionality is to extend . This way, most of the overhead of processing the request CoPetitionsController
will be handled for you, and your plugin need only implement for each step you wish to process. (Note the name of each step is execute_plugin_step
camelCased.) Once your plugin is finished, it should return control to the flow by redirecting back to the main flow, using the URL passed in . T$onFinish
he redirect URL is also available in the view variable .$vv_on_finish_url

Sample Enroller Plugin

// Plugin/FooEnroller/Controller/FooEnrollerCoPetitionsController.php

App::uses('CoPetitionsController', 'Controller');

class FooEnrollerCoPetitionsController extends CoPetitionsController {
 // Class name, used by Cake
 public $name = "FooEnrollerCoPetitions";
 public $uses = array("CoPetition");

 /**
 * Plugin functionality following petitionerAttributes step
 *
 * @param Integer $id CO Petition ID
 * @param Array $onFinish URL, in Cake format
 */

 protected function execute_plugin_petitionerAttributes($id, $onFinish) {
 // Do some work here, then redirect when finished.

 $this->redirect($onFinish);
 }
}

Standard MVC rules apply. Note the corresponding Views will match the action name (eg:) and not the function name.petitioner_attributes.ctp

As of Registry v4.0.0, the Enrollment Flow Wedge ID (as provided by CoPetitionsController in a view variable) should be passed through any rendered
form. The Wedge ID is also available to the FooEnrollerCoPetitionsController via the viewVars ().$this->viewVars['vv_efwid']

// Plugin/FooEnroller/View/FooEnrollerCoPetitions/petitioner_attributes.ctp

// Pass the Enrollment Flow Wedge ID
print $this->Form->hidden('co_enrollment_flow_wedge_id', array('default' => $vv_efwid));

https://spaces.at.internet2.edu/display/COmanage/Writing+Registry+Plugins
https://spaces.at.internet2.edu/pages/viewpage.action?pageId=87756108#RegistryEnrollment%28New%29-PluginExecution
https://spaces.at.internet2.edu/display/COmanage/cm_co_enrollment_flow_wedges

Rendering Within Petitions

As of Registry v4.1.0, Enrollment Flow plugins can inject information into a CO Petition record display (). To do so, /registry/co_petitions/view/X
the plugin should define a in the file . The element will be passed the following variables:view element View/Elements/petitionAttributes.ctp

vv_wedge: The Enrollment Flow Wedge configuration
vv_petition: The Petition record

 This interface is and may change in a future release.Experimental

Known Limitations

Firefox has a hardcoded redirect limit (default: 20) that can be a problem, especially if there are plugins defined and certain steps are skipped (such as
approval). To work around it, at the end of each step a redirect is issued to the next step using a meta refresh on a page that is actually delivered. As long
as the number of plugins is less than the redirect limit, this will work around the problem. This does suggest a maximum of ~20 enroller plugins may be
defined.

http://kb.mozillazine.org/Network.http.redirection-limit

If your plugin executes within an unauthenticated flow, you may need to be aware of the authentication token that is passed with the request.
This is particularly important if your plugin will display a form and collect additional data. The easiest way to handle this is to check for the token
and, if present, insert it into a hidden attribute:

// Plugin/FooEnroller/View/FooEnrollerCoPetitions/petitioner_attributes.ctp

// Pass the token if we have one
if(!empty($vv_petition_token)) {
 print $this->Form->hidden('CoPetition.token', array('default' => $vv_petition_token));
}

https://book.cakephp.org/2/en/views.html#elements
http://kb.mozillazine.org/Network.http.redirection-limit

	Enrollment Flow Plugins

