
Kuali Response To Registry Questionnaire
IAM Registry questions to evaluate features and functionality against standard business requirements.

Category Description or Question for solution provider Response Link(s) to
Documentation

General
architecture

Describe how ID match capability is provided by the
registry solution. For example, is it (a) an integral part
of the solution as provided or (b) must it be integrated
with an external ID match engine or (c) can it be
provided in some other way?

KIM does not presently provide built-in ID match functionality. Currently, most implementers are not managing identity
directly via KIM but rather provisioning identity data into the KIM registry. So the ID match process is typically institution-
specific based on what other products and tools they have in place.

However, recent project work within Kuali is surfacing requirements to have better support for this. Specifically, the Kuali
People Management for the Enterprise (KPME) project (which is HR/Payroll/Time/Attendence) as well as the Kuali
Student project. Both of these projects use KIM as their master repository of identity data and will need to have good
support for maintaining identity therein, including appropriate ID match functionality. Additionally, these projects are
implementing systems which are typically the primary sources of identity within institutions of higher education.

Kuali Student:
Duplicate
/Matching
Logic
Kuali Student:
Merging
Duplicates
Kuali HR: Life
Long ID and
Person
Registry

 Describe how groups management (for use with authZ
controls and other purposes) is provided. For example,
is it (a) handled internally by the solution or (b)
integrated with an external group management engine
such as Grouper or (c) provided in some other way?

KIM supports both of the following:

1) An out-of-the box reference implementation of roles and groups, including user interfaces for management of roles
and groups.
2) Integration with external implementations of groups and roles through a standard set of service contracts defined in
KIM.

There is a connector that was developed by the Grouper team which allows for usage of Grouper via the KIM service
contracts. Additionally, members of the community have integrated with LDAP groups (such as Microsoft's Active
Directory) as well as other sources for group and role data.

KIM has the concepts of both groups and roles and draws the distinction between them with groups simply being a
collection of principals or other groups and roles being similar but also allowing for permissions to be granted to them.

The group contract is defined by the :GroupService

* http://site.kuali.org/rice/2.0.0/apidocs/org/kuali/rice/kim/api/group/GroupService.html
* http://maven.kuali.org/release/org/kuali/rice/rice-kim-api/2.0.0/rice-kim-api-2.0.0-GroupService.wsdl

The role contract is defined by the :RoleService

* http://site.kuali.org/rice/2.0.0/apidocs/org/kuali/rice/kim/api/role/RoleService.html
* http://maven.kuali.org/release/org/kuali/rice/rice-kim-api/2.0.0/rice-kim-api-2.0.0-RoleService.wsdl

KIM also includes an api for performing authorization checks, we call this our :PermissionService

* http://site.kuali.org/rice/2.0.0/apidocs/org/kuali/rice/kim/api/permission/PermissionService.html
* http://maven.kuali.org/release/org/kuali/rice/rice-kim-api/2.0.0/rice-kim-api-2.0.0-PermissionService.wsdl

Note, however, that we don't really consider these as parts of the "identity" portion of KIM. Generally speaking, KIM has
5 sub-modules:

1) Identity
2) Groups
3) Roles
4) Permissions
5) Responsibilities

http://kim.
kuali.org

Data model Describe how the registry solution supports an
extensible set of attributes about (a) persons, (b)
applications or other external resources, and (c) other,
arbitrary entities?

This is something that KIM does not do a good job of currently for identity data. The main way that someone would
extend the current schema is to do so manually via modification to the database (which is a traditional relational
database) as well as modify the associated service API layer.

There are a few places in the identity data model where extension is supported:

* There is a concept of "external identifiers" which can be used to associated the identity with any number of desired
identifiers.
* KIM supports the concept of "Entity Types". There are two default types supported out of the box: PERSON and
SYSTEM. Through this mechanism it's possible to extend KIM to support different types of entities.
* KIM has support for an arbitrary number of addresses, phone numbers, names, etc. for a given identity record.

KIM Data
Model

AuthZ support Describe how the registry data model supports
defining arbitrary user roles in support of authZ
functions.

This ties into the response to the earlier question about groups management. But KIM has support for the concept of
"Roles". In KIM a role is essentially a group of identities which can have permissions granted to it.

So a role in KIM that might be used in something like the financial system would be an "Account Manager". Account
managers can then be granted certain permissions within the system.

In KIM, permissions work off the concept of "Permission Templates". So you might define a set of templates like the
following:

* Administer Routing for Document
* Perform Custom Maintenance Document Function
* Manually Execute Batch Job
* Upload Batch Input File(s)
* Maintain System Parameter

You then create permissions from these templates which provide additional details to help qualify the permission such as:

* Administer Routing for DocumentsPurchasing
* Manually Execute Batch JobGeneral Ledger
* etc.

KIM also has a concept of storing affiliations which can be used for very course-grained roles such as:

* Student
* Faculty
* Alumni
* Staff
* etc.

https://wiki.kuali.org/pages/viewpage.action?pageId=311820390#CombinedIdMBaseRequirementsandUseCases%26UserStories-KualiStudent%3ADuplicate%2FMatchingLogic
https://wiki.kuali.org/pages/viewpage.action?pageId=311820390#CombinedIdMBaseRequirementsandUseCases%26UserStories-KualiStudent%3ADuplicate%2FMatchingLogic
https://wiki.kuali.org/pages/viewpage.action?pageId=311820390#CombinedIdMBaseRequirementsandUseCases%26UserStories-KualiStudent%3ADuplicate%2FMatchingLogic
https://wiki.kuali.org/pages/viewpage.action?pageId=311820390#CombinedIdMBaseRequirementsandUseCases%26UserStories-KualiStudent%3ADuplicate%2FMatchingLogic
https://wiki.kuali.org/pages/viewpage.action?pageId=311820390#CombinedIdMBaseRequirementsandUseCases%26UserStories-KualiStudent%3AMergingDuplicates
https://wiki.kuali.org/pages/viewpage.action?pageId=311820390#CombinedIdMBaseRequirementsandUseCases%26UserStories-KualiStudent%3AMergingDuplicates
https://wiki.kuali.org/pages/viewpage.action?pageId=311820390#CombinedIdMBaseRequirementsandUseCases%26UserStories-KualiStudent%3AMergingDuplicates
https://wiki.kuali.org/pages/viewpage.action?pageId=311820390#CombinedIdMBaseRequirementsandUseCases%26UserStories-KualiHR%3ALifeLongIDandPersonRegistry
https://wiki.kuali.org/pages/viewpage.action?pageId=311820390#CombinedIdMBaseRequirementsandUseCases%26UserStories-KualiHR%3ALifeLongIDandPersonRegistry
https://wiki.kuali.org/pages/viewpage.action?pageId=311820390#CombinedIdMBaseRequirementsandUseCases%26UserStories-KualiHR%3ALifeLongIDandPersonRegistry
https://wiki.kuali.org/pages/viewpage.action?pageId=311820390#CombinedIdMBaseRequirementsandUseCases%26UserStories-KualiHR%3ALifeLongIDandPersonRegistry
http://site.kuali.org/rice/2.0.0/apidocs/org/kuali/rice/kim/api/group/GroupService.html
http://maven.kuali.org/release/org/kuali/rice/rice-kim-api/2.0.0/rice-kim-api-2.0.0-GroupService.wsdl
http://site.kuali.org/rice/2.0.0/apidocs/org/kuali/rice/kim/api/role/RoleService.html
http://maven.kuali.org/release/org/kuali/rice/rice-kim-api/2.0.0/rice-kim-api-2.0.0-RoleService.wsdl
http://site.kuali.org/rice/2.0.0/apidocs/org/kuali/rice/kim/api/permission/PermissionService.html
http://maven.kuali.org/release/org/kuali/rice/rice-kim-api/2.0.0/rice-kim-api-2.0.0-PermissionService.wsdl
http://kim.kuali.org
http://kim.kuali.org
http://site.kuali.org/rice/2.0.0/reference/db_diagrams/rice-krim.png
http://site.kuali.org/rice/2.0.0/reference/db_diagrams/rice-krim.png

1.

2.

3.
4.
5.

6.

7.

Features Describe how the registry solution supports audit
logging of sensitive transactions, including support for
the recording of historical changes made to sensitive
data. Describe how this log includes the requester and
authorizer identities, and transaction timestamps.

KIM has partial support for this. Specifically, it uses Kuali Enterprise Workflow (KEW) in order to route changes for
possible approval. KEW records the following information about a particular transaction:

* Who initiated it
* It's current status
* Who action was requested from
* Who took action
* Timestamps on all of the above

However KIM does not currently make a full copy of each record and store it for historical purposes before updating the
existing record. So it's not currently possible to do effective date reporting on records. For example, you can't ask it what
someone's name was 3 years ago, or similar historical reporting. This is a feature which has been requested by the
community but not yet implemented.

Additionally, KEW routing is typically only performed whenever updates are made from the user interface adminstration
screens. Using the service API to update records does not currently kick off workflow processing.

One thing that KIM does support however on nearly all records is an "active" indicator which services as a form of logical
deletion of the record. And all data has a "last update" timestamp which is stored in the database.

 Describe how the registry solution supports the secure
storage of security questions and answers for use in
password recovery.

KIM was not originally designed to store passwords or security questions and there has been no push from the
community as of yet to add support for that.

 Is there support for multiple name and address types
as well as history? If yes, please describe.

Yes, there is support for multiple name and address types. KIM has a few built in ones:

 Name Type:
* Preferred
* Primary
* Other

Address Type:

* Home
* Work
* Other

The available name and address (as well as other) types can be extended and there is also a user interface which can
be used to maintain these or add new types.

See the earlier section on Audit Logging recording KIM's support for tracking of historical data. In the case of addresses
and names, if these are ever changed the old name/address will be marked as inactive and the new record will be
created as active. So, in this case, name and address has better capability for recording of historical changes than some
of the other parts of KIM.

Identity
Assurance

Are registration events captured as they occur? Do
these events automatically trigger assignment
/deassignment of an IAP

KIM does not currently have support for Identity Assurance Profiles.

 Is there support for real time provisioning of Identities
/services

KIM has the apis that allow for creation and updating of identity data. There's not much additional infrastructure provided
out of the box that sits on top of this however. So if someone wanted to provision realtime into KIM they would need to
invoke the service themselves.

The main service in KIM through which this would be done is called the :IdentityService

http://site.kuali.org/rice/2.0.0/apidocs/org/kuali/rice/kim/api/identity/IdentityService.html
http://maven.kuali.org/release/org/kuali/rice/rice-kim-api/2.0.0/rice-kim-api-2.0.0-IdentityService.wsdl

 Describe how data is processed (batch, web services) Data could be processed through either batch or web services. Our current web services use SOAP, but there are plans
in the future to provide RESTful interfaces to these. As mentioned previously, the data model is a traditional relational
data model and therefore fairly straightforward to work with.

One of the caveats with bypassing the service layer however is that KIM has a fairly sophisticated caching infrastucture
that allows applications which are consuming information from the registry to cache that data and get notified about
updates to it via a message queue which will automatically flush their local cache. This allows for increased performance
at the application layer but does open the possibility of clients having stale data in their cache.

Appropriate caching configuration can alleviate this. We use Ehcache () for caching and take http://ehcache.org/
advantage of the Kuali Service Bus () messaging layer to distribute and route notification messages.http://ksb/kuali.org

 Is registry dependent on other open source or vendor
products? If yes, please provide details.

Yes, all of Kuali Rice (of which Kuali Identity Management is a module) is licensed under the Educational Community
 and uses many other open source libraries with compatible licenses.License

It is designed to run inside of a standard Java servlet container (such as Tomcat) and takes advantage of the Spring
Framework, Apache CXF, various Apache commons libraries, JAX-WS, Quartz, wss4j (which implements WS-Security),
and JTA (the Java Transaction API) among others.

 Where is the business logic stored? Is there support
for delegation to maintain these rules?

Business logic is currently stored behind service implementations which are overridable and customizable for those who
implement.

Additionally, with version 2.0 of Kuali Rice a new module has been introduced called Kuali Rule Management System (htt
) which is a business rule management system which can be used to maintain and p://kuali.org/rice/modules/krms

execute business rules for routing, validation, and various other purposes. So there is the possibility for integration with
that module at some point in the future.

KRMS

 How does the registry notify external entities of data
changes? (for example name is changed)

Notifications about data changes are done via the reliable messaging component of the Kuali Service Bus. However, not
all events that occur within KIM trigger outbound messages at the present time and the ones that do are not very
granular. For example, they are more along the lines of "entity changed" as opposed to "the entity's name changed".

 Is code located in public repository Yes, see: http://svn.kuali.org/repos/rice/

 How are changes, marketing, etc communicated to
public? (wiki, lists, web presence)

The Kuali Foundation has various channels that can be used for communication and the Kuali Rice project itself has
some of it's own. This includes the following:

The Kuali News Feed where release announcements and other information can be shared. This then goes out to
an RSS feed as well as via email to those who are subscribed. This is hosted from http://www.kuali.org
The rice.collab@kuali.org mailing list which people can use to get help or ask questions. We also send out
announcements about upcoming work and opportunities to this mailing list.
The Kuali Rice website ()http://rice.kuali.org
The Kuali wiki: https://wiki.kuali.org
The release notes, change log, and documentation for each release which are written and generated using
Docbook. Example here: http://site.kuali.org/rice/2.0.0/reference/html/portal.html
Bi-Monthly gatherings of the collaboration group. This is an open forum and anyone is permitted to attend these
and ask questions or provide feedback for the group. We also discuss project status updates and project activity
at this meetings as well.
The annual "Kuali Days" conference. Once a year we have a conference where there are many sessions and
presentations given on the various activities going on within the Kuali Community: http://kuali.org/kd

http://kuali.org
http://rice.
kuali.org
http://wiki.
kuali.org
Kuali Days

http://site.kuali.org/rice/2.0.0/apidocs/org/kuali/rice/kim/api/identity/IdentityService.html
http://maven.kuali.org/release/org/kuali/rice/rice-kim-api/2.0.0/rice-kim-api-2.0.0-IdentityService.wsdl
http://ehcache.org/
http://ksb/kuali.org
http://www.opensource.org/licenses/ecl2.php
http://www.opensource.org/licenses/ecl2.php
http://kuali.org/rice/modules/krms
http://kuali.org/rice/modules/krms
http://kuali.org/rice/modules/krms
http://svn.kuali.org/repos/rice/
http://www.kuali.org
http://rice.kuali.org
https://wiki.kuali.org
http://site.kuali.org/rice/2.0.0/reference/html/portal.html
http://kuali.org/kd
http://kuali.org
http://rice.kuali.org
http://rice.kuali.org
http://wiki.kuali.org
http://wiki.kuali.org
http://kuali.org/kd

 Is there proper OSS license? Yes, Kuali Rice is licensed under the Educational Community License version 2.0. We have occasional code audits
using 3rd party vendors (most recently to ensure license compliance.Black Duck Software

We additionally utilize automated tools as part of our build environment to ensure proper license attribution and
acknowledgements in source code.

ECL 2.0

 Is there a clear project lead? Yes, the Kuali Rice project actually has a few different leadership positions. The project team is structured as follows:

* Project Manager
* Lead Technical Architect
* User Experience Architect
* Business Analyst
* Configuration Managers
* Development Managers
* Developers

The project manager handles the schedule, resourcing, and the budget. While the technical architect is responsible for
ensuring conceptual integrity and architecture for the product as well as doing technical design and analysis with the
other technical leads. The user experience architect and business analyst work as functional leads on requirements and
ensuring that the system works the way it's supposed to and is easy to use. The business analyst also functions as the
Quality Assurance lead for the product as well.

Each of the individual sub-teams on the project are lead by a development manager who is essentially the technical lead
for that team (they do development as well), and then developers develop the majority of the code.

At the time of this writing the Kuali Rice project currently has about 19 FTE working on it. Most of these are directly
involved in development. However, it's important to note that Kuali Rice includes more than just KIM and is rather large
in scope. So these resources are working on numerous different projects and modules.

Kuali Rice
Project
Organization
Kuali Rice
Project Team

 Is there an existing project steering committee
/governance?

The Rice project has the following governance bodies:

1) Kuali Rice Board
2) Application Roadmap Committee (ARC)
3) Technology Roadmap Committee (TRC)

All governance bodies are represented by a group of voting members. Each institution which has invested in Kuali Rice
has a vote as well as each other Kuali project which has invested in Kuali Rice has a vote. Each of the groups has a
chair and vice-chair who are appointed via an election process and serve a 1-year term. Once the current chair's term is
completed, the vice-chair assumes the chair role and an election is held for a new vice chair. All groups meet on a bi-
weekly basis.

The board helps the project with resource and budgetary decisions as well as high-level strategy and advisement.

The ARC defines the product roadmap and desired schedule via a formal roadmap prioritization process. The ARC has a
standing working group called the Kuali Application Integration working group (KAI). This group is responsible for
functional governance and change management for Kuali Rice.

The TRC defines the product's technical roadmap and strategy. The TRC has a standing working group called the Kuali
Technical Integration working group (KTI). This group is responsible for technical governance and change management
for Kuali Rice.

It's important to note that while the TRC defines technical roadmap, the ARC is the group which makes the final decision
on the roadmap for the product based on input from the ARC, TRC, and the Kuali community.

Kuali Rice
Project
Organization
Rice Project
Charter
Application
Roadmap
Committee
Technology
Roadmap
Committee

http://www.blackducksoftware.com
http://www.opensource.org/licenses/ecl2.php
http://kuali.org/rice/organization
http://kuali.org/rice/organization
http://kuali.org/rice/organization
https://wiki.kuali.org/display/KULRICE/Project+Team
https://wiki.kuali.org/display/KULRICE/Project+Team
http://kuali.org/rice/organization
http://kuali.org/rice/organization
http://kuali.org/rice/organization
https://test.kuali.org/confluence/download/attachments/204341561/Kuali_Rice_Project_Charter_v1.1-Final.pdf
https://test.kuali.org/confluence/download/attachments/204341561/Kuali_Rice_Project_Charter_v1.1-Final.pdf
https://wiki.kuali.org/display/KULRICE/Application+Roadmap+Committee
https://wiki.kuali.org/display/KULRICE/Application+Roadmap+Committee
https://wiki.kuali.org/display/KULRICE/Application+Roadmap+Committee
https://wiki.kuali.org/display/KULRICE/Technology+Roadmap+Committee
https://wiki.kuali.org/display/KULRICE/Technology+Roadmap+Committee
https://wiki.kuali.org/display/KULRICE/Technology+Roadmap+Committee

	Kuali Response To Registry Questionnaire

