
COmanage Coding Style

Background
External Packages
General
Git Commit and JIRA Logs
Error Reporting

setFlash
REST HTTP Response Code
Exceptions
CakeError

Logging
Debugging
Making Breaking Changes
Naming Correct Case

Methods
Variables
View Variables

Quotes
Single Quotes
Double Quotes

Whitespace
Indentation
Separation of Characters
Separation of Statements
End of Line
End of File

Alignment
Curly Braces
Parentheses
Hashes and Arrays
Conditionals

Comments
Comment Delimiters
Top of File
Function Descriptions
Inline Comments

Data Filtering
PHP-isms

No Short Tags
Echo Tags
No Closing Tag
print, not echo
Scoping
Controls Split Across Tags
Logical Operators

CakePHP-isms (v2)
Arrays as Arguments
SQL Query Optimization
URLs (API)
URLs (Browser)
Use Containable, not Recursive
Magic Finds
updateAll()

CakePHP-isms (v4)
Application Rules

Background

A common coding style ensures consistency of the look and feel of the code, regardless of who wrote a given portion. This, in turn, increases readability,
makes the code easier to understand, and makes the project look more polished and professional.

Many of the style decisions here are arbitrary. The purpose of this document is not to answer the general question "What is the proper number of spaces
to indent code?" but the specific question "What number of spaces is code indented in the COmanage codebase?" (The answer is 2, described below.)

For examples of other coding style guides, see , , , and .The Laminas Project (PHP) PHP-FIG's PSR-12 (PHP) Apache (C) Google (various)

Work In Progress

This Coding Guide is a work in progress. Furthermore, existing code may not meet these guidelines. However, all new code must, including any
refactoring of existing code.

https://docs.laminas.dev/laminas-coding-standard/v2/coding-style-guide/
https://www.php-fig.org/psr/psr-12/
http://httpd.apache.org/dev/styleguide.html
http://code.google.com/p/google-styleguide

External Packages

Information regarding the use of external packages can be found in .Managing External Packages

General

Use the most compact notation that is still easy to understand.
Follow CakePHP guidelines, such as for file names.
If there's a reason to have an exception to these guidelines in the code, then there's a reason to update this document.

Git Commit and JIRA Logs

Git commit logs must include the JIRA issue they are addressing. In addition, a useful description must be included, so that will show git log
useful messages. By convention, commit messages should list the description first with JIRA issue numbers appended in parentheses. If no ticket
is relevant to a commit, use "NOJIRA". For example:

 Fix normalization of certain attributes during enrollment (CO-155)
 Fix for PHP 7.2 compatibility (NOJIRA)

JIRA comments must include a brief explanation of what was fixed, to facilitate historical searches. (Simple fixes, such as typos, need no
explanation.) JIRA issues must be updated with corresponding SVN commit revision numbers.
When submitting a Pull Request, add a link the the PR in the JIRA issue (in the comments) to make it easier to track the status of the issue.

Error Reporting

There are a number of mechanisms for reporting errors. Which to use depends on context.

setFlash

For most interactive transactions, use to set a message that will be rendered with the next view. This includes standard $this->Session->setFlash
pages ("default" layout) as well as page sections retrieved via AJAX calls ("ajax" layout).

REST HTTP Response Code

For API transactions (ie: XML or JSON over HTTP), a suitable message and HTTP Response Code should be generated, as per the API definition.

Exceptions

Exceptions should be used rarely, and only in situations where the application cannot recover gracefully enough to generate an error using a preferred
method.

CakeError

CakeErrors are deprecated as of 2.0 and should not be used.

Logging

Starting with Registry v5 (and for all versions of Match), detailed logging should be added when it would be useful to help trace business logic execution,
especially for documented . Registry v5 defines that can be used to automatically prefix metadata to the log entry. Application Rules LabeledLogTrait
LabeledLogTrait builds on top of Cake's services.Logging

class Bar {
 use \App\Lib\Traits\LabeledLogTrait;

 public function foo() {
 $this->llog('debug', "Something happened");
 }
}

will place an entry like this into the configured Debug log:

2020-02-01 17:33:10 Debug Bar::foo Something happened

https://spaces.at.internet2.edu/display/COmanage/Managing+External+Packages
https://spaces.at.internet2.edu/display/COmanage/Registry+Application+Rules
https://book.cakephp.org/4/en/core-libraries/logging.html

Debugging

Debugging should be done with rather than . Debugging should not be committed, and this will make it easier to find stray debug debug() print
statements before committing. Furthermore, statements will become no-ops in a production setup if they do accidentally end up in the codebase.debug()

For versions of Registry before v5, the use of is also acceptable.$this->log()

Making Breaking Changes

Breaking changes cause version number changes as defined by .Semantic Versioning

As of v1.0, for changes that require updates to existing data, such changes must be scripted and run as part of the upgrade shell.

Naming Correct Case

Methods

Camel case with lower initial:

$this->bindModel();
$this->initializeParentCou();

Methods should be in alphabetical order within the file that contains them. eg: should be before in .add delete FooController.php

Variables

Camel case with lower initial:

$cou = 'whatever';
$couAllowed = array();
$isInCou = false;

Avoid very short names except in very compact contexts, such as loops.for

View Variables

View Variables are those set in a Controller and passed to a View. View Variables must be prefixed .vv_

Controller:

$this->set('vv_my_variable', $this->Model->find('first'));

View:

print $vv_my_variable

Quotes

Single Quotes

Single quotes are used when using a string as an index.

$foo['this']['that'];

Double Quotes

Double quotes are used when quoting a string in other contexts.

$txt = "This is some text.";

http://semver.org

Whitespace

Indentation

Indentation is in increments of two (2) spaces. Tabs are not used.

Note this differs from the PSR-2/PSR-12 standard of 4 spaces. The earliest COmanage code pre-dates PSR-2, and there are various arguments (none
particularly important) as to why 2 spaces are better than 4. More importantly, it'd be a lot of noise and churn to change at this point.

function foo($i) {
 $j = $i + 1;

 if($j > 1)
 bar($j);
}

Separation of Characters

In general, whitespace is omitted where it is not necessary. For example:

function foo($a);

$a = $b['foo'];

And not:

function foo ($a);

$a = $b['foo'];

The exceptions are where extra whitespace dramatically increases readability:

// Argument lists, arrays, etc
passingArguments($first, $second, $third);

// Nested array references
$a = $b[$c['foo']];

// If-then-else shorthand
return($a ? $a : $b);

Separation of Statements

In general, all statements, procedures, functions, etc are separated by a blank line. However, "like" statements (such as blocks of variable declarations or
calculations performed as part of an operation) are grouped together without an intermediate blank line.

part of previous function;
 end of previous function;

 return foo;
}

function textFunction() {
 $var = 0;
 $othervar = 1;

 beginning of next function;

End of Line

There should be no trailing white space at the end of a line.

End of File

One or more extra newlines at the end of a file may cause errors (the page does not render) on some systems, including MAMP and Ubuntu, and so must
be avoided.

See also .#NoClosingTag

Alignment

Curly Braces

Curly braces ({,}) start on the same line as the introductory statement, separated by a space. Continuation statements (such as else) begin on the same
line as the previous block's closing brace, again separated by a space.

Curly braces may be omitted only when each contained clause is one line, however in general they should be used.

OK:

if($a > 0) {
 return true;
} elseif($b > 0) {
 return false;
}

if($a > 0)
 return true;
elseif($b > 0)
 return false;

Not OK:

if($a > 0) {
 $a++;
 $foo = bar;
} else
 return false;

Parentheses

Parentheses are used even when considered optional. The exception is statements, since return is a language construct and not a function.return

OK:

print ($a ? $a : $b);

return false;

Not:

print $a ? $a : $b;

return(false);

When creating a list within parentheses, such as when constructing an array or passing parameters to a function, if the entire list is not readable on one
line, indent one level and begin on the next line:

$v = array('small');
$w = array(
 "the beginning of a longer list",
 "the continuation of a longer list",
 "the conclusion of a longer list"
);

Hashes and Arrays

http://www.php.net/manual/en/function.return.php

Historically, PHP array shorthand notation using brackets is not used, since the project predates this capability. However, the project will likely switch to []
this style as part of the .Framework Migration

When constructing a hash, align on the as much as possible:=>

$h = array(
 'A' => "Option A",
 'B' => "Option B",
 'YZ' => "Option YZ"
);

When constructing an array, align on the as much as possible:=

$args['foo']['bar'] = "Sushi";
$args['foo']['restaurant'] = "Hibachi";

Conditionals

if statements with complex conditionals should have each conditional on a new line, aligned with the previous conditional. Nested conditionals should be
further indented. Exceptions are made for those that are easy to read and fit on one line.

if(($a == $b)
 || (($a == $c)
 && ($d == $e))

Comments

Comment Delimiters

Comments are exclusively delimited with double slashes (). The exceptions are the docblock comments, and code that may be temporarily commented //
with C-style comments ()./* */

Top of File

The top of each file must include the following header in docblock format. Do NOT include copyright information, as this is provided in the master NOTICE
file.

/**
 * COmanage Directory People Controller
 *
 * Portions licensed to the University Corporation for Advanced Internet
 * Development, Inc. ("UCAID") under one or more contributor license agreements.
 * See the NOTICE file distributed with this work for additional information
 * regarding copyright ownership.
 *
 * UCAID licenses this file to you under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with the
 * License. You may obtain a copy of the License at:
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 *
 * @link http://www.internet2.edu/comanage COmanage Project
 * @package registry
 * @since COmanage Registry v2.0.0
 * @license Apache License, Version 2.0 (http://www.apache.org/licenses/LICENSE-2.0)
 */

https://spaces.at.internet2.edu/display/COmanage/Framework+Migration+Scoping

Use "Registry" or "Directory" as appropriate.

@package is either or .directory registry

Note that is an SVN keyword that must be set on a per-file basis. (It will not be updated automatically otherwise.) This can be done with$Id

svn propset svn:keywords "Id" foo.php

Don't add a new file with the Id string copy and pasted from a different file.

Function Descriptions

Functions must have a docblock of the following form the function definition:preceding

/**
 * Update the amount of foo
 * - precondition: $this->foo set
 * - postcondition: Flash message set on error
 *
 * @since COmanage Directory 0.1
 * @todo Handle nested foo
 * @param integer $i New amount of foo
 * @param string $s New name for foo
 * @return void
 * @throws RuntimeException
 */

 public function foobar($i,
 $s) {

Comments and descriptions are written in normal English, except periods are omitted if there is only one sentence.

precondition, , , , and are optional, and should be omitted if no relevant information applies.postcondition todo param throws

Inline Comments

Comments should be included where it isn't patently obvious what is going on. Comments should be written in normal English using normal grammar and
syntax.

// We need to figure out what the person's name is as asserted by
// the home organization, so pull it from the Org Identity.

When a code block relates to a detailed JIRA issue (eg: a bug or a specific change), link to the issue in the comment. Do not link to JIRA for big feature
requests (those that encompass more than a small block of code).

// This change is for CO-90210. Don't undo it!
// https://bugs.internet2.edu/jira/browse/CO-90210

Data Filtering

Input and output sanitization should be achieved using . Cake's native Sanitize:: filter has been deprecated as of Cake 3 and should standard PHP filters
be avoided. Guidelines for converting existing Cake Sanitize:: filters to PHP filters is documented in .CO-667

For input validation, see the .PHP validate filters reference

For views producing html output to a browser, all user supplied content must be escaped. In most cases filter_var with FILTER_SANITIZE_SPECIAL_CHA
RS is appropriate:

filter_var for output escaping

<?php print filter_var($var, FILTER_SANITIZE_SPECIAL_CHARS); ?>

http://php.net/manual/en/book.filter.php
https://bugs.internet2.edu/jira/browse/CO-667
http://php.net/manual/en/filter.filters.validate.php

If output stripping is required or desired, use FILTER_SANITIZE_STRING with or without extra stripping flags, e.g. the following will strip tags as well as
new lines (and any other character < 32):

filter_var for output stripping

<?php print filter_var($var, FILTER_SANITIZE_STRING, FILTER_FLAG_STRIP_LOW); ?>

See and the for more information.PHP filters PHP sanitize filters reference

Note that Cake's link() function ($this->Html->link()) will escape title and attributes unless escaping is explicitly set to false. To avoid double-encoding
strings, allow Cake to manage escaping when using link(). For more information about link(), visit Cake's HTML Helper documentation (/ version 2 version

).3

Strings passed to the addCrumb() function should be escaped when no arguments accompany the string. When arguments are passed, Cake will generate
a link() and escape the string, so do not filter a string passed in this case or you will double-escape it. When no arguments are passed, the string will be
echoed to the output and must be filtered using filter_var.

PHP-isms

No Short Tags

The full PHP tag must be used, since short tags require server configuration.

<?php some stuff; ?>

Echo Tags

As of Registry v5, echo tags are used.

<?= __('registry.op.add'); ?>

No Closing Tag

To avoid errors related to whitespace at the end of file, do close PHP files with if they are primarily PHP code.not ?>

print, not echo

echo is a language construct, not a function, and so its use within COmanage is deprecated to avoid unexpected behavior. (is also a language print
construct, but behaves like a function.)

Scoping

All object-oriented methods and variables must be appropriately and explicitly scoped (, , etc).private public

Controls Split Across Tags

When splitting control structures across multple tags (ie: to intersperse HTML), use colon notation with comments in closing tags.<?php ?>

Preferred:

<?php if($foo): ?>
 stuff;
 <?php if($bar): ?>
 morestuff;
 <?php endif; // bar ?>
<?php endif; // foo ?>

Not Preferred:

http://php.net/manual/en/book.filter.php
http://php.net/manual/en/filter.filters.sanitize.php
http://book.cakephp.org/2.0/en/core-libraries/helpers/html.html
http://book.cakephp.org/3.0/en/views/helpers/html.html
http://book.cakephp.org/3.0/en/views/helpers/html.html
http://www.php.net/manual/en/function.echo.php

<?php if($foo) { ?>
 stuff;
<?php } ?>

Logical Operators

and and are the same as and . They have lower precedence, and are almost certainly not what you want to use.or NOT && ||

CakePHP-isms (v2)

Arrays as Arguments

Where an array is required as an argument (used very commonly in CakePHP), define the array first and then pass it.

Preferred:

$args = array();
$args['fields'][] = "MAX(ordr)+1 as m";
$args['order'][] = "m";

$o = $this->CoEnrollmentAttribute->find('first', $args);

Not Preferred:

$o = $this->CoEnrollmentAttribute->find('first',
 array('fields' =>
 array("MAX(ordr)+1 as m")),
 array('order' =>
 array("m")));

SQL Query Optimization

In general, use to constrain what Cake is pulling from the database. Cake will usually try to pull a bunch of associated data, which Containable Behavior
may or may not match what you actually need in a given context. You can use Containable to specify exactly which associated data you want returned.

Don't return anything but CoPerson:

$this->CoPerson->contain();

Obtain OrgIdentity and Name:

$this->OrgIdentity->contain('Name');

Obtain OrgIdentity, Name, CO, and CO Groups the Org Identity is a member of:

$args['contain'][] = 'Name';
$args['contain']['CoOrgIdentityLink']['CoPerson'][0] = 'Co';
$args['contain']['CoOrgIdentityLink']['CoPerson']['CoGroupMember'] = 'CoGroup';
$orgIdentities = $this->OrgIdentity->find('all', $args);

URLs (API)

URLs are specified in and . The general form isREST API v1 REST API v2

/controller/id.format

where is the requested response format. The action is specified by the HTTP verb:format

GET: index (if no), viewid

http://book.cakephp.org/view/1323/Containable
https://spaces.at.internet2.edu/display/COmanage/REST+API+v1
https://spaces.at.internet2.edu/display/COmanage/REST+API+v2

POST: add
PUT: edit

URLs (Browser)

GET operations follow the form

/controller/action/arguments

as in the example

/co_people/index/co_id:2

arguments should map to their database name (ie: underscored inflection) whenever possible. Note this standard wasn't particularly well followed prior to
Registry v5.

POST operations follow the form

/controller/action

as in the example

/co_people/add

Arguments are embedded in the POST body. This facilitates the scenario where a form submission errors out (perhaps the user left out a required field)
and Cake regenerates form with a URL having no args.

GET operations that are intended to convert to a operation (ie: an add or an edit that renders a form via and then s the form) must have the POST GET POST
URL arguments converted to hidden variables, usually by the form generation in the corresponding .fields.inc

Use Containable, not Recursive

$this->recursive, in addition to being too blunt an instrument to determine how much associated data is retrieved with a model (it generates way too
many SQL queries in most circumstances), also doesn't currently work correctly with the Grouper datasource ().CO-268

Use of Linkable Behavior is also acceptable, though it should be considered somewhat experimental.

Magic Finds

Do not use the magic functions, as they do not appear to trigger Behaviors (especially ChangelogBehavior).findByX()

updateAll()

Do not use , as it does not trigger Behaviors (especially ChangelogBehavior).updateAll()

CakePHP-isms (v4)

Application Rules

Application Rules are applied on tables to enforce complex logic on save. By convention, COmanage application rules are named .ruleXXX()

https://bugs.internet2.edu/jira/browse/CO-268
https://book.cakephp.org/4/en/orm/validation.html#applying-application-rules

	COmanage Coding Style

