Grouper permission limits

WiKki Grouper Release Grouper Grouper Deployment Community Internal Developer
Home Announcements Guides Guide Contributions Resources

u This topic is discussed in the "Grouper Permissions" training video and in the "LITE Ul Permissions Part 3" training video.

Overview of Grouper Permission Limits

Grouper permission limits are used to set up runtime constraints on permissions. You can limit a permission to a condition in the environment or data
passed to Grouper. Note, limits can only apply to permissions which are allowed, not disallowed.

A limit is an attribute of type limit assigned on the permission assignment, or assigned to the role membership, or assigned to the role.
At runtime, Grouper, or custom logic, or the caller of the API or WS could set environment variables for the request that the limit logic can use.
You may want to review the permission limit built-in implementations to see if any of them apply to your use case.

See also the Access Management Features Overview page for guidelines of when to use rules, roles, permission limits, and enabled / disabled dates.

Example
For instance, a built-in limit expression language could be (note, you set the Root folder where Grouper creates built in things, in this case it is school:etc):
school:etc:limits:expressionLanguage

When it is assigned, the value could be:
anmount <= 50000

Those limits would take the environment variables available to the limit, and put them as EL variables.

There could be helper variables or classes to do common things (in this case no arguments are required, though the caller could override)...
hour Of Day >= 9 && hour Of Day <= 17

Or here the caller passes the user's ip address (ipv4 still 3))
limtE Utils.i pOnNetworks(i pAddress, '1.2.3.4/24, 2.3.4.5/26")

In the grouper.properties you could configure other helper classes that are in scope in the expression language

In the grouper.properties you could associate custom limits with subclass of a limit base clase (or an implementation of a Java interface) to take the
environment variables, the value of the limit attribute, and other data about the calculation, and give an answer.

The Ul for limits has type checking for values, and validates the inputs.

If there are errors, the exception will be thrown so the caller can see what is going on without looking in the server logs.
The Ul can set environment variables to simulate a real query and see the red/green results

Limit logic

For each limit, you need to associate a logic class. You can do this with Java. The Grouper administrator needs to register the implementation, though in
the future we could do this with JSON/EL (Expression Language) where the admin does not need to help.

Generally you should extend the edu.internet2.middleware.grouper.permissions.limits.PermissionLimitBase class. If you really want to implement an
interface, you can implement edu.internet2.middleware.grouper.permissions.limits.PermissionLimitinterface, though if more methods are added with
default implementations, you will have to change your code when you upgrade Grouper. Here are the methods:

https://spaces.at.internet2.edu/display/Grouper/Grouper+Wiki+Home
https://spaces.at.internet2.edu/display/Grouper/Grouper+Wiki+Home
https://spaces.at.internet2.edu/display/Grouper/Grouper+Release+Announcements
https://spaces.at.internet2.edu/display/Grouper/Grouper+Release+Announcements
https://spaces.at.internet2.edu/display/Grouper/Grouper+Administration+Guides
https://spaces.at.internet2.edu/display/Grouper/Grouper+Administration+Guides
https://spaces.at.internet2.edu/display/Grouper/Grouper+Deployment+Guide
https://spaces.at.internet2.edu/display/Grouper/Grouper+Deployment+Guide
https://spaces.at.internet2.edu/display/Grouper/Community+Contributions
https://spaces.at.internet2.edu/display/Grouper/Community+Contributions
https://spaces.at.internet2.edu/display/GrIntDev/Grouper+Internal+Development+Home
https://spaces.at.internet2.edu/display/GrIntDev/Grouper+Internal+Development+Home
https://www.youtube.com/watch?v=2ItbT6QIyDc
https://www.youtube.com/watch?v=pbPxO227f0c
http://www.youtube.com/watch?v=C0EH1GPrb1E
https://spaces.at.internet2.edu/display/Grouper/Permission+limit+builtin+implementations
https://spaces.at.internet2.edu/display/Grouper/Access+Management+Features+Overview

* if the limt allowed the perm ssion to be all owed
* @aram perm ssionEntry to check
* @aramlimtAssignment the assignnment of the limt (e.g. to the perm ssion
* assignment a parent assignnent, or the role, etc)
* @aram | imtAssignnment Val ues
* @aramlimtEnvVvars value could be String, Long, or Double
* @eturn true if allowed, false if not
*/
public abstract bool ean al | owPerni ssi on(Perm ssionEntry perm ssionEntry, AttributeAssign |initAssignnment,
Set <Attri but eAssi gnVal ue> |imitAssi gnnent Val ues, Map<String, Object> |imtEnvVars);

/**

* validate a user entered value(s) on the linmt assignnent

* @aramlimtAssign

* @eturn the U key for the error code (arbitrary, in Gouper should put in nav.properties)
* or null for ok

*/

public abstract String validateLimtAssignValue(AttributeAssign |imtAssign);

/**

* return a U key to documentation about the linmt. for Gouper, put in nav.properties
* @eturn a U key

*/

public abstract String documentationKey();

/**

* if we can cache the result for a some minutes.

* j.e. for the sane attribute assignment and value and input map, is the result the sane...
* e.g. ip address math can be cached, anmount linits, etc. |If there are conditions about the
* perm ssion nanes, then dont cache

* @eturn the nunber of minutes to cache

*/

public abstract int cacheLi mtVal ueResul tforM nutes();

Register the limit attribute definition name with the logic class in the grouper.properties:

permssion limts linked to subcl asses of edu.internet2. m ddl eware. grouper.permssions.lints.
Per mi ssi onLi m t Base

grouper.permssions.limts.|ogic.someNane.|lintName =

grouper. perm ssions.limts.|ogic.someNane. | ogicC ass =

Security

If the attribute definitions of the limits are not set correctly (e.g. so the same subjects who can READ the permissions can READ the limits), then if limit
security worked like Grouper security, then the limits would not be seen and a wider set of ALLOWSs would potentially occur than should. So... if you are
reading permissions, and processing limits, or reading limits, you will see them if you can see the permissions. Note, the limit execution context is not as
GrouperSystem, so if there is something in there that doesnt work, it should throw an exception or return false.

Caching
The Logic implementation can cache the result per the limit, limit values, and env variables. Note that if there are other data used in the logic (e.g. based

on the subject the permission is for), that you shouldnt cache with this strategy, you should use your own caching or dont cache. Also, note if you want a
configurable cache, just return a number from GrouperConfig.getPropertyInt(). Normally this is just a boolean, cache for a few minutes, or dont cache at all.

Limit assignment types

The obvious place to assign limits would be on permissions assignments. You can do this in Grouper, but you can also assign limits to other objects to
make more general limits. For instance, here is a limit assigned to a permission assignment

t hi s. adnmi nRol e. get Per m ssi onRol eDel egat e() . assi gnSubj ect Rol ePer mi ssi on(
this.readString, this.artsAndSci ences, this.subjO, Perm ssionAllowed. ALLOAED);

AttributeAssign attributeAssign = new Perm ssi onFi nder (). addSubject(this.subj0).addAction(this.readString)
. addPer m ssi onName(t hi s. art sAndSci ences) . addRol e(t hi s. admi nRol e) . assi gnl medi at eOnl y(true). findPerm ssion
(true).getAttributeAssign();
attributeAssign. get Attri buteVal ueDel egate(). assi gnVal ue(Perm ssionLimtUtils.limtE AttributeDefName().

get Nare() ,
"hourOfDay >= 9 && hourOfDay <= 17");

If you want to assign a limit to a role, then all permissions assignments to that role, or permissions assignments to individuals in the context of that role will
inherit that limit. This way you do not have to assign the limit to all permissions assignments for that role. Note, there is no way to change this limit further
down the inheritance chain, all subjects in this role will have this limit. However, if you have custom logic, and you want to have an algorithm to do this, it
is possible.

this. adnmi nRol e. get Att ri but eVal ueDel egat e() . assi gnVal ue(Perm ssionLinmitUils.limtEl AttributeDef Nare() . get Nane(),
"anmount < 50000");

If you want to assign a limit to all the permissions for a user in a role, you can assign it to the AnyMembership (immediate or effective) of a subject and role.

G oupMenber groupMenber = new G oupMenber (this.adm nRol e, this.subj0);

groupMenber. get Attri but eval ueDel egat e() . assi gnVal ue(Permi ssionLimtUtils.lintlpOnNetworksNanme(), "1.2.3.0/24,
2.3.4.0/16");

GSH example

grouper Sessi on = G ouper Sessi on. st art Root Sessi on();
AttributeAssign attributeAssign = new Perm ssionFinder().addAction("Create").addPerni ssi onName("ucl a:
permi ssions: CV') . addRol e("ucl a: rol es: engl i sh_dept _admi n") . assi gnPer m ssi onType(Per nmi ssi onEntry. Pernm ssi onType.

rol e).findPerm ssion(true).getAttributeAssign();

attribut eAssign. getAttributeVal ueDel egate().assignValue("ucla:limts:group_id", "ucla:hierarchy:faculty");

	Grouper permission limits

