
1.
2.
3.

1.

2.
3.

4.

5.

6.

1.

2.

OSTwoUserManJavaDSIG
XML Digital Signatures

Signing a SAMLObject

Digitially signing a SAML object entails attaching and computing a Signature object to the object to be signed, where the Signature reflects the enveloped
signature paradigm. Enveloped signatures are the only method formally prescribed in the XML Signature profile of the SAML specification. This is a 3-step
process:

Create and attach a object.Signature
Marshall the object tree containing the which is to be signed.SAMLObject
Compute the the actual signature value contained within the object.Signature

Attaching a Signature to the SignableSAMLObject

The first step in signing a SAMLObject is to create a Signature object and attach it to the SAMLObject. Since all SAMLObjects that can be signed
implement the interface the code to sign an object is always the same.org.opensaml.common.SignableSAMLObject

Create a object using the (this is found in the XMLTooling library). Signature org.opensaml.xml.signature.impl.SignatureBuilder
This will likely be obtained from a builder factory. See .Creating SAML Objects from Scratch
Add the containing the signing key using the method.Credential Signature#setSigningCredential(Credential)
Add the signature method algorithm URI with the method . Note that the algorithm URI is Signature#setSignatureAlgorithm(String)
dependent on the type of key contained with the signing credential.
Add the canonicalization method algorithm URI with the method . Note that unless Signature#setCanonicalizationAlgorithm(String)
there is good reason to do otherwise, and the ramifications are understood, the recommended canonicalization method for SAML signature use
cases is exclusive canonicalization (with or without comments).
If desired, add a containing information about the signature verification key using . The KeyInfo Signature#setKeyInfo(KeyInfo) KeyInfo
may be created manually, or may be generated dynamically from the signing credential using a , usually obtained from a KeyInfoGenerator Ke

 via a .yInfoGeneratorFactory KeyInfoGeneratorManager
Add the to the SAMLObject using the method. A will Signature setSignature(Signature) SAMLObjectContentReference
automatically be added to the list of signature references exposed via , so you should explicitly Signature#getContentReferences() NOT
add a reference to the signature. Note that the contained within a signed element in SAML may contain only one in the Signature Reference S

, per the SAML signature profile.ignedInfo

Marshall the Object Tree

The signing operation operates on the underlying cached DOM representation of the object. Therefore, the SAML object to be signed must be marshalled
before the actual signature computation is performed. For further information on marshalling, see .Writing SAML Objects to XML

Computing the Signature Value

After you have marshalled the XMLObject tree containing the SAMLObject which is to be signed, you'll have a SAML element with a digital signature child
element populated with everything but the actual signature value. To signal that it is time to compute this, using the following steps:

Create an ordered of all the objects that need to be processed. This is necessary because one signature could contain the a List Signature
reference to another and the second signature must be computed before the first signature or it will invalidate the first signature.
Pass the list to the method.org.opensaml.xml.signature.Signer#signObject(List)

Signing Examples

Here is an example of signing a SAML 2 with a containing an RSA private key and using the RSA SHA1 algorithm, with explicit Assertion Credential
handling of parameters:Signature

Dynamic Parameter Selection

The data inputs for steps 2-5 may be retrieved dynamically from an instance of and populated on SecurityConfiguration the
 instance using the helper method . Signature org.opensaml.xml.security.SecurityHelper#prepareSignatureParams

For more usage info, see the Javadocs for that method.

Note: if you only have one signature to be computed there is a convenience method to allow Signer#signObject(Signature)
you to sign without creating a list.

https://spaces.at.internet2.edu/display/OLDOPENSAML/OSTwoUsrManJavaCreateFromScratch
https://spaces.at.internet2.edu/display/OLDOPENSAML/OSTwoUsrManJavaWriteToXML

Assertion assertion = createAssertion();
Credential signingCredential = getSigningCredential();

Signature signature = (Signature) Configuration.getBuilderFactory()
 .getBuilder(Signature.DEFAULT_ELEMENT_NAME)
 .buildObject(Signature.DEFAULT_ELEMENT_NAME);

signature.setSigningCredential(signingCredential);
signature.setSignatureAlgorithm(SignatureConstants.ALGO_ID_SIGNATURE_RSA_SHA1);
signature.setCanonicalizationAlgorithm(SignatureConstants.ALGO_ID_C14N_EXCL_OMIT_COMMENTS);
signature.setKeyInfo(getKeyInfo(signingCredential));

assertion.setSignature(signature);

try {
 Configuration.getMarshallerFactory().getMarshaller(assertion).marshall(assertion);
} catch (MarshallingException e) {
 e.printStackTrace();
}

try {
 Signer.signObject(signature);
} catch (SignatureException e) {
 e.printStackTrace();
}

Here is the same example, but with dynamic retrieval of parameters from the global :SecurityConfiguration

Assertion assertion = createAssertion();
Credential signingCredential = getSigningCredential();

Signature signature = (Signature) Configuration.getBuilderFactory()
 .getBuilder(Signature.DEFAULT_ELEMENT_NAME)
 .buildObject(Signature.DEFAULT_ELEMENT_NAME);

signature.setSigningCredential(signingCredential);

// This is also the default if a null SecurityConfiguration is specified
SecurityConfiguration secConfig = Configuration.getGlobalSecurityConfiguration();
// If null this would result in the default KeyInfoGenerator being used
String keyInfoGeneratorProfile = "XMLSignature";

try {
 SecurityHelper.prepareSignatureParams(signature, signingCredential, secConfig, keyInfoGeneratorProfile);
} catch (SecurityException e) {
 e.printStackTrace();
}

assertion.setSignature(signature);

try {
 Configuration.getMarshallerFactory().getMarshaller(assertion).marshall(assertion);
} catch (MarshallingException e) {
 e.printStackTrace();
}

try {
 Signer.signObject(signature);
} catch (SignatureException e) {
 e.printStackTrace();
}

Verifying the Signature on a Signed SAMLObject

1.

2.

Verifying a Signature with a Credential

Note: This is the lowest-level method of signature verification supported by the library, providing only cryptographic verification of the signature itself. For a
higher-level API, see subsequent sections.

If your code had, through some mechanism such as a , determined a to use to attempt to verify the signature, you CredentialResolver Credential
can perform the verification as follows:

Create an instance of a , passing the verification credential as the constructor org.opensaml.xml.signature.SignatureValidator
argument.
Execute the method, passing in the signature you wish to validate. If an exception is thrown SignatureValidator#validate(Signature)
the signature failed cryptographic verification and the exception will given the reason. If no exception is thrown then the cryptographic verification
of the signature was successful.

Verifying a Signature with a SignatureTrustEngine

Trust engine implementations are available which combine cryptographic verification of the signature and trust establishment of the verification credential.
These trust engines implement the interface. Current implementations include:org.opensaml.xml.signature.SignatureTrustEngine

org.opensaml.xml.signature.impl.ExplicitKeySignatureTrustEngine - implements trust by retrieving trusted credentials from a Cr
 of trusted credentials.edentialResolver

org.opensaml.xml.signature.impl.PKIXSignatureTrustEngine - implements trust by validating the verification credential (obtained
from the signature's) using PKIX path validation rules. Trusted PKIX validation information is obtained from a KeyInfo PKIXValidationInform

.ationResolver
org.opensaml.xml.signature.impl.ChainingSignatureTrustEngine - allows chaining of signature trust engines which implement
different trust models or have different sources of trust material.

For more information on trust engines, see the user guide section .Trust Engines

Verifying a Signature with SAML 2 Metadata Information

SAML 2 metadata may contain keys, key names, and certificates which are associated with a particular role for a particular entity. Validating a signature
against this information provides a significantly greater level of assurance in the signature as it proves not only that the signature is valid, but that the entity
that generated it is interacting with the system in a role-appropriate manner.

Using SAML 2 metadata in conjunction with signature verification usually combines usage of a implementation with a trusted SignatureTrustEngine
information resolver based on SAML 2 metadata, such as the . To perform validation org.opensaml.security.MetadataCredentialResolver
based on this mechanism see the user guide section .Trust Engines

Signature Verification Examples

Here is a simple case of low-level cryptographically verifying the signature directly:

Preventing Signature Denial of Service Attacks

In order to prevent certain types of denial-of-service attacks associated with signature verification, it is advisable to successfully
validate the with the prior to attempting to Signature org.opensaml.security.SAMLSignatureProfileValidator
cryptographically verify the signature.

Trust Establishment

Note that this signature verification mechanism does establish trust of the verification credential, only that it successfully NOT
cryptographically verifies the signature. You establish trust by other means. In particular, the extracted from the must Credential
signature's must be trusted without additional evaluation.KeyInfo NOT

https://spaces.at.internet2.edu/display/OLDOPENSAML/OSTwoUserManJavaTrust
https://spaces.at.internet2.edu/display/OLDOPENSAML/OSTwoUserManJavaTrust

Response response = getResponse();

SAMLSignatureProfileValidator profileValidator = getSignatureProfileValidator();
try {
 profileValidator.validate(response.getSignature());
} catch (ValidationException e) {
 // Indicates signature did not conform to SAML Signature profile
 e.printStackTrace();
}

Credential verificationCredential = getVerificationCredential(response);
SignatureValidator sigValidator = new SignatureValidator(verificationCredential);
try {
 sigValidator.validate(response.getSignature());
} catch (ValidationException e) {
 // Indicates signature was not cryptographically valid, or possibly a processing error
 e.printStackTrace();
}

Here is a more complex example of verifying the signature with the explicit key signature trust engine, using trusted credentials obtained from SAML 2
metadata. The example assumes that the verifier is likely a SAML 2 SP, and is verifying the signature on a SAML 2 received from a SAML 2 Response
IdP over the SAML 2.0 protocol:

//One-time init code here...
MetadataProvider mdProvider = getMetadataProvider();
MetadataCredentialResolver mdCredResolver = new MetadataCredentialResolver(mdProvider);
KeyInfoCredentialResolver keyInfoCredResolver =
 Configuration.getGlobalSecurityConfiguration().getDefaultKeyInfoCredentialResolver();
ExplicitKeySignatureTrustEngine trustEngine = new ExplicitKeySignatureTrustEngine(mdCredResolver,
keyInfoCredResolver);
storeSignatureTrustEngine(trustEngine);

// Individual message handling code here..
Response response = getResponse();

SAMLSignatureProfileValidator profileValidator = getSignatureProfileValidator();
try {
 profileValidator.validate(response.getSignature());
} catch (ValidationException e) {
 // Indicates signature did not conform to SAML Signature profile
 e.printStackTrace();
}

SignatureTrustEngine sigTrustEngine = getSignatureTrustEngine();
CriteriaSet criteriaSet = new CriteriaSet();
criteriaSet.add(new EntityIDCriteria(response.getIssuer().getValue()));
criteriaSet.add(new MetadataCriteria(IDPSSODescriptor.DEFAULT_ELEMENT_NAME, SAMLConstants.SAML20P_NS));
criteriaSet.add(new UsageCriteria(UsageType.SIGNING));

try {
 if (!sigTrustEngine.validate(response.getSignature(), criteriaSet)) {
 throw new Exception("Signature was either invalid or signing key could not be established as trusted");
 }
} catch (SecurityException e) {
 // Indicates processing error evaluating the signature
 e.printStackTrace();
}

	OSTwoUserManJavaDSIG

