
OSTwoUsrManJavaAnyTypes
Dealing with Typesany
A couple of elements within the SAML schema are defined with a special, wildcard, type known as an . These elements can take any valid XML anyType
as content which translates to the SAMLObjects representing those element allowing any XMLObject as a child. Specifically these are, in SAML 1.X: Advi

, , , and and in SAML 2.0: , , ce SubjectConfirmationData AttributeValue StatusDetail SubjectConfirmationData Advice AuthnContextD
, , , , , and all the metadata endpoint elements.ecl AttributeValue Extensions StatusDetail StatusResponse

Adding Content to Typesany

Every SAMLObject representing an XML element of type extends which defines the anyType org.opensaml.xml.ElementExtensibleXMLObject
method . XMLObjects representing the content to be added to the SAMLObject should be added to the list returned by this getUnknownXMLObjects()
method. These child objects will then be marshalled as any other children object.

Building XMLObjects for use as content works a bit differently than the normal method for building objects, because some child elements are expected to
have a specific name (e.g. AttributeValue) but can still contain any valid XML. To build the XMLObject in this case get the builder for the XMLObject as you
normally would, but instead of invoking you need to use either or buildObject() buildObject(String, String, String) builidObject

 to override the default element name. It's also good practice to explicitly state the schema type of this object as it makes it easier for the receiver (QName)
of the message to parse it. To do this pass in a that represents the schema type in as an additional, final, argument to the methods just discussed. QName
All the objects in the OpenSAML library, on their interface, define a static called TYPE_NAME that can be used as this argument.QName

Reading Content of Typesany

The method provides access to the unknown content of SAMLObjects defined with the type. Reading information from getUnknownXMLObjects() any
this list can be problematic if you're not exactly sure what is in the returned list. If, during the unmarshalling process, the library encountered an element
whose xsi:type or element name was not recognized (i.e. was not explicitly listed in the OpenSAML configuration files) the library will unmarshall the
element into the XMLObject. No information is lost, but if you were expecting to cast the object to a specific org.opensaml.xml.ElementProxy
SAMLObject interface you'll receive a class cast exception when you try. If the library understands the element or element type, though, it is safe to cast it
to the respecting interface.

AttributeValues

Probably the most commonly encountered example of this is the element. There is an AttributeValue interface but nothing implements AttributeValue
it, which means you can't cast classes to it. It exists simply to hold name constants which may be used when building other XMLObjects via the XMLObjec

 or methods.tBuilder#buildObject(String, String, String) XMLObjectBuilder#buildObject(QName)

Here's an example of an that carries string content. The element will express an of .AttributeValue AttributeValue xsi:type xs:string

// Normally built Attribute object
Attribute attribute;
XSStringBuilder stringBuilder = (XSStringBuilder) Configuration.getBuilderFactory().getBuilder(XSString.
TYPE_NAME);
XSString stringValue = stringBuilder.buildObject(AttributeValue.DEFAULT_ELEMENT_NAME, XSString.TYPE_NAME);
stringValue.setValue("myStringValue");
attribute.getAttributeValues().add(stringValue);

Here's an example of an that carries element content. An object is used to represent the , in order to allow AttributeValue XSAny AttributeValue
the addition of element children. The child element in the example is also represented by an . Another and more correct approach would be to Role XSAny
implement XML object provider support for the element.Role

XMLObjectBuilderFactory bf = Configuration.getBuilderFactory();

XMLObjectBuilder<XSAny> xsAnyBuilder = bf.getBuilder(XSAny.TYPE_NAME);

XSAny role = xsAnyBuilder.buildObject("http://www.hhs.gov/healthit/nhin", "Role", "nhin");
role.getUnknownAttributes().put(new QName("code"), "112247003");
role.getUnknownAttributes().put(new QName("codeSystem"), "2.16.840.1.113883.6.96");
role.getUnknownAttributes().put(new QName("codeSystemName"), "SNOMED CT");
role.getUnknownAttributes().put(new QName("displayName"), "Medical doctor");

XSAny roleAttributeValue = xsAnyBuilder.buildObject(AttributeValue.DEFAULT_ELEMENT_NAME);
roleAttributeValue.getUnknownXMLObjects().add(role);

Attribute attribute = (Attribute) bf.getBuilder(Attribute.DEFAULT_ELEMENT_NAME).buildObject(Attribute.
DEFAULT_ELEMENT_NAME);
attribute.setName("UserRole");
attribute.setNameFormat("http://www.hhs.gov/healthit/nhin");
attribute.getAttributeValues().add(roleAttributeValue);

When marshalled and serialized, this produces the following XML:

<saml2:Attribute xmlns:saml2="urn:oasis:names:tc:SAML:2.0:assertion" Name="UserRole" NameFormat="http://www.hhs.
gov/healthit/nhin">
 <saml2:AttributeValue>
 <nhin:Role xmlns:nhin="http://www.hhs.gov/healthit/nhin" code="112247003" codeSystem="
2.16.840.1.113883.6.96" codeSystemName="SNOMED CT" displayName="Medical doctor"/>
 </saml2:AttributeValue>
</saml2:Attribute>

	OSTwoUsrManJavaAnyTypes

