OSTwoUsrManJavaAnyTypes
Dealing with any Types

A couple of elements within the SAML schema are defined with a special, wildcard, type known as an anyType . These elements can take any valid XML
as content which translates to the SAMLODbjects representing those element allowing any XMLObject as a child. Specifically these are, in SAML 1.X: Advi
ce, Subj ect ConfirmationData, AttributeVal ue, and St at usDet ai | and in SAML 2.0: Subj ect Conf i r mat i onDat a, Advi ce, Aut hnCont ext D
ecl , Attri buteVal ue, Ext ensi ons, St at usDet ai | , St at usResponse, and all the metadata endpoint elements.

Adding Content to any Types

Every SAMLObject representing an XML element of type any Type extends or g. opensani . xnl . El enent Ext ensi bl eXMLObj ect which defines the
method get UnknownXM_Cbj ect s() . XMLObjects representing the content to be added to the SAMLObject should be added to the list returned by this
method. These child objects will then be marshalled as any other children object.

Building XMLObijects for use as content works a bit differently than the normal method for building objects, because some child elements are expected to
have a specific name (e.g. AttributeValue) but can still contain any valid XML. To build the XMLODbject in this case get the builder for the XMLObject as you
normally would, but instead of invoking bui | dCbj ect () you need to use either bui | dCbj ect (String, String, String) orbuilidObject
(Q\ane) to override the default element name. It's also good practice to explicitly state the schema type of this object as it makes it easier for the receiver
of the message to parse it. To do this pass in a QNane that represents the schema type in as an additional, final, argument to the methods just discussed.
All the objects in the OpenSAML library, on their interface, define a static QNane called TYPE_NAME that can be used as this argument.

Reading Content of any Types

The method get UnknownXM_Chj ect s() provides access to the unknown content of SAMLObjects defined with the any type. Reading information from
this list can be problematic if you're not exactly sure what is in the returned list. If, during the unmarshalling process, the library encountered an element
whose xsi:type or element name was not recognized (i.e. was not explicitly listed in the OpenSAML configuration files) the library will unmarshall the
element into the or g. opensani . xri . El enent Pr oxy XMLObject. No information is lost, but if you were expecting to cast the object to a specific
SAMLODbject interface you'll receive a class cast exception when you try. If the library understands the element or element type, though, it is safe to cast it
to the respecting interface.

AttributeValues

Probably the most commonly encountered example of this is the At t r i but eVal ue element. There is an AttributeValue interface but nothing implements
it, which means you can't cast classes to it. It exists simply to hold name constants which may be used when building other XMLObjects via the XMLObj ec
t Bui | der #bui | dCbj ect (String, String, String) or XM.Obj ect Bui | der #bui | dCbj ect (QNane) methods.

Here's an example of an At t ri but eVal ue that carries string content. The At t ri but eVal ue element will express an xsi : t ype of xs: stri ng.

/1 Normally built Attribute object

Attribute attribute;

XSSt ringBui |l der stringBuil der = (XSStringBuilder) Configuration.getBuilderFactory().getBuilder(XSString.
TYPE_NAME) ;

XSString stringValue = stringBuil der. buil dObject(AttributeVal ue. DEFAULT_ELEMENT_NAME, XSString. TYPE_NAME) ;
stringVal ue. set Val ue("nyStringVval ue");

attribute. get AttributeVal ues().add(stringVal ue);

Here's an example of an At t ri but eVal ue that carries element content. An XSAny object is used to represent the At t ri but eVal ue, in order to allow
the addition of element children. The Rol e child element in the example is also represented by an XSAny. Another and more correct approach would be to
implement XML object provider support for the Rol e element.

XMLCbj ect Bui | der Factory bf = Confi guration. getBuil derFactory();
XMLObj ect Bui | der <XSAny> xsAnyBui | der = bf. get Bui | der (XSAny. TYPE_NAME) ;

XSAny role = xsAnyBuil der. bui | dCbj ect ("http://ww. hhs. gov/ heal thit/nhin", "Role", "nhin");
rol e. get UnknownAt tri but es(). put (new QNane("code"), "112247003");

rol e. get UnknownAt tri but es() . put (new QNane("codeSystent), "2.16.840.1.113883.6.96");

rol e. get UnknownAt tri but es() . put (new QNane("codeSyst enNane"), "SNOMED CT");

rol e. get UnknownAt tri but es() . put (new QNane("di spl ayNanme"), "Medical doctor");

XSAny rol eAttributeVal ue = xsAnyBui | der. bui | dCbj ect (Attri but eVal ue. DEFAULT_ELEMENT_NAME) ;
rol eAttri but eVal ue. get UnknownXMLCbj ect s() . add(rol e);

Attribute attribute = (Attribute) bf.getBuilder(Attribute. DEFAULT_ELEMENT_NAME) . bui | dCbj ect (Attri bute.
DEFAULT_ELEMENT_NAME) ;

attribute.set Name("UserRol e");

attribute. set NaneFor mat ("http://ww. hhs. gov/ heal t hit/nhin");

attribute. get AttributeVal ues().add(rol eAttri buteVal ue);

When marshalled and serialized, this produces the following XML:

<sam 2: Attribute xnl ns:sam 2="urn: oasi s: nanes: tc: SAM.: 2. 0: asserti on" Nane="User Rol e" NameFor mat ="htt p://ww. hhs.
gov/ heal t hi t/ nhin">
<sam 2: Attri but eval ue>
<nhi n: Rol e xm ns: nhi n="htt p://ww. hhs. gov/ heal t hi t/ nhi n" code="112247003" codeSyst en¥"
2.16.840.1.113883. 6. 96" codeSyst emNanme="SNOVED CT" di spl ayNanme="Medi cal doctor"/>
</sam 2: Attri but eVal ue>
</sam 2: Attribute>

	OSTwoUsrManJavaAnyTypes

