
OpenSSL
OpenSSL is a widely used, but occasionally problematic package. Since it's widely used, it generally comes with many systems and builds cleanly on most
others, but it can be tricky to build correctly at times, is versioned improperly and inconsistently when it comes to shared libraries, and does not support
debug builds on Windows.

The trickiest issue is that on platforms where OpenSSL is not native, you may run into multiple versions and find that different pieces of software used by
or with Shibboleth are linked to different versions. This will work, and you will get errors or crashes.NOT

On platforms with a version included with the OS, it is strongly suggested that you stick with that version. If you're relying on mechanisms like the Mac
ports project or one of Solaris' many open source initiatives, you will have to use a uniform set of software that is provided by those channels, including
things like and Apache. So it's all or nothing, essentially, don't try and mix things.libcurl

Non-Windows

OpenSSL uses a front-end to the autoconf process that sometimes has trouble detecting the right platform and compiler, particularly on Solaris. It's critical
to double-check the output of the initial step to make sure it picked the right settings.

A typical command to autodetect the platform might be:

./Configure threads shared

On Solaris, you often have to specify the platform and compiler.

For Sun's compiler:

./Configure solaris-sparcv9-cc threads shared

And for gcc:

./Configure solaris-sparcv9-gcc threads shared

Windows

On Windows, the docs can be a little sketchy at times, and the default build is essentially broken. It doesn't supply a proper debug build makefile, it doesn't
name its libraries so as to avoid version conflicts, and doesn't support any of the native Windows assembly mechanisms for avoiding conflicts. Given that,
a compromise is to modify the default makefiles during the build set up process to create versioned library names to avoid conflicts.

My system includes ActiveState Perl. The directions below are for the latest release (1.0.0 at time of writing). A given generation of lettered versions
should be able to share a set of filenames so that you can drop in patched versions at runtime.

First I configure the package from source as follows (latest version at time of topic creation is shown). These steps generate starting makefiles and DEF
files that are customized later.

C:> cd \openssl-1.0.0
perl Configure VC-WIN32
ms\do_ms.bat
perl util\mk1mf.pl debug dll no-asm VC-WIN32 1>ms\ntdlldebug.mak
copy ms\libeay32.def ms\libeay32d.def
copy ms\ssleay32.def ms\ssleay32d.def

Now edit the DEF files to adjust the module names embedded inside the libraries we're building. The module name is specified near the top in the LIBRARY
command. Modify as follows:

ms\libeay32.def: LIBEAY32_1_0_0
ms\libeay32d.def: LIBEAY32_1_0_0D
ms\ssleay32.def: SSLEAY32_1_0_0
ms\ssleay32d.def: SSLEAY32_1_0_0D

Now modify the default makefiles (and) to change output information and adjust some settings. If you're using VS ms/ntdll.mak ms/ntdlldebug.mak
2005/2008, you have to remove the /WX option from CFLAGS because some warnings are being generated by the compiler.

In :ms/ntdll.mak

Remove from (VS 2005/2008 only)/WX CLAG
Edit the and macros around line 78 or so to reflect the corrected filenames:O_SSL/O_CRYPTO L_SSL/L_CRYPTO

O_SSL= $(LIB_D)\$(SSL)_1_0_0.dll
O_CRYPTO= $(LIB_D)\$(CRYPTO)_1_0_0.dll

https://spaces.at.internet2.edu/display/OLDOPENSAML/libcurl

L_SSL= $(LIB_D)\$(SSL).lib
L_CRYPTO= $(LIB_D)\$(CRYPTO).lib

Near the bottom of the file, edit the link commands to set the import library filenames by adding and /implib:$(L_CRYPTO) /implib:$(L_SS
 to the respective links. For VS 6 only, also remove unicows.lib from the link command.L)

In :ms/ntdlldebug.mak

Remove from (VS 2005/2008 only)/WX CLAG
Edit the and macros around line 78 or so to reflect the corrected filenames:O_SSL/O_CRYPTO L_SSL/L_CRYPTO

O_SSL= $(LIB_D)\$(SSL)_1_0_0D.dll
O_CRYPTO= $(LIB_D)\$(CRYPTO)_1_0_0D.dll
L_SSL= $(LIB_D)\$(SSL)D.lib
L_CRYPTO= $(LIB_D)\$(CRYPTO)D.lib

Near the bottom of the file, edit the link commands that reference the DEF files to refer to the correct debug filenames (and LIBEAY32D.DEF SSL
) and set the import library filenames by adding and to the respective links. For VS EAY32D.DEF /implib:$(L_CRYPTO) /implib:$(L_SSL)

6 only, also remove unicows.lib from the link command.

With those changes made you can run against those makefiles to generate debug and release builds with properly isolated filenames. You'll get an nmake
 command line linked to them as well.openssl.exe

The other big advantage is that you can stick the library path to both and directly in your Visual Studio global library directory out32dll out32dll.dbg
list since the link library names are now distinct.

	OpenSSL

