OSTwoUserManJavaXMLEnNcryption
XML Encryption

Encrypting a SAMLODbject
SAML 2 objects may be encrypted per the SAML 2 profile of the XML Encryption specification. Encryption consists of the following steps:

. Specify data encryption parameters.

. Specify key encryption parameters (if using one or more Encr ypt edKey elements to transport the data encryption key).
. Create a SAML 2 Encr ypt er instance and set desired options.

. Encrypt the desired SAML 2 SAMLCbj ect instance or instances.

A WNPE

Some familiarity with the XML Encryption specification is assumed.

Specify Data Encryption Parameters

Data encryption parameters are specified by creating an instance of or g. opensamni . xm . encrypti on. Encrypti onPar anet er s, and setting the
appropriate properties.

® al gorit hm- specifies the symmetric block cipher used to encrypt the data. The value is an XML Encryption algorithm URI. This property may
not be null. If not specified by the caller, an internal default will be used.

® encryptionCredential -specifies the symmetric encryption key that will be used to encrypt the data, in the form of a or g. opensani . xm .
security.credential.Credential, containing aj avax. crypt o. Secr et Key. It may be null, in which case a random data encryption key
will be automatically generated and supplied via a minimal Cr edent i al instance.

® keyl nf oGener at or - specifies an instance of or g. opensam . xm . security. keyi nf o. Keyl nf oGener at or which will be used to
generate a Key| nf o element from the encryption Cr edent i al , which in turn will be included in the resultant Encr ypt edDat a. It may be null, in
which case no Key| nf o will generated or included in the Encr ypt edDat a.

@ Dynamic Parameter Selection

Encryption parameter inputs may be retrieved dynamically from an instance of Secur i t yConf i gur at i on and populated on an Encr ypti onP
ar anet er s instance using the helper method or g. opensam . xm . security. Securi t yHel per#bui | dDat aEncr ypt i onPar ans. For
more usage info, see the Javadocs for that method.

Specify Key Encryption Parameters

Key encryption parameters are specified by creating an instance of or g. opensani . xrmi . encrypti on. KeyEncr ypt i onPar anet er s, and setting the
appropriate properties.

® al gorit hm- specifies the key transport algorithm used to encrypt the data encryption key. The value is an XML Encryption algorithm URI. This
property may not be null. There is no default, and it is the responsibility of the caller to ensure that the algorithm specified is consistent with the
key encryption key specified in the encr ypt i onCr edenti al property.

® encryptionCredenti al - specifies the key encryption key that will be used to encrypt the data encryption key, in the form of a or g.
opensam . xml . security.credential.Credential, containing either aj ava. security. Publ i cKey (for asymmetric key transport) or
avax. crypt o. Secr et Key (for symmetric key wrap). This property may not be null, and it is the responsibility of the caller to ensure that the key
encryption key specified is consistent with the algorithm specified in the al gor i t hmproperty.

® keyl nf oGener at or - specifies an instance of or g. opensam . xm . securi ty. keyi nf o. Keyl nf oGener at or which will be used to
generate a Key| nf o element from the key encryption Cr edent i al , which in turn will included in the resultant Encr ypt edKey. It may be null, in
which case no Key| nf o will generated or included in the Encr ypt edKey.

® recipi ent - specifies the value of the r eci pi ent attribute that will be set on the resultant Encr ypt edKey element. It may be null, in which
case no recipient attribute will be included.

KeyEncrypt i onPar anet er s are specific to each intended recipient of the encrypted information. For the XML Encryption "multicast" use case, where
multiple Encr ypt edKey elements are used to carry the data encryption to multiple recipients, multiple KeyEncr ypt i onPar anet er s should be created,
each containing the appropriate parameters for each recipient.

@ Dynamic Parameter Selection

Key encryption parameter inputs may be retrieved dynamically from an instance of Securi t yConf i gur ati on and populated on a KeyEncr yp
ti onPar anet er s instance using the helper method or g. opensani . xm . securi ty. Securit yHel per#bui | dkeyEncrypti onPar ans.
For more usage info, see the Javadocs for that method.

Create a SAML 2 Encrypter

The main class used in SAML 2 encryption is an instance of or g. opensamni . sam 2. encrypti on. Encrypt er . An instance is constructed by specifying
via a constructor the Encr ypt i onPar anet er s and KeyEncr ypt i onPar anet er s to be used. Multiple constructor variants are available, depending on
whether O, 1, or 2+ Encr ypt edKey elements are to be generated.

http://www.w3.org/TR/xmlenc-core/

Other options may then be set on the Encr ypt er instance to control how the encryption is performed. See the Javadocs for the or g. opensamni . san 2.
encryption. Encrypt er and its superclass or g. opensani . xnml . encrypti on. Encrypt er for further details.

Encrypt the SAMLObject

The SAML 2 specialization of Encr ypt er supplies overloaded convenience methods for encrypting the types specified by the SAML 2 specification as
capable of being encrypted: Asserti on, Attri but e, Nanel D, Basel D, and Newl D. The return type of each method corresponds to the appropriate
subtype of SAML 2 Encr ypt edEl enent Type based on the original object that was encrypted.

@ Note that a SAML 2 Asser ti on may be encrypted as either an Encr ypt edAsserti on or an Encr ypt edl D, depending on the intended
usage.

The generated Encr yt pedDat a element will be a child of the Encr ypt edEl enent Type subtype element. Any Encr ypt edKey elements will be placed
as was specified in the KeyEncr ypt i onPar anet er s. In addition, forward and/or back references will be included between the Encr ypt edDat a and Enc
rypt edKey, as specified in SAML 2 Errata item E43. See that document for further details.

Multiple SAML 2 objects may be encrypted with the same Encr ypt er instance, as long as the data and key encryption parameters supplied at
construction time are the same for each encryption operation.

Encryption Examples

Here is an example of the encryption of a SAML 2 Assertion using the AES-128 symmetric block cipher. The encrypted data encryption key will be
transported using the RSA-OAEP key transport algorithm, using the intended recipient's RSA public key. The single Encr ypt edKey will be placed as a
peer of the Encr yt pedDat a. The Encr ypt edKey will contain a Keyl nf o containing information about the key encryption key that was used.

/1 The Assertion to be encrypted
Assertion assertion = getAssertion();

/1 Assune this contains a recipient's RSA public key
Credential keyEncryptionCredential = get KEKCredential ();

Encrypti onParaneters encParanms = new EncryptionParaneters();
encPar ans. set Al gorit hnm(Encrypti onConst ants. ALGO_| D_BLOCKCI PHER_AES128) ;

KeyEncryptionPar anet ers kekParans = new KeyEncryptionParaneters();
kekPar anms. set Encrypti onCredenti al (keyEncryptionCredential);
kekPar ans. set Al gori t hn{ Encrypti onConst ants. ALGO | D KEYTRANSPORT_RSAQAEP) ;
Keyl nf oGener at or Factory ki gf =
Confi guration. get d obal SecurityConfiguration()
. get Keyl nf oGener at or Manager () . get Def aul t Manager ()
. get Fact ory(keyEncrypti onCredential);
kekPar ans. set Keyl nf oGener at or (ki gf . new nstance());

Encrypter sam Encrypter = new Encrypter(encParans, kekParans);
sanl Encrypt er. set KeyPl acenent (KeyPl acenent . PEER) ;

try {

Encrypt edAssertion encryptedAssertion = saml Encrypter.encrypt (assertion);
} catch (EncryptionException e) {

e.printStackTrace();
}

Decrypting an Encrypted SAMLODbject

The steps involved in SAML 2 decryption are:

1. Obtain appropriate instances of or g. opensani . xm . securi ty. keyi nf 0. Keyl nf oCr edent i al Resol ver, used for resolving keys from Enc
rypt edDat a/ Keyl nf o and/or Encr ypt edKey/ Keyl nf o.

2. Obtain an appropriate instance of or g. opensani . xm . encrypti on. Encr ypt edKeyResol ver, used for resolving the correct Encr ypt edKey
to be used in the context of decrypting a particular Encr ypt edDat a element.

3. Create a SAML 2 Decr ypt er instance and set desired options.

4. Decrypt the desired SAML 2 SAMLObj ect instance or instances.

Obtain KeyInfoCredentialResolver Instances

TODO

Obtain EncryptedKeyResolver Instance

TODO

Create a SAML 2 Decrypter

The main class used in SAML 2 encryption is an instance of or g. opensani . sani 2. encrypti on. Decr ypt er. An instance is constructed by specifying
via a constructor the Keyl nf oCr edent i al Resol ver and Encr ypt edKeyResol ver instances to be used. See the Javadocs for the superclass or g.
opensam . xm . encryption. Decrypt er for more details on the constructor arguments.

None of these 3 constructor arguments are mandatory in and of themselves. However, use cases will generally fall along at least one of 2 lines:

1. Recipient will decrypt the Encr ypt edDat a directly using a known, shared symmetric key. No Encr ypt edKey is present. In this case, the first
argument Key! nf oCr edent i al Resol ver (newResol ver) is necessary, but the second and third arguments are not used.

2. Recipient will decrypt a supplied Encr ypt edKey, which carries the encrypted data encryption key. Decryption of the Encr ypt edKey is
accomplished by using either a private key corresponding to the public key used for encrypted key transport, or a shared symmetric key used for
symmetric key wrap. In this case, it is typically necessary to supply the second argument Keyl nf oCr edent i al Resol ver (newKEKResol ver)
and the Encr ypt edKeyResol ver (newEncKeyResol ver), but the first arg Keyl nf oCr edent i al Resol ver (newResol ver) is optional.

However, a specialized implementation of Keyl nf oCr edent i al Resol ver which is designed to directly process Encr ypt edKey elements itself might
supplant the need for a distinct KEK KeylInfo resolver and/or an encrypted key resolver.

Other options may then be set on the Decr ypt er instance to control how the encryption is performed. See the Javadocs for the or g. opensani . sam 2.
encryption. Decrypt er and its superclass or g. opensani . xnml . encrypti on. Decrypt er for further details.

If an object to be decrypted is signed with an enveloped signature (e.g. Asser ti on) and the signature is to be verified: You may need to call De
crypt er#set Root | nNewDocunent (t rue) prior to decryption in order for signature verification to be successful on the decrypted Si gnedSA
M_Obj ect . For further details see the API Javadocs for or g. opensani . xnml . encrypti on. Decrypter.

Decrypt the SAMLObject

The SAML 2 specialization of Decr ypt er supplies overloaded convenience methods for decrypting the types specified by the SAML 2 specification as
capable of carrying encrypted SAML 2 elements: Encr ypt edAsserti on, Encrypt edAttri but e, Encrypt edl D, and NewEncr ypt edl D. The return
type of each method corresponds to the appropriate SAML 2 element based on the original object that was encrypted.

@ Note that a SAML 2 Encr ypt edl D may carry either an encrypted Nanel D, Basel D, or Asser ti on. When decrypting an Encr ypt edl D, it is
up to the caller to determine the correct type of the decrypted SAMLObj ect that is returned, and cast it appropriately if desired.

Multiple SAML 2 objects may be decrypted with the same Decr ypt er instance, as long as the Key| nf oCr edent i al Resol ver and Encr ypt edKeyRes
ol ver instances supplied at construction time are appropriate for the multiple decryption operations. Alternatively, the Decr ypt er instance may be
supplied with different Keyl nf oCr edent i al Resol ver and Encr ypt edKeyResol ver instances after construction by using the appropriate setter
methods.

Decryption Examples
Here is a simple example of decryption where:
1. the data encryption key has been transported via an Encr ypt edKey, encrypted with the recipient's public key

2. the Pri vat eKey to use for decryption of the Encr ypt edKey is known in advance via some unspecified mechanism
3. the Encr ypt edKey is known in advance to have been carried within the Encr ypt edDat a/ Key| nf o.

Encrypt edAsserti on encryptedAssertion = get EncryptedAssertion();

/1 This credential - obtained by sone unspecified nechani sm -
/] contains the recipient's PrivateKey to be used for key decryption
Credential decryptionCredential = getDecryptionCredential();

St ati cKeyl nfoCredenti al Resol ver skicr =
new St aticKeyl nf oCredenti al Resol ver (decryptionCredential);

/1 The EncryptedKey is assuned to be contained within the
/'l EncryptedAssertion/ Encrypt edDat a/ Keyl nf o.
Decrypter sanl Decrypter =
new Decrypter(null, skicr, new InlineEncryptedKeyResol ver());

try {

Assertion assertion = sani Decrypter.decrypt(encryptedAssertion);
} catch (DecryptionException e) {

e.printStackTrace();

}

Here is a more complex and realistic decryption case where:

1. the data encryption key has been transported via an Encr ypt edKey, encrypted with the recipient's public key
2. the Pri vat eKey to use for decryption of the Encr ypt edKey is not known in advance, and must be resolved from a store of local credentials,
based on hints possibly provided in the Encr ypt edKey/ Keyl nf o
3. Several resolution mechanisms for finding the Encr ypt edKey must be supported simultaneously, including:
a. inline within the Encr ypt edDat a/ Keyl nf o
b. as a peer of the Encr ypt edDat a within the SAML 2 Encr ypt edEl enent Type
c. viaaRetrieval Met hod child of the Encr ypt edDat a/ Key| nf o, which points via a same-document fragment reference to an Encryp
t edKey located elsewhere in the document.

11
/] One-time init code here
11

// Collection of |local credentials, where each contains

/1 a private key that corresponds to a public key that may
/1 have been used by other parties for encryption

Li st<Credential > | ocal Credentials = getLocal Credential s();

Col | ecti onCredenti al Resol ver | ocal CredResol ver = new Col | ectionCredenti al Resol ver (| ocal Credenti al s);

/1 Support EncryptedKey/ Keyl nfo containing decryption key hints via
/| KeyVal ue/ RSAKeyVal ue and X509Dat a/ X509Certificate

Li st <Keyl nf oProvi der > ki Provi ders = new ArrayLi st <Keyl nf oProvi der>();
ki Provi ders. add(new RSAKeyVal ueProvider());

ki Provi ders. add(new I nlinex509Dat aProvi der());

/] Resolves local credentials by using information in the EncryptedKey/ Keylnfo to query the supplied
/'l 1ocal credential resolver.
Keyl nf oCredent i al Resol ver kekResol ver = new Local Keyl nf oCr edenti al Resol ver (ki Provi ders, |ocal CredResol ver);

/1 Supports resolution of EncryptedKeys by 3 commpn pl acenent nechani sns

Chai ni ngEncr ypt edKeyResol ver encrypt edKeyResol ver = new Chai ni ngEncr ypt edKeyResol ver ();

encrypt edKeyResol ver . get Resol ver Chai n() . add(new | nlineEncrypt edkeyResol ver());

encr ypt edKeyResol ver. get Resol ver Chai n() . add(new Encrypt edEl ement TypeEncr ypt edkeyResol ver());
encrypt edKeyResol ver. get Resol ver Chai n() . add(new Si npl eRetri eval Met hodEncr ypt edKeyResol ver ());

Decrypter sanl Decrypter =
new Decrypter(null, kekResolver, encryptedKeyResol ver);

st oreDecrypt er (sam Decrypter);

/1 End init code

/1 Begin message processing code

Decrypter decrypter = getDecrypter();
Encrypt edAssertion encryptedAssertion = get EncryptedAssertion();
try {

Assertion assertion = decrypter.decrypt(encryptedAssertion);
} catch (DecryptionException e) {

e.printStackTrace();

}

	OSTwoUserManJavaXMLEncryption

