
1.
2.
3.
4.

OSTwoUserManJavaXMLEncryption
XML Encryption

Encrypting a SAMLObject

SAML 2 objects may be encrypted per the SAML 2 profile of the XML Encryption specification. Encryption consists of the following steps:

Specify data encryption parameters.
Specify key encryption parameters (if using one or more elements to transport the data encryption key).EncryptedKey
Create a SAML 2 instance and set desired options.Encrypter
Encrypt the desired SAML 2 instance or instances.SAMLObject

Some familiarity with the is assumed.XML Encryption specification

Specify Data Encryption Parameters

Data encryption parameters are specified by creating an instance of , and setting the org.opensaml.xml.encryption.EncryptionParameters
appropriate properties.

algorithm - specifies the symmetric block cipher used to encrypt the data. The value is an XML Encryption algorithm URI. This property may
not be null. If not specified by the caller, an internal default will be used.
encryptionCredential - specifies the symmetric encryption key that will be used to encrypt the data, in the form of a org.opensaml.xml.

, containing a . It may be null, in which case a random data encryption key security.credential.Credential javax.crypto.SecretKey
will be automatically generated and supplied via a minimal instance.Credential
keyInfoGenerator - specifies an instance of which will be used to org.opensaml.xml.security.keyinfo.KeyInfoGenerator
generate a element from the encryption , which in turn will be included in the resultant . It may be null, in KeyInfo Credential EncryptedData
which case no will generated or included in the .KeyInfo EncryptedData

Specify Key Encryption Parameters

Key encryption parameters are specified by creating an instance of , and setting the org.opensaml.xml.encryption.KeyEncryptionParameters
appropriate properties.

algorithm - specifies the key transport algorithm used to encrypt the data encryption key. The value is an XML Encryption algorithm URI. This
property may not be null. There is no default, and it is the responsibility of the caller to ensure that the algorithm specified is consistent with the
key encryption key specified in the property.encryptionCredential
encryptionCredential - specifies the key encryption key that will be used to encrypt the data encryption key, in the form of a org.

, containing either a (for asymmetric key transport) or opensaml.xml.security.credential.Credential java.security.PublicKey j
 (for symmetric key wrap). This property may not be null, and it is the responsibility of the caller to ensure that the key avax.crypto.SecretKey

encryption key specified is consistent with the algorithm specified in the property.algorithm
keyInfoGenerator - specifies an instance of which will be used to org.opensaml.xml.security.keyinfo.KeyInfoGenerator
generate a element from the key encryption , which in turn will included in the resultant . It may be null, in KeyInfo Credential EncryptedKey
which case no will generated or included in the .KeyInfo EncryptedKey
recipient - specifies the value of the attribute that will be set on the resultant element. It may be null, in which recipient EncryptedKey
case no recipient attribute will be included.

KeyEncryptionParameters are specific to each intended recipient of the encrypted information. For the XML Encryption "multicast" use case, where
multiple elements are used to carry the data encryption to multiple recipients, multiple should be created, EncryptedKey KeyEncryptionParameters
each containing the appropriate parameters for each recipient.

Create a SAML 2 Encrypter

The main class used in SAML 2 encryption is an instance of . An instance is constructed by specifying org.opensaml.saml2.encryption.Encrypter
via a constructor the and to be used. Multiple constructor variants are available, depending on EncryptionParameters KeyEncryptionParameters
whether 0, 1, or 2+ elements are to be generated.EncryptedKey

Dynamic Parameter Selection

Encryption parameter inputs may be retrieved dynamically from an instance of and populated on an SecurityConfiguration EncryptionP
 instance using the helper method . For arameters org.opensaml.xml.security.SecurityHelper#buildDataEncryptionParams

more usage info, see the Javadocs for that method.

Dynamic Parameter Selection

Key encryption parameter inputs may be retrieved dynamically from an instance of and populated on a SecurityConfiguration KeyEncryp
 instance using the helper method . tionParameters org.opensaml.xml.security.SecurityHelper#buildKeyEncryptionParams

For more usage info, see the Javadocs for that method.

http://www.w3.org/TR/xmlenc-core/

1.

2.

3.
4.

Other options may then be set on the instance to control how the encryption is performed. See the Javadocs for the Encrypter org.opensaml.saml2.
 and its superclass for further details.encryption.Encrypter org.opensaml.xml.encryption.Encrypter

Encrypt the SAMLObject

The SAML 2 specialization of supplies overloaded convenience methods for encrypting the types specified by the SAML 2 specification as Encrypter
capable of being encrypted: , , , , and . The return type of each method corresponds to the appropriate Assertion Attribute NameID BaseID NewID
subtype of SAML 2 based on the original object that was encrypted.EncryptedElementType

The generated element will be a child of the subtype element. Any elements will be placed EncrytpedData EncryptedElementType EncryptedKey
as was specified in the . In addition, forward and/or back references will be included between the and KeyEncryptionParameters EncryptedData Enc

, as specified in SAML 2 Errata item E43. See that document for further details.ryptedKey

Multiple SAML 2 objects may be encrypted with the same instance, as long as the data and key encryption parameters supplied at Encrypter
construction time are the same for each encryption operation.

Encryption Examples

Here is an example of the encryption of a SAML 2 Assertion using the AES-128 symmetric block cipher. The encrypted data encryption key will be
transported using the RSA-OAEP key transport algorithm, using the intended recipient's RSA public key. The single will be placed as a EncryptedKey
peer of the . The will contain a containing information about the key encryption key that was used.EncrytpedData EncryptedKey KeyInfo

// The Assertion to be encrypted
Assertion assertion = getAssertion();

// Assume this contains a recipient's RSA public key
Credential keyEncryptionCredential = getKEKCredential();

EncryptionParameters encParams = new EncryptionParameters();
encParams.setAlgorithm(EncryptionConstants.ALGO_ID_BLOCKCIPHER_AES128);

KeyEncryptionParameters kekParams = new KeyEncryptionParameters();
kekParams.setEncryptionCredential(keyEncryptionCredential);
kekParams.setAlgorithm(EncryptionConstants.ALGO_ID_KEYTRANSPORT_RSAOAEP);
KeyInfoGeneratorFactory kigf =
 Configuration.getGlobalSecurityConfiguration()
 .getKeyInfoGeneratorManager().getDefaultManager()
 .getFactory(keyEncryptionCredential);
kekParams.setKeyInfoGenerator(kigf.newInstance());

Encrypter samlEncrypter = new Encrypter(encParams, kekParams);
samlEncrypter.setKeyPlacement(KeyPlacement.PEER);

try {
 EncryptedAssertion encryptedAssertion = samlEncrypter.encrypt(assertion);
} catch (EncryptionException e) {
 e.printStackTrace();
}

Decrypting an Encrypted SAMLObject

The steps involved in SAML 2 decryption are:

Obtain appropriate instances of , used for resolving keys from org.opensaml.xml.security.keyinfo.KeyInfoCredentialResolver Enc
 and/or .ryptedData/KeyInfo EncryptedKey/KeyInfo

Obtain an appropriate instance of , used for resolving the correct org.opensaml.xml.encryption.EncryptedKeyResolver EncryptedKey
to be used in the context of decrypting a particular element.EncryptedData
Create a SAML 2 instance and set desired options.Decrypter
Decrypt the desired SAML 2 instance or instances.SAMLObject

Obtain KeyInfoCredentialResolver Instances

TODO

Note that a SAML 2 may be encrypted as either an or an , depending on the intended Assertion EncryptedAssertion EncryptedID
usage.

1.

2.

1.
2.
3.

Obtain EncryptedKeyResolver Instance

TODO

Create a SAML 2 Decrypter

The main class used in SAML 2 encryption is an instance of . An instance is constructed by specifying org.opensaml.saml2.encryption.Decrypter
via a constructor the and instances to be used. See the Javadocs for the superclass KeyInfoCredentialResolver EncryptedKeyResolver org.

 for more details on the constructor arguments.opensaml.xml.encryption.Decrypter

None of these 3 constructor arguments are mandatory in and of themselves. However, use cases will generally fall along at least one of 2 lines:

Recipient will decrypt the directly using a known, shared symmetric key. No is present. In this case, the first EncryptedData EncryptedKey
argument () is necessary, but the second and third arguments are not used.KeyInfoCredentialResolver newResolver
Recipient will decrypt a supplied , which carries the encrypted data encryption key. Decryption of the is EncryptedKey EncryptedKey
accomplished by using either a private key corresponding to the public key used for encrypted key transport, or a shared symmetric key used for
symmetric key wrap. In this case, it is typically necessary to supply the second argument () KeyInfoCredentialResolver newKEKResolver
and the (), but the first arg () is optional.EncryptedKeyResolver newEncKeyResolver KeyInfoCredentialResolver newResolver

However, a specialized implementation of which is designed to directly process elements itself might KeyInfoCredentialResolver EncryptedKey
supplant the need for a distinct KEK KeyInfo resolver and/or an encrypted key resolver.

Other options may then be set on the instance to control how the encryption is performed. See the Javadocs for the Decrypter org.opensaml.saml2.
 and its superclass for further details.encryption.Decrypter org.opensaml.xml.encryption.Decrypter

Decrypt the SAMLObject

The SAML 2 specialization of supplies overloaded convenience methods for decrypting the types specified by the SAML 2 specification as Decrypter
capable of carrying encrypted SAML 2 elements: , , , and . The return EncryptedAssertion EncryptedAttribute EncryptedID NewEncryptedID
type of each method corresponds to the appropriate SAML 2 element based on the original object that was encrypted.

Multiple SAML 2 objects may be decrypted with the same instance, as long as the and Decrypter KeyInfoCredentialResolver EncryptedKeyRes
 instances supplied at construction time are appropriate for the multiple decryption operations. Alternatively, the instance may be olver Decrypter

supplied with different and instances after construction by using the appropriate setter KeyInfoCredentialResolver EncryptedKeyResolver
methods.

Decryption Examples

Here is a simple example of decryption where:

the data encryption key has been transported via an , encrypted with the recipient's public keyEncryptedKey
the to use for decryption of the is known in advance via some unspecified mechanismPrivateKey EncryptedKey
the is known in advance to have been carried within the .EncryptedKey EncryptedData/KeyInfo

If an object to be decrypted is signed with an enveloped signature (e.g.) and the signature is to be verified: You may need to call Assertion De
 prior to decryption in order for signature verification to be successful on the decrypted crypter#setRootInNewDocument(true) SignedSA

. For further details see the API Javadocs for .MLObject org.opensaml.xml.encryption.Decrypter

Note that a SAML 2 may carry either an encrypted , , or . When decrypting an , it is EncryptedID NameID BaseID Assertion EncryptedID
up to the caller to determine the correct type of the decrypted that is returned, and cast it appropriately if desired.SAMLObject

1.
2.

3.
a.
b.
c.

EncryptedAssertion encryptedAssertion = getEncryptedAssertion();

// This credential - obtained by some unspecified mechanism -
// contains the recipient's PrivateKey to be used for key decryption
Credential decryptionCredential = getDecryptionCredential();

StaticKeyInfoCredentialResolver skicr =
 new StaticKeyInfoCredentialResolver(decryptionCredential);

// The EncryptedKey is assumed to be contained within the
// EncryptedAssertion/EncryptedData/KeyInfo.
Decrypter samlDecrypter =
 new Decrypter(null, skicr, new InlineEncryptedKeyResolver());

try {
 Assertion assertion = samlDecrypter.decrypt(encryptedAssertion);
} catch (DecryptionException e) {
 e.printStackTrace();
}

Here is a more complex and realistic decryption case where:

the data encryption key has been transported via an , encrypted with the recipient's public keyEncryptedKey
the to use for decryption of the is known in advance, and must be resolved from a store of local credentials, PrivateKey EncryptedKey not
based on hints possibly provided in the EncryptedKey/KeyInfo
Several resolution mechanisms for finding the must be supported simultaneously, including:EncryptedKey

inline within the EncryptedData/KeyInfo
as a peer of the within the SAML 2 EncryptedData EncryptedElementType
via a child of the , which points via a same-document fragment reference to an RetrievalMethod EncryptedData/KeyInfo Encryp

 located elsewhere in the document.tedKey

//
// One-time init code here
//

// Collection of local credentials, where each contains
// a private key that corresponds to a public key that may
// have been used by other parties for encryption
List<Credential> localCredentials = getLocalCredentials();

CollectionCredentialResolver localCredResolver = new CollectionCredentialResolver(localCredentials);

// Support EncryptedKey/KeyInfo containing decryption key hints via
// KeyValue/RSAKeyValue and X509Data/X509Certificate
List<KeyInfoProvider> kiProviders = new ArrayList<KeyInfoProvider>();
kiProviders.add(new RSAKeyValueProvider());
kiProviders.add(new InlineX509DataProvider());

// Resolves local credentials by using information in the EncryptedKey/KeyInfo to query the supplied
// local credential resolver.
KeyInfoCredentialResolver kekResolver = new LocalKeyInfoCredentialResolver(kiProviders, localCredResolver);

// Supports resolution of EncryptedKeys by 3 common placement mechanisms
ChainingEncryptedKeyResolver encryptedKeyResolver = new ChainingEncryptedKeyResolver();
encryptedKeyResolver.getResolverChain().add(new InlineEncryptedKeyResolver());
encryptedKeyResolver.getResolverChain().add(new EncryptedElementTypeEncryptedKeyResolver());
encryptedKeyResolver.getResolverChain().add(new SimpleRetrievalMethodEncryptedKeyResolver());

Decrypter samlDecrypter =
 new Decrypter(null, kekResolver, encryptedKeyResolver);

storeDecrypter(samlDecrypter);

// End init code

/* */

// Begin message processing code

Decrypter decrypter = getDecrypter();
EncryptedAssertion encryptedAssertion = getEncryptedAssertion();
try {
 Assertion assertion = decrypter.decrypt(encryptedAssertion);
} catch (DecryptionException e) {
 e.printStackTrace();
}

	OSTwoUserManJavaXMLEncryption

