
OSTwoUsrManJavaBB
Before you Begin
Before you being using the library there are some tips and conventions that you should be aware of.

Basic Object Hierarchy

It is important to understand the basic hierarchy of fundamental objects within OpenSAML prior to reading this manual so that you understand the
difference between, for example, an XMLObject and a SAMLObject. So, here are the basics:

XMLObject is the most basic object in the system. It represents an XML Element turned into a Java object.
ValidatingXMLObject is a specialization of that adds support for attaching various validation handlers (discussed later)XMLObject
SAMLObject is a specialization of that denotes SAML XML Elements that have been turned into Java objects.ValidatingXMLObject

So, in this documentation statements about XMLObjects apply to all SAMLObjects but the reverse is not true.

XMLObjectBuilder is the most basic builder interface for XMLObjects
SAMLObjectBuilder is a specialization of that only creates and adds a default, no-argument, builder XMLObjectBuilder SAMLObjects
method applicable to nearly all .SAMLObjects

XML Parsing

Parsing XML is an expensive operation. Some of this expense can be mitigated by pooling parsers. OpenSAML provides this functionality through its org.
 class. It is strongly recommended that developers create instances of this class and use the cached JAXP opensaml.xml.parse.ParserPool Docume

 that it provides to perform XML parsing. Separate instances representing each unique set of configurations can be created. For example you ntBuilder
may wish to create a parser pool that performs schema validation during parsing while another instance does not.

Collection Usage

Java provides a fairly robust set of collection APIs which OpenSAML has chosen to use in a more direct manner than some other projects. Many
XMLObjects contain a collection of child objects, for example a SAML Assertion may contain many Statements. Instead cluttering the interface for these
containing objects with methods to add, remove, clear, iterate over, and get children by index, these XMLObjects simply expose the collection of children
directly. Again, in the example of Assertions and Statements, the Assertion class exposes a of statements.java.util.List

This offers developers the full range of collection semantics when working with this data. You may use a to traverse or edit the java.util.Iterator
collection, use JDK 1.5 foreach loops, perform mutation operations like add, remove, and clear, and retrieval operations, and the returned collection class
will "do the right thing" in respect to adding/removing the objects as children of the contain class. For completeness sake, though, do note that while the
returned collection object does implement the specified Java Collection API fully it is not an instance of the collections that ship with the JDK (e.g.
HashSet, ArrayList).

Logging

OpenSAML 2 uses the logging facade. This library is very similar to the Jakarta Commons Logging (JCL) library but differs in two significant ways. SLF4J
First, SLF4J does not attempt to automatically discover and bind to a logging framework implementation. The auto-binding behavior of the JCL can be very
problematic if you have more than just a basic classloader hierarchy (a scenario found in every application container currently available). Second, SLF4J
allows you to log to the facade before it is even configured (it ships with a very very minimal logging implementation and configuration).

In order enable logging you must either download one of the bindings that bridge SLF4J with another logging system (e.g. Log4J, java.util.logging) or
provide a logging system that natively implements the SLF4J interfaces (e.g. logback). The developers of OpenSAML use the logging framework logback
because it provides some features (e.g. log rotation w/ configurable naming and compression) that don't appear in other logging frameworks. If you wish to
use logback you need the logback-core and logback-classic jars from the logback distribution.

If you use Jakarta Commons Logging or Log4J as the logging system behind SLF4J you must remove the jcl104-over-slf4j or log4j-over-slf4j,
respectively, jar from the classpath.

http://slf4j.org/
http://logback.qos.ch/

	OSTwoUsrManJavaBB

