
REST API v1

Overview
Authentication

Adding a New API User (Registry v3.3.0 and later)
Adding a New API User (Earlier Versions)

Object Formats
URL
JSON
XML
VOOT
Request and Response Formats

Timezones
Character Sets
Foreign Keys
API Reference
OpenAPI (Swagger)
Sample Clients

Overview

The Registry Core REST API generally provides table level access to the Registry . The Core REST API is described in this document, and is Data Model
designed for accessing and managing data objects, not the Registry configuration. Note that some Core APIs are provided by Plugins, some of which may
need to be enabled in order to be used.

In addition, higher level APIs are provided, usually by Plugins. These APIs provide the ability to execute function oriented actions. For more information,
see the API specific documentation:

MFA Status, via MEEM Enroller
SOR-Registry Write API, via API Source

 (deprecated)VOOT API

Authentication

Authentication is via a proxy or delegated model, where the REST client is treated as an administrative user by the Registry. The client, where appropriate,
indicates which target subject it wishes to act on behalf of.

The REST client is authenticated via a simple user/password pair transmitted over HTTPS as part of a transaction. More sophisticated basic auth
authentication mechanisms, such as delegated SAML assertions, may be supported in the future.

Note: POST may work for edit due to default CakePHP functionality but is not supported.

Adding a New API User (Registry v3.3.0 and later)

As of Registry v3.3.0, there are three types of API Users:

Platform API Users: API Users created within the COmanage CO are given full access to the API, across all COs.
Privileged CO API Users: API Users created within any other CO may be designated as , in which case they will have full access to Privileged
the API within their CO.
Unprivileged CO API Users: API Users not designated as Privileged will not have any access to the API by default, but may be granted specific
access where supported, for example within a specific plugin.

API Users can be managed by a CO Administrator via >> >> . Platform API Users are created the same way, via the CO Configuration API Users
COmanage CO.

API Users must have usernames prefixed with the name of the CO, followed by a dot. For example: MyCO.apiuser

Self-selected passwords are no longer supported for API Users. Instead, after the API User is created an API Key may be randomly generated. The API
Key will be displayed once after generation, but is then hashed for internal storage and is unrecoverable. A new API Key can be generated if needed.

It is also possible to attach validity dates to API Users, as well as to constrain access to specific IP Addresses (via regular expressions). Note there is no
current reporting or notification mechanism to indicate the approach of an API User's expiration.

Adding a New API User (Earlier Versions)

This document applies to COmanage Registry version 4.x and earlier.

https://spaces.at.internet2.edu/display/COmanage/Registry+Data+Model
https://spaces.at.internet2.edu/display/COmanage/API+Source
https://spaces.at.internet2.edu/display/COmanage/VOOT+API
http://tools.ietf.org/html/rfc2617

Platform Administrators may add and manage API Users via >> .Platform API Users

Note that the API User Name must not conflict with any login identifier for any valid user on the platform. This will be enforced when an API User Name is
added or edited, but not currently at any other point. (ie: It is possible for a subsequently added person to have a login identifier that conflicts with an API
User Name.) ()CO-104

It may make sense to, by policy, only allow login identifiers in eppn format (with an) and to only allow API User Names not in that format (without an).@ @

Object Formats

The REST API supports different formats for representing data object passed. Each format may convey the following special variables:

Object Type: The type of object represented in the request, as defined for each data type.
Object Version: The version of the object represented in the request, as defined for each data type.

URL

For methods such as GET that pass arguments as part of the URL, arguments are positional as defined for each data type.

JSON

This format is supported for requests and responses.

Requests with a JSON body must be sent with a Content-Type header of application/json.

XML

This format is supported for requests and responses.

VOOT

This format is experimental. See VOOT API for more information.

Request and Response Formats

Timezones

All times processed (inbound and outbound) via the REST API are in UTC. For more information on timezones, see .Understanding Registry Timezones

Character Sets

In general, COmanage supports Unicode, and that includes the REST API. In general, as long as every component of the installation is set up for Unicode
(PHP, Apache, the database server) everything should just work. If specifically using a of , it Content-Type application/json; charset=utf-8
may be necessary to use JSON-style encoding of non-ASCII characters.\u####

Prior to Registry v3.3.0, all API Users have full access to all Registry data across all COs.

The XML format is deprecated as of Registry v3.1.0, and will be removed in Registry v5.0.0 ().CO-1555

Changelog

In addition to the attributes defined in the Response formats for each Model, Models enabled for will return Changelog Changelog Behavior
metadata as well (, , parent ID, etc).deleted revision

Note that a request for a deleted, changelog enabled object will return a record (ie: a 200 response, not a 404 response). Examine the deleted
attribute to verify the status of the object. This behavior is subject to change in a future release ().CO-1557

Attribute Enumerations

If are defined for an attribute, permitted values for that attribute are constrained to the enumerated values. Permitted Attribute Enumerations
values may be determined and set via the .AttributeEnumeration API

https://bugs.internet2.edu/jira/browse/CO-104
https://spaces.at.internet2.edu/display/COmanage/VOOT+API
https://spaces.at.internet2.edu/display/COmanage/Understanding+Registry+Timezones
https://todos.internet2.edu/browse/CO-1555
https://spaces.at.internet2.edu/display/COmanage/Changelog+Behavior
https://todos.internet2.edu/browse/CO-1557
https://spaces.at.internet2.edu/display/COmanage/Attribute+Enumerations
https://spaces.at.internet2.edu/display/COmanage/AttributeEnumeration+API

Foreign Keys

As of Registry v3.3.3, updating of foreign keys (attributes of the form) over the REST API is generally restricted. foo_id For more information, see Unfreez
ing Foreign Keys.

API Reference

API API Version Available Since Registry Notes

Address 1.0 v0.1

AdHocAttribute 1.0 v3.3.0 XML format not supported

ApplicationPreference 1.0 v4.0.0 Limited purpose API in support of Registry user interface

AttributeEnumeration 1.0 v2.0.0 Removed in Registry v4.0.0

Cluster 1.0 v3.3.0

CO 1.0 v0.1

COU 1.0 v0.2

CoDepartment 1.0 v3.1.0

CoEmailList 1.0 v3.1.0

CoEnrollmentAttribute 1.0 v0.6

CoExtendedAttribute 1.0 v0.2

CoExtendedType 1.0 v0.6

CoGroup 1.0 v0.1

CoGroupMember 1.0 v0.1

CoInvite 1.0 v0.1

CoNavigationLink 1.0 v0.8.3

CoNsfDemographics 1.0 v0.4

CoOrgIdentityLink 1.0 v0.2

CoPerson 1.0 v0.1

CoPersonRole 1.0 v0.2

CoPetition 1.0

CoProvisioningTarget 1.0

CoService 1.0 v3.1.0

CoTAndCAgreement 1.0 v2.0.0

CoTermsAndConditions 1.0 v2.0.0

EmailAddress 1.0 v0.1

HistoryRecord 1.0 v0.7

Identifier 1.0 v0.1

IdentityDocument 1.0 v4.0.0 XML format not supported

Name 1.0 v0.8.3

NavigationLink 1.0 v0.8.3

Organization 1.0 v4.0.0 XML format not supported

The original schema for Registry v0.1, never implemented, is here

OrgIdentity 1.0 v0.2

Password 1.0 v3.3.0 Implemented by , experimentalPassword Authenticator Plugin

SshKey 1.0 v3.3.0 Implemented by , experimentalSSH Key Authenticator Plugin

TelephoneNumber 1.0 v0.1

Unix Cluster 1.0 v3.3.0 Implemented by , experimentalUnix Cluster Plugin

Unix Cluster Account 1.0 v3.3.0 Implemented by , experimentalUnix Cluster Plugin

Unix Cluster Group 1.0 v3.3.0 Implemented by , experimentalUnix Cluster Plugin

https://spaces.at.internet2.edu/display/COmanage/Multitenancy+Considerations#MultitenancyConsiderations-MultitenancyConsiderations-UnfreezingForeignKeys
https://spaces.at.internet2.edu/display/COmanage/Multitenancy+Considerations#MultitenancyConsiderations-MultitenancyConsiderations-UnfreezingForeignKeys
https://spaces.at.internet2.edu/display/COmanage/Address+API
https://spaces.at.internet2.edu/display/COmanage/AdHocAttribute+API
https://spaces.at.internet2.edu/display/COmanage/ApplicationPreference+API
https://spaces.at.internet2.edu/display/COmanage/AttributeEnumeration+API
https://spaces.at.internet2.edu/display/COmanage/Cluster+API
https://spaces.at.internet2.edu/display/COmanage/CO+API
https://spaces.at.internet2.edu/display/COmanage/COU+API
https://spaces.at.internet2.edu/display/COmanage/CoDepartment+API
https://spaces.at.internet2.edu/display/COmanage/CoEmailList+API
https://spaces.at.internet2.edu/display/COmanage/CoEnrollmentAttribute+API
https://spaces.at.internet2.edu/display/COmanage/CoExtendedAttribute+API
https://spaces.at.internet2.edu/display/COmanage/CoExtendedType+API
https://spaces.at.internet2.edu/display/COmanage/CoGroup+API
https://spaces.at.internet2.edu/display/COmanage/CoGroupMember+API
https://spaces.at.internet2.edu/display/COmanage/CoInvite+API
https://spaces.at.internet2.edu/display/COmanage/CoNavigationLink+API
https://spaces.at.internet2.edu/display/COmanage/CoNsfDemographics+API
https://spaces.at.internet2.edu/display/COmanage/CoOrgIdentityLink+API
https://spaces.at.internet2.edu/display/COmanage/CoPerson+API
https://spaces.at.internet2.edu/display/COmanage/CoPersonRole+API
https://spaces.at.internet2.edu/display/COmanage/CoPetition+API
https://spaces.at.internet2.edu/display/COmanage/CoProvisioningTarget+API
https://spaces.at.internet2.edu/display/COmanage/CoService+API
https://spaces.at.internet2.edu/display/COmanage/CoTAndCAgreement+API
https://spaces.at.internet2.edu/display/COmanage/CoTermsAndConditions+API
https://spaces.at.internet2.edu/display/COmanage/EmailAddress+API
https://spaces.at.internet2.edu/display/COmanage/HistoryRecord+API
https://spaces.at.internet2.edu/display/COmanage/Identifier+API
https://spaces.at.internet2.edu/display/COmanage/IdentityDocument+API
https://spaces.at.internet2.edu/display/COmanage/Name+API
https://spaces.at.internet2.edu/display/COmanage/NavigationLink+API
https://spaces.at.internet2.edu/display/COmanage/Organization+API
https://spaces.at.internet2.edu/pages/viewpage.action?pageId=20578341
https://spaces.at.internet2.edu/display/COmanage/OrgIdentity+API
https://spaces.at.internet2.edu/display/COmanage/Password+API
https://spaces.at.internet2.edu/display/COmanage/Password+Authenticator+Plugin
https://spaces.at.internet2.edu/display/COmanage/SshKey+API
https://spaces.at.internet2.edu/display/COmanage/SSH+Key+Authenticator+Plugin
https://spaces.at.internet2.edu/display/COmanage/TelephoneNumber+API
https://spaces.at.internet2.edu/display/COmanage/Unix+Cluster+API
https://spaces.at.internet2.edu/display/COmanage/Unix+Cluster+Plugin
https://spaces.at.internet2.edu/display/COmanage/Unix+Cluster+Account+API
https://spaces.at.internet2.edu/display/COmanage/Unix+Cluster+Plugin
https://spaces.at.internet2.edu/display/COmanage/Unix+Cluster+Group+API
https://spaces.at.internet2.edu/display/COmanage/Unix+Cluster+Plugin

Url 1.0 v3.1.0

OpenAPI (Swagger)

An initial, incomplete, and still evolving .OpenAPI 3.0.x YAML description of the API is available in the develop branch

You may use the Swagger container image to render the OpenAPI YAML:

git clone https://github.com/Internet2/comanage-registry.git
pushd comanage-registry
git checkout develop
pushd app/Config/Schema

docker pull swaggerapi/swagger-ui
docker run \
 -d \
 --name swagger-ui \
 -p 80:8080 \
 -e SWAGGER_JSON=/opt/restapiv1.yaml \
 -v ./restapiv1.yaml:/opt/restapiv1.yaml \
 swaggerapi/swagger-ui

Then browse to to see the rendered API.http://localhost

You may also use the OpenAPI 3.0.x YAML description with the OpenAPI generator to generate client bindings for various programming languages. See R
 for examples.EST API Examples

Sample Clients

See .REST API Examples

https://spaces.at.internet2.edu/display/COmanage/Url+API
https://github.com/Internet2/comanage-registry/blob/develop/app/Config/Schema/restapiv1.yaml
http://localhost
https://spaces.at.internet2.edu/display/COmanage/REST+API+Examples
https://spaces.at.internet2.edu/display/COmanage/REST+API+Examples
https://spaces.at.internet2.edu/display/COmanage/REST+API+Examples

	REST API v1

