
Grouper provisioning translations

Wiki
Home

Grouper Release
Announcements

Grouper
Guides

Grouper Deployment
Guide

Community
Contributions

Internal Developer
Resources

Examples
Roles
High level translation
Subject link
Target user link
Target group link
Beans

ProvisioningGroup
ProvisioningEntity (e.g. user)
ProvisioningMembership
ProvisioningAttribute

Grouper auto translated from SQL
Grouper translated to target
Target provisioning objects
Target native objects (if exist)
Index objects

The comparisons and logic happen on "target objects" which are translated from grouper

Examples

This will reverse a name, replace the separators (colons) with something else (in this case dot), and maxlength of 64 will just truncate there. This
will generate a generally unique name

${edu.internet2.middleware.grouper.util.GrouperUtil.stringFormatNameReverseReplaceTruncate
(grouperProvisioningGroup.name, ".", 64)}

Roles

If you need a group membership or privilege on a user in a translation you can use this (4.11.0+, 5.9.0+). These return a boolean

${provisioningEntityWrapper.isInGroup('test2:testGroup3')}
${provisioningEntityWrapper.isHasPrivilege('test2:testGroup3', 'admins')}

If you need list of users from a group based on membership or privilege, can get a set of strings based on: subjectId, subjectIdentifier0, subjectIdentifier1,
subjectIdentifier2, email

${provisioningGroupWrapper.groupMembers('test2:testGroup3', 'subjectId')}
${provisioningGroupWrapper.groupPrivilegeHolders('test2:testGroup3', 'updaters', 'subjectIdentifier0')}

High level translation

The info on this page applies to Grouper 2.6 and above.

https://spaces.at.internet2.edu/display/Grouper/Grouper+Wiki+Home
https://spaces.at.internet2.edu/display/Grouper/Grouper+Wiki+Home
https://spaces.at.internet2.edu/display/Grouper/Grouper+Release+Announcements
https://spaces.at.internet2.edu/display/Grouper/Grouper+Release+Announcements
https://spaces.at.internet2.edu/display/Grouper/Grouper+Administration+Guides
https://spaces.at.internet2.edu/display/Grouper/Grouper+Administration+Guides
https://spaces.at.internet2.edu/display/Grouper/Grouper+Deployment+Guide
https://spaces.at.internet2.edu/display/Grouper/Grouper+Deployment+Guide
https://spaces.at.internet2.edu/display/Grouper/Community+Contributions
https://spaces.at.internet2.edu/display/Grouper/Community+Contributions
https://spaces.at.internet2.edu/display/GrIntDev/Grouper+Internal+Development+Home
https://spaces.at.internet2.edu/display/GrIntDev/Grouper+Internal+Development+Home

1.
a.
b.
c.

2.

3.

a.

4.
5.
6.

a.
7.

1.
2.

Data is retrieved from Grouper, and translated to a standard format
Note: see below, some data might be needed from cache (in DB)
If data is not in cache or there are errors (since cache out of date), lookup in Subject API or Target for users or groups
Abbreviated data is retrieved for Groups/Members/Memberships, but the full sync objects are retrieved

Data is retrieved from the Target using the DAO and translated to a "standard" format for that target type (e.g. ldap attributes are put in attributes
in the group or entity)
Configuration for the grouper provisioning objects translated to grouper target objects. The target object format is specific to the target and
documented in the provisioner

If memberships are translated to group attributes or subject attributes, then there is still a reference from the attribute to the membership
so things can be tracked

Index the target provisioning objects and the grouper target objects so they can be compared
The grouper target objects and target provisioning objects are compared by the framework in a generic way
If the target and grouper are not in sync, the changes are collected in the form of target provisioning objects

There is a list of individual changes needed in the target (e.g. add this attribute value to this object)
The DAO will call CRUD operations (could be batched) to get the target in sync with Grouper

Subject link

"Subject link" is when the subject source needs to be consulted since data to provision is not just the subject id (need attributes cached in grouper or need
more up to date data)

Here is the design for subject link from grouper

Data is read from Grouper which includes the "sync" tables
For entities, this could have some data cached for a subject

2.

3.
4.

1.
2.

3.
4.

provisioner.sqlProvTest.syncMemberFromId3AttributeValueFormat = ${subject.attributes['myLdapId']}

If the data is not cached (or if there is an error), look this up in the subject API (will batch multiple subjects at once)
Then once this data is in the "grouper provisioning objects", continue with the translation to the grouper target objects

The provisioning framework will see if the "memberFromId3" is null when getting data from sync cache, those subjects will be resolved and that data will be
populated and used

This will translate that to the entity id

#translate from group auto translated to the target format
provisioner.sqlProvTest.grouperToTargetTranslation.0.script = ${grouperTargetEntity.setId(grouperSyncMember.
getMemberFromId3())}

could be group, membership, or entity
provisioner.sqlProvTest.grouperToTargetTranslation.0.for = entity

Target user link

"Target user link" is when the target needs to be consulted since data to provision is not just the subject id or subject api data (need cached in grouper or
need more up to date data)

Here is the design for target user link from grouper

Data is read from Grouper which includes the "sync" tables
For entities, this could have some data cached for a subject

main identifier of the user on the target side
provisioner.sqlProvTest.syncMemberToId2AttributeValueFormat = ${targetEntity.attributes['dn']}

identifier of the user as referred to by the group
provisioner.sqlProvTest.syncMemberToId3AttributeValueFormat = ${targetEntity.attributes['uid']}

If the data is not cached (or if there is an error), look this up in the target (will batch multiple entities at once)
Then once this data is in the "grouper provisioning objects", continue with the translation to the grouper target objects

The provisioning framework will see if the "memberToId2" or "memberToId3" is null when getting data from sync cache, those entities will be resolved and
that data will be populated and used

This will translate that to the entity id

1.
2.

3.
4.

#translate from group auto translated to the target format
provisioner.sqlProvTest.grouperToTargetTranslation.0.script = ${grouperTargetEntity.setId(grouperSyncMember.
getMemberToId3())}

could be group, membership, or entity
provisioner.sqlProvTest.grouperToTargetTranslation.0.for = entity

Target group link

"Target group link" is when the target needs to be consulted since data to provision is not just the group uuid, name, id index, etc data (need cached in
grouper or need more up to date data)

Here is the design for target group link from grouper

Data is read from Grouper which includes the "sync" tables
For groups, this could have some data cached from the target

main identifier of the user on the target side
provisioner.sqlProvTest.syncGroupToId2AttributeValueFormat = ${targetGroup.attributes['dn']}

If the data is not cached (or if there is an error), look this up in the target (will batch multiple entities at once)
Then once this data is in the "grouper provisioning objects", continue with the translation to the grouper target objects

The provisioning framework will see if the "groupToId2" or "groupToId3" is null when getting data from sync cache, those entities will be resolved and that
data will be populated and used

This will translate that to the group id

#translate from group auto translated to the target format
provisioner.sqlProvTest.grouperToTargetTranslation.0.script = ${grouperTargetGroup.setId(grouperSyncGroup.
getGroupToId2())}

could be group, membership, or entity
provisioner.sqlProvTest.grouperToTargetTranslation.0.for = group

Beans

ProvisioningGroup

Field Type Description

id String every group must have an id, what it is known by in the target.

if there is an opaque id, then that is best. Otherwise, whatever it is (uuid, name, extension, idIndex, etc).

not: this can be manipulated to turn a name into a DN for example

name String This is the group name which can be different than the id. If there is no name different from id, this can be
blank.

this is used for renames

idIndex Long (integer) int assigned from grouper to enable renames of target groups

displayName String display name for group

attributes Map<String,
TargetAttribute>

list of attributes where there is a string name and a value (object)

value can be a scalar or a collection

ProvisioningEntity (e.g. user)

Field Type Description

id String every entity must have an id, what it is known by in the target

loginId String This is the entity loginid which can be different than the id. If there is no loginid different from id, this can be
blank.

this is used for changing the netId in the target for an existing user. e.g. netId, eppn, email, etc. optional

name String name field can be "first last" or whatever the name should be in the target. optional

email String email address used for contact to the user. optional

attributes Map<String,
TargetAttribute>

list of attributes where there is a string name and a value (object)

value can be a scalar or a collection

ProvisioningMembership

Field Type Description

id String membership can have id or else the id will be tuple of group id and subject id (optional)

groupId String provisioning group id for membership

group ProvisioningGroup reference to the group from this membership

entityId String provisioning entity id for memberships

entity ProvisioningEntity reference to the entity from this membership

attributes Map<String, TargetAttribute> list of attributes where there is a string name and a value (object)

value can be a scalar or a collection

ProvisioningAttribute

Field Type Description

name String name of attribute

value Object (any type, could be multivalued) value of attribute

Grouper auto translated from SQL

Grouper native comes from SQL queries. This is fairly standard and minorly customizable

Variable (e.g. in EL) Type Description

grouperProvisionGroup ProvisioningGroup
id: uuid of group
name: group system name
idIndex: group ID index
displayName: display name of group
attribute("description"): description of group

grouperProvisionMembership ProvisioningMembership
references to group and entity by group id and member id

grouperProvisionEntity ProvisioningEntity
id: memberId
name: name
attribute("description"): subject description
attribute("subjectId"): subject id
attribute("subjectIdentifier0"): subject identifier0

Grouper translated to target

The Grouper provisioning format is processed and the "target object" format needs to be reached.

Variable Type

grouperTargetGroup ProvisioningGroup

grouperTargetMembership ProvisioningMembership

grouperTargetEntity ProvisioningEntity

First the grouper provisioning groups are cycled through, and for each group, a grouper target group will be created, and a translation will assign fields of
the target object from the grouper objects

If a grouperToTargetTranslation "for" is "group" then that translation will be evaluated while looping through groups.

In this example, use the group "name" as the matching ID of the group

#translate from group auto translated to the target format
provisioner.sqlProvTest.grouperToTargetTranslation.0.script = ${grouperTargetGroup.setId(grouperProvisionGroup.
getName())}

could be group, membership, or entity
provisioner.sqlProvTest.grouperToTargetTranslation.0.for = group

#translate from group auto translated to the target format
provisioner.sqlProvTest.grouperToTargetTranslation.1.script = ${grouperTargetGroup.setAttribute("desc",
grouperProvisionGroup.getAttribute("description"))}

could be group, membership, or entity
provisioner.sqlProvTest.grouperToTargetTranslation.1.for = group

If a grouperToTargetTranslation "for" is "entity" then that translation will be evaluated while looping through entities

In this example use the subject id as the matching ID

#translate from group auto translated to the target format
provisioner.sqlProvTest.grouperToTargetTranslation.1.script = ${grouperTargetEntity.setId
(grouperProvisionEntity.getAttribute("subjectId"))}

could be group, membership, or entity
provisioner.sqlProvTest.grouperToTargetTranslation.1.for = entity

If a grouperToTargetTranslation "for" is "membership" then that translation will be evaluated while looping through memberships

Target provisioning objects

Depending on the target, fields will be populated and documented for that provisioner. Note: any state needed to make changes in the target need to be
stored in these beans

Variable Type

targetProvisionGroup ProvisioningGroup

targetProvisionMembership ProvisioningMembership

targetProvisionEntity ProvisioningEntity

Target native objects (if exist)

Variable Type Notes

targetNativeGroup ? native target group

targetNativeMembership ?

targetNativeEntity ?

Index objects

Use the targetGroup, targetEntity, and targetMembership variable to refer to the grouperTargetGroups, grouperTargetEntity's, grouperTargetMemberships,
targetProvisioningGroups, targetProvisioningEntity's, and targetProvisioningMemberships

If you are supporting renames, then the id of the targets need to something opaque and unchanging (e.g. grouper group idIndex or uuid).

Note: you only need to specify the id's for objects that are in the target (e.g. you might not need all three unless there are groups, entities, and
memberships in the target).

If something is specified then the group id and entity id will be used for targetGroups and targetEntities. For targetMemberships, it will by default use
MultiKey of provisioningGroupId and provisioningEntityId.

The ID cant be null unless its an insert and the target expects a null for insert

The type of the id should be a string, numeric, or a multikey of a few strings / numerics. The ${ } is optional

provisioner.sqlProvTest.targetGroupIdExpression = ${targetGroup.retrieveAttributeValueString("groupName")}

provisioner.sqlProvTest.targetMembershipIdExpression = new('edu.internet2.middleware.grouperClient.collections.
MultiKey', targetMembership.retrieveAttributeValueString('group_name'), targetMembership.
retrieveAttributeValueString('subject_id'))

provisioner.sqlProvTest.targetEntityIdExpression = ${targetEntity.retrieveAttributeValueString("subjectId")}

	Grouper provisioning translations

