
1.
2.

1.

2.

3.

Coding new DDL

Wiki
Home

Grouper Release
Announcements

Grouper
Guides

Grouper Deployment
Guide

Community
Contributions

Internal Developer
Resources

This document helps developers work with Grouper DDL. If you work with Grouper DDL, please keep this document up to date.

Make sure to:

Use lower case for views
Test on case sensitive mysql container

The first thing to know about is the grouper_ddl table. This has one entry for each ddl type. A ddl type means database objects with a certain prefix (e.g.
the grouper one starts with grouper_, the default subject one starts with subject, and the organization management one starts with grouperorgs_). On
startup, grouper will see if the version in the DB matches the version in the jar (an enum). If not, an error will be logged, and optionally grouper will try to
auto-upgrade in 2.5 or print out a script to run if not auto-ddl.

Each version of grouper that changes DDL should have its own class. See for an example. The name of the class should correspond GrouperDdl2_5.java
to the version that will be released with the new DDL. e.g. GrouperDdl2_5_38

Each object that is changed should be in its own method. Check to make sure if it has been done before. See if it should even run. There are a few cases

Object type Check Description Example

New table Check if going to current version
or above

This is not that important since it is only
called from current version GrouperDdl.V32.getVersion() <=

ddlVersionBean.getBuildingToVersion();

New column,view,
comment, index,
foreign key, etc

Check if going to current version
or above

This is important since the method is
called from two places,

when the table/object is created
when this version is upgraded

GrouperDdl.V32.getVersion() <=
ddlVersionBean.getBuildingToVersion();

Changed view This is complicated and requires
multiple steps (example in 2.5)

In previous version, if
building to that version,
create some view with
same name.
In current version, if not
building from scratch, drop
the view
in current version, if
building to current version
of above, create the view

If you dont create the view with temp
name in previous version, then ddlutils
wont detect that it needs to drop it

previous version:

GrouperDdl.V32.getVersion() >
ddlVersionBean.getBuildingToVersion();

building from scratch:

ddlVersionBean.getBuildingFromVersion()
<= 0

Update statement Check to see if needs to update You can check by version number or see
if you can find the table in the object
model (isTableNew)

 Table groupTable = GrouperDdlUtils.
ddlutilsFindTable(database, Group.
TABLE_GROUPER_GROUPS, true);
 boolean enabledColumnIsNew = false;

 if (groupTable != null) {
 enabledColumnIsNew = null ==
GrouperDdlUtils.ddlutilsFindColumn
(groupTable, Group.COLUMN_ENABLED, false);
 }

Example of adding new column

Step Summary Description

https://spaces.at.internet2.edu/display/Grouper/Grouper+Wiki+Home
https://spaces.at.internet2.edu/display/Grouper/Grouper+Wiki+Home
https://spaces.at.internet2.edu/display/Grouper/Grouper+Release+Announcements
https://spaces.at.internet2.edu/display/Grouper/Grouper+Release+Announcements
https://spaces.at.internet2.edu/display/Grouper/Grouper+Administration+Guides
https://spaces.at.internet2.edu/display/Grouper/Grouper+Administration+Guides
https://spaces.at.internet2.edu/display/Grouper/Grouper+Deployment+Guide
https://spaces.at.internet2.edu/display/Grouper/Grouper+Deployment+Guide
https://spaces.at.internet2.edu/display/Grouper/Community+Contributions
https://spaces.at.internet2.edu/display/Grouper/Community+Contributions
https://spaces.at.internet2.edu/display/GrIntDev/Grouper+Internal+Development+Home
https://spaces.at.internet2.edu/display/GrIntDev/Grouper+Internal+Development+Home
https://github.com/Internet2/grouper/blob/master/grouper/src/grouper/edu/internet2/middleware/grouper/ddl/GrouperDdl2_5.java

1. Add the
fields/getters

In the bean, add getters and
setters and fields /**

 * when this group was removed from grouper
 */
 private Timestamp inGrouperEnd;

 /**
 * when this group was removed from grouper
 * @return
 */
 public Timestamp getInGrouperEnd() {
 return inGrouperEnd;
 }

 /**
 * when this group was removed from grouper
 * @param inGrouperEnd
 */
 public void setInGrouperEnd(Timestamp inGrouperEnd) {
 this.inGrouperEnd = inGrouperEnd;
 }

2. Scan class for
more work

If all bean properties are used
elsewhere in class,
add those too

clone() {
 gcGrouperSyncGroup.id = this.id;
 gcGrouperSyncGroup.inGrouperDb = this.inGrouperDb;
 gcGrouperSyncGroup.inGrouperEnd = this.inGrouperEnd;

3. Edit the hbm
mapping file

Look at HBM and edit it
accordingly <property name="inGrouperEnd" column="in_grouper_end" type="

timestamp"/>

4. Add column if
upgrade

If this is an upgrade, add the
column to the table if (!buildingToThisVersionAtLeast(ddlVersionBean)) {

 return;
 }

 // if building from scratch its already got it
 if(buildingFromScratch(ddlVersionBean)) {
 return;
 }

 if (ddlVersionBean.didWeDoThis
("v2_5_38_addGrouperSyncStartColumns", true)) {
 return;
 }
 GrouperDdlUtils.ddlutilsFindOrCreateColumn
(grouperSyncGroupTable, "in_grouper_end",
 Types.TIMESTAMP, "1", false, false);

5. Add in table if
starting anew

If loading DDL from scratch, the
column should
be added when the table is
created, not as an
alter table. But only do this if
building passed
the version where it is added

 if (GrouperDdl2_5_38.buildingToThisVersionAtLeast
(ddlVersionBean)) {

 GrouperDdlUtils.ddlutilsFindOrCreateColumn
(grouperSyncGroupTable, "in_grouper_end",
 Types.TIMESTAMP, "10", false, false);

 }

6. Similarly add
comments

Add comments to all objects for
postgres/oracle GrouperDdlUtils.ddlutilsColumnComment(ddlVersionBean,

"grouper_sync_group", "in_grouper_end", "when this was taken out of
grouper");

7. For each DB,
install ddl utils

Droponly all objects, then do a -
registry -check -useDdlUtils

This will generate the full generated DDL script

7a. Note, a unit
test makes this a
lot faster

8. Merge
changes to static
dll

Merge changes from that full
script to the
conf/ddl
/GrouperDdl_Grouper_install_<d
b>.sql

For each DB

Dont copy the whole script in, just the thing that changed

 in_target_start TIMESTAMP,
 in_target_end TIMESTAMP,
 provisionable_start TIMESTAMP,

8a. Add an
upgrade script
for each database

conf/ddl
/GrouperDdl_Grouper_XX_upgr
adeTo_XX_<dbVendor>.sql

See others for example, and pay attention to bottom version numbers

9. Correct bottom
version

At the bottom of the file is an
insert statement,
make sure the version is correct

For each DB

e.g. for hsql:

insert into grouper_ddl (id, object_name, db_version, last_updated,
history) values
('c08d3e076fdb4c41acdafe5992e5dc4d', 'Grouper', 35, to_char
(CURRENT_TIMESTAMP, 'YYYY/MM/DD HH24:mi:DD'),
to_char(CURRENT_TIMESTAMP, 'YYYY/MM/DD HH24:mi:DD') || ': upgrade
Grouper from V0 to V35, ');
commit;

10. Try an install
using the static
file

just start grouper shell (with
auto ddl)

For each DB

Make sure the new column / comment is there

11. Get the DB to
the previous

-droponly. Then you can use
the previous full SQL from git,
make sure the grouper ddl
version at bottom of file is
correct (previous version)

For each DB

Run that SQL in your DB client (e.g. dbeaver). See the column isnt there

12. Upgrade
using ddl utils
(dont run script)

-registry -check -useDdlUtils

For each DB. Note, you can do
this twice,
once before the changes, once
after, and compare

The output of that script is a mess. We want the diff to be minimal. Use what you can and craft
an upgrade script. Dont worry about the order of columns. If ddlutils says to add a column after
another column, ignore that part

ALTER TABLE GROUPER_SYNC_GROUP
 ADD COLUMN in_grouper_end TIMESTAMP;

15. Deep ddl
check

-registry -deep should report a
missing column

For each DB

14. Upgrade with
static DDL

just start grouper shell (with
auto ddl)

For each DB

Make sure the new column / comment is there

16. Deep ddl
check

-registry -deep should report the
DB is up to date

For each DB

	Coding new DDL

