Grouper Role and Permission Management

Wiki Grouper Release Grouper Grouper Deployment Community Internal Developer
Home Announcements Guides Guide Contributions Resources

D This topic is discussed in the "Grouper Permissions" training video and in the "LITE Ul Permissions - PART 1" training video and in the "LITE Ul
Permissions - PART 2" training video.

Diagrams
Note: there are 4 levels of hierarchies in Grouper permissions.
. Indirect group membership to have a role
. Permissions that imply other permissions (so you can assign one permissions and get a lot of rights)

1

2

3. Actions that imply other actions (e.g. admin implies all other actions)

4. Role inheritance so a role can inherit all permissions from another role, and add some more

Here are examples and diagrams of Grouper permissions

https://spaces.at.internet2.edu/display/Grouper/Grouper+Wiki+Home
https://spaces.at.internet2.edu/display/Grouper/Grouper+Wiki+Home
https://spaces.at.internet2.edu/display/Grouper/Grouper+Release+Announcements
https://spaces.at.internet2.edu/display/Grouper/Grouper+Release+Announcements
https://spaces.at.internet2.edu/display/Grouper/Grouper+Administration+Guides
https://spaces.at.internet2.edu/display/Grouper/Grouper+Administration+Guides
https://spaces.at.internet2.edu/display/Grouper/Grouper+Deployment+Guide
https://spaces.at.internet2.edu/display/Grouper/Grouper+Deployment+Guide
https://spaces.at.internet2.edu/display/Grouper/Community+Contributions
https://spaces.at.internet2.edu/display/Grouper/Community+Contributions
https://spaces.at.internet2.edu/display/GrIntDev/Grouper+Internal+Development+Home
https://spaces.at.internet2.edu/display/GrIntDev/Grouper+Internal+Development+Home
http://www.youtube.com/watch?v=pbPxO227f0c
http://www.youtube.com/watch?v=pbPxO227f0c
http://www.youtube.com/watch?v=Q3lUkmi9AL8
http://www.youtube.com/watch?v=kjfVTRcfY0k
http://www.youtube.com/watch?v=kjfVTRcfY0k

1. Take a policy group (e.g. in an app folder) and
mark it as a "role”. A "role" is a group that can have
permissions assigned

@
on

Role

2. Just like any policy group, it consists of ref groups,
ad hocs, composites, etc. The app could have one or
many roles. Any member of a group which is a
member of the role "has the role”

%0 |:> ref i indirect member
l’ IN
' composite

\ oy ad hoc

i direct member

3. Permission definitions (under the covers are Grouper attribute definitions) configure
the permissions. Specifically we need "actions" (part of the 'triple' permission
assignment. Note: for this example we are securing data at a row level by org. So the
org list can be maintained centrally and used by multiple applications. This list of actions
is ad hoc depending on the needs of the application

{} orgPermissionDef |:> ¢ | read
N & | update

4 | admin

4. Permission resources (or "permissions”) (under the covers are Grouper attribute names) are
things you can assign to roles or users. Permissions can imply other permissions (just as being a
member of a group can lead to other indirect group memberships). In this case the list of org

permissions is maintained by a loader job. Each permission is configured by its permission

definition. Note: just like groups, the Grouper folder location of permissions is not related to if
permissions imply each other. Permissions could be located in the same folder or whatever folder
makes sense. For orgs, it is recommended to not use folders to organize any hierarchy since it

might change.

Qg COL: School of arts and sciences

-a- orgPermissionDef |:> D
&:> Q-g 1234: Math admins

M OIS . Durmimmnn anbanl

a-g MATH: Department of mathematics

v* DWo., DUIIIT22 aLlivwl

5. Assign a permission to a role. This is a "triple" assignment since there is also an
action. Note that membership is a "tuple" assignment, group and entity. Any entity in
the "role" can perform the action on the resource, in the context of the role. "In the
context of the role” means only while considering that role. In another application in
another role, the user cannot perform that action. Anyone in role "Peoplesoft
approver" can read orgs "MATH" and "1234".

A
g direct assignment
Peoplesoft " & | read aﬁ MATH: Department of mathematics
approver role 13

@ indirect assignment (since org MATH implies org 1234)

& | read Qg 1234: Math admins

members

6. Assign a permission to a user in a role. This means that while the user has the
role, and while in the context of the role, the user has the permission (and implied
permission), but other users in the role do not (unless that have an assignment to it).
If the user is deprovisioned from the role, they lose the permissions. Note: the user
has the permissions for role-wide permissions in addition to individual permissions.

A

o direct assignment
Peoplesoft I:: > ﬁ = read H® \IATH: Department of mathematics
approver role i > Q-Hv P

John
indirect assignment (since org MATH implies org 1234)

© | read Qg 1234: Math admins

direct assignment
%| — & | read Qg BUS: Business school

Mary

7. Actions can have hierarchies (well, actually they are directed graphs). Configure an action to
imply other actions. In this case, if someone has "admin" then they can also "read" and "write"

-O- orgPermissionDef 1:> & | admin
N & | read
& | update

A
[Y direct assignment
Peoplesoft :> % —— & | admin Q‘g MATH: Department of mathematics =
approver role v
ohn

J
direct assignment (since org MATH implies org 1234)
& | admin {}g 1234: Math admins
indirect assignment (since action "admin" implies "read")
@ | read Qg MATH: Department of mathematics

indirect assignment (since admin -> read and MATH -> 1234)

& | read Qg 1234: Math admins <1|:

% direct assignment

i' ¢ | read Q: BUS: Business school
Mary !

8. Roles can have hierarchies. This is an RBAC concept (like many of the other concepts). It doesnt affect
membership of the roles. It means that a role inherits permissions that another role has. So if the "admin role"
can do "XYZ", and the "superadmin role" inherits permissions from the "admin role", then anyone in the
"superadmin role" can do XYZ, in addition to any permissions assigned to the "superadmin role”. Note: this
applies to permissions assigned to the role level, not to the individual in the role.

A inherits from (A]
an E ¥
Peoplesoft Peoplesoft
superadmin role admin role

direct assignment

..,& :' ©® | admin a-g Reports screen
Peoplesoft
admin role direct assignment

'—i“\. O admin ﬂn Warkflow scraan

v g e ey T

(X) : ;
Nan direct assignment

Peoplesoft ' ﬁ' % | admin a-g Daemon jobs
superadmin role I

[Anyone in the superadmin role can (e.g. Susan):
Peoplesoft g ;
superadmin role indirect assignment (members of a role can do whatever the role can do)
@ & | admin ﬁ Daemon jobs
indirect assignment (members of a role can do whatever implied roles
i (superadmin implies admin can do))
& | admin ﬁ Reports screen
Susan

indirect assignment (members of a role can do whatever implied roles
(superadmin implies admin can do))

& | admin ag Workflow screen

9. Permission assignments can have limits. These can an amount, or a time of day, or various things. The

Grouper web services can accept an input and give an answer. Or the metadata can be exported to the
application and it can make the decision.

9

Lo direct assignment
Peoplesoft I:: > ;% =" approve B \IATH: Department of mathematics
approver role -V . i3 Qﬂ’ R

John
limit 10000

ﬁ:>iiz:> ’:>O

Asks Grouper WS if

John using John can approve for Yes, Grouper sees john has the PeopleSoft
PeopleSoft $7934 on org 1234 in approver role, and can approve permission
the PeopleSoft app "Org 1234" since that is in "Org MATH", and

the limit of 10000 is above 7934

When to use Grouper Permissions

. When the application can support permissions being provisioned to it
Helps if your application has a specific and probably custom Ul to assign permissions

a. E.g. imagine assigning permissions on Confluence pages outside of the Confluence app? Might be difficult to use

b. Grouper has a permissions Ul but it is generic
3. Grouper permissions do not provision with PSPNG. You need to provision permissions to the application using Grouper WS or SQL or Java
4. Grouper permissions will tell you real time when assignments change (for real time provisioning), but it only indicates that a role has changed
somehow

a. If you are doing a change log consumer or messaging, you need to get that indication and do a full sync of permissions for that role

N =

Role and Permission Management as of v2.0 and above

Grouper permission limits

Grouper permissions allow and disallow
Grouper permissions example

Grouper resource or permission picker

Grouper has the capability to manage external applications' roles and permissions, and can function as a central permission management system.

Note that "privilege" is interchangeable with "permission”, but Grouper already has documents about internal Grouper privileges on Groups / folders / etc.
so the word "permission"” is used here.

Roles can be stored in Grouper. Roles can be assigned to subjects or groups.

External application permission objects can be stored in Grouper.

Permissions can be assigned to roles or to subjects since they are modeled as types of attributes on role memberships or roles.

Roles can be configured to imply other roles. For example a Senior Loan Administrator is a Loan Administrator, plus a few more security

grants. Roles can be connected like a directed graph of role inheritance

® Permissions can grouped into permissionSets. E.g. if an organization hierarchy was represented as permissions, then the higher level
organizations can imply the lower level ones. Note this does not have to be a hierarchy

® Permission assignments have an optional "action" qualifier. This is a free form string which is configured per permission definition. E.g. a user
can READ certain orgs, and WRITE certain other orgs.

® Permission actions can imply other actions. e.g. Having ADMIN on a permission resource implies being able to READ or WRITE it. Note, there
are no built in actions (though a default "assign" exists if none specified). So the actions and action inheritance needs to be defined

® Permission assignments can be ALLOWED or DISALLOWED. With all the inheritance (permission resource, role, action, memberships), if a
permission is allowed to a wide population, then it can be narrowed with a disallow. For example, someone could be assigned to READ all orgs
in the University in the payroll system, except for the user's own org.

® Permission limits can be assigned to direct permission assignments. The limit can have a value or type string, numeric, date, etc. The limit has
logic associated with it to use the optional value and context from the caller to decide if the permission is allowed or not. There are built-in limits
for value (e.g. allowed to approve if value less then 50000), time of day (only allowed during business hours), ip address, etc.

® All permissions operations are exposed through the Grouper Lite Ul

® Videos:

© Demo of permissions

Attribute definitions (definition holds security, name, actions for all permission names associated)

Attribute definition privileges (attribute definition privileges control who can list the permissions, or assign them)

Permission name hierarchies

Role editor

Directed graph visualization

Permissions demos of allow/deny

® Common setup
® Role assignment vs individual assignment

Role assignment vs individual assignment up the hierarchy

Role assignment vs individual assignment up the hierarchy2

Action directed graph priority

Various role assignments

Role inheritance

Directed graph priority

Directed graph priority with tie

® Resource directed graph tie with different actions
© Permission limits Ul

[e]
[e]
[e]
[e]
[e]
[e]

See also the Overview of Access Management Features page for guidelines of when to use rules, roles, permission limits, and enabled / disabled dates.

GSH commands

Sample

https://spaces.at.internet2.edu/display/Grouper/Grouper+permission+limits
https://spaces.at.internet2.edu/display/Grouper/Grouper+permissions+allow+and+disallow
https://spaces.at.internet2.edu/display/Grouper/Grouper+permissions+example
https://spaces.at.internet2.edu/display/Grouper/Grouper+resource+or+permission+picker
https://spaces.at.internet2.edu/display/Grouper/Grouper+permissions+allow+and+disallow
https://spaces.at.internet2.edu/display/Grouper/Grouper+permission+limits
https://spaces.at.internet2.edu/display/Grouper/Permission+limit+builtin+implementations
http://www.youtube.com/watch?v=E2-fGjE2obQ
http://www.youtube.com/watch?v=EYH_T86IJ9k
http://www.youtube.com/watch?v=Qqg7aVJ-SkE
http://www.youtube.com/watch?v=w0z4AA3p1aQ
http://www.youtube.com/watch?v=IVObg36d4Qs
http://www.youtube.com/watch?v=DzBvOteaXJM
http://www.youtube.com/watch?v=axvbV7-Bhbc
http://www.youtube.com/watch?v=gqooNOjVioQ
http://www.youtube.com/watch?v=tVivglVIudw
http://www.youtube.com/watch?v=aPRzX5gQTHM
http://www.youtube.com/watch?v=G8R7XUAaG1M
http://www.youtube.com/watch?v=0oLzYvMFCPw
http://www.youtube.com/watch?v=qcH14ada-5k
http://www.youtube.com/watch?v=0YUftOqeWtA
http://www.youtube.com/watch?v=I9Sp92rzoWI
http://www.youtube.com/watch?v=FU57u3pIA2E
http://www.youtube.com/watch?v=06l381Myjxg
https://spaces.at.internet2.edu/display/Grouper/Access+Management+Features+Overview

i nport edu.internet2. m ddl eware. grouper. pernissions. *;
i mport edu.internet2. m ddl eware. grouper. perm ssions. Perm ssionEntry. Perm ssi onType;

Grouper Sessi on grouper Sessi on = G ouper Sessi on. st art Root Sessi on();

Group test = new G oupFi nder().addG oupNane("test:test").findG oup();
AttributeDef Nane perm = Attri but eDef NaneFi nder. fi ndByNane("test: per nNane", true);

test. get Perm ssi onRol eDel egat e() . assi gnRol ePer m ssi on(pern;

Subj ect subj ect = SubjectFinder. findByl dAndSource("test. subject.0", "jdbc", true);

test. get Per nmi ssi onRol eDel egat e() . assi gnSubj ect Rol ePer m ssi on(perm subj ect);

for (Perm ssionEntry perm ssionEntry : new Perm ssionFi nder (). assignPermn ssionType(Permni ssionType.role).

assi gnl nmedi at eOnl y(true). addRol e("test:test").findPerm ssions()) { System out. println(permn ssionEntry.
get Attri but eDef NaneNane()); }

Create a role

gsh 30% user Sharer Rol e = rol esSt em addChi | dRol e("user Sharer", "userSharer");

Add a member to a role (in this case a group)

gsh 38% user Shar er Rol e. addMenber (st udent sGroup. t oSubj ect ());

Create a permission definition

gsh 51% resourcesDef = resourcesStem addChil dAttributeDef ("secureShareWbResources", AttributeDef Type. pern);

Add one permissions resource name to another (permissionSet)

gsh 63% recei veSet Resour ce. get Att ri but eDef NaneSet Del egat e() . addToAt t ri but eDef NaneSet (spl ashResour ce) ;

Assign a permission to a role

gsh 70% user Shar er Rol e. get Per m ssi onRol eDel egat e() . assi gnRol ePer m ssi on(sendSet Resour ce) ;

Assign a permission to a member in a role

gsh 73% admi nRol e. get Per m ssi onRol eDel egat e() . assi gnSubj ect Rol ePer mi ssi on(adm nEnai | But t onResour ce,
schl ei ndMenber) ;

Get the permission assignments (not necessarily active or allowed), assigned to a role, immediate, based on role name, print these out

gsh 123% for (Perm ssionEntry perm ssionEntry : new Perni ssionFi nder (). assi gnPern ssionType(edu.internet?2.
m ddl ewar e. grouper. per m ssi ons. Permi ssi onEntry. Perni ssi onType. rol e). assi gnl nmedi at eOnl y(true). addRol e("a: b").
findPerm ssions()) { System out. println(perm ssionEntry. get Attri but eDef NameNane()); }

for (Perm ssionEntry perm ssionEntry : new Permi ssionFinder().assignPermn ssionType(edu.internet2.mddl eware.
grouper . perm ssi ons. Perm ssi onEntry. Per m ssi onType. rol e). assi gnl mredi at eOnl y(true).addRol e("a: b").
findPermssions()) { System out. println(perm ssionEntry. get Attri but eDef NaneNane()); }

Get the permission assignments (not necessarily active or allowed), assigned to a role, immediate, based on permission name, print these out

for (Perm ssionEntry perm ssionEntry : new Permi ssionFinder().assignPerni ssionType(edu.internet2.mddleware.
grouper . perm ssi ons. Perm ssi onEntry. Permi ssi onType. rol e). assi gnl medi at eOnl y(true).addPer m ssi onNanme("a: b").
findPermssions()) { System out. printl n(perm ssionEntry. get Rol eNane()); }

sdf

SQL interface

The view for permissions is grouper_perms_all_v. Note, results here need to be processed is allow/disallow is used, also you should take into account if
the records are active or not

get all attributes assigned to a role, assuming direct assignment (unassignable)

SELECT GPAV. ATTRI BUTE_DEF_NAME_NAVMVE
FROM gr ouper _perns_al | _v gpav
VWHERE GPAV. ROLE_NAME = ' a: b'

AND gpav. perm ssion_type = 'rol e’
AND GPAV. ROLE_SET_DEPTH = 0
AND GPAV. ATTR_ASSI GN_ACTI ON_SET_DEPTH = 0
AND GPAV. ATTR_DEF_NAME_SET_DEPTH = 0
AND GPAV. MEMBERSHI P_DEPTH = 0

get all roles that are assigned a given attribute, assuming direct assignment (unassignable)

SELECT GPAV. rol e_nane
FROM gr ouper _perns_al | _v gpav
VHERE GPAV. ATTRI BUTE_DEF_NAME_NAME = 'a: b’
AND gpav. permi ssion_type = 'rol e’
AND GPAV. ROLE_SET_DEPTH = 0
AND GPAV. ATTR_ASSI GN_ACTI ON_SET_DEPTH = 0
AND GPAV. ATTR_DEF_NAME_SET_DEPTH = 0
AND GPAV. MEMBERSHI P_DEPTH = 0

See also
Access Management Features Overview
Grouper New Template Wizard

Training Slides, pages 31-38

https://spaces.at.internet2.edu/display/Grouper/Access+Management+Features+Overview
https://spaces.at.internet2.edu/display/Grouper/Grouper+UI+-+Templates
https://spaces.at.internet2.edu/download/attachments/14517786/GrouperTraining-Apereo_part3.pdf?version=1&modificationDate=1370270516490

	Grouper Role and Permission Management

