

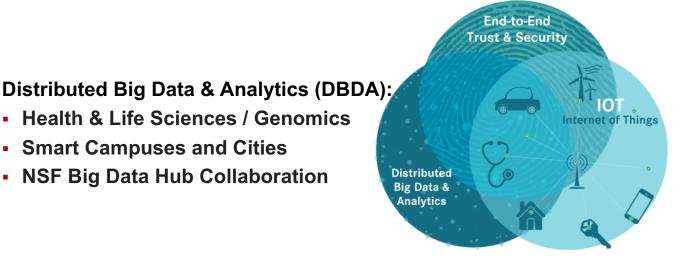
CINC UP: COLLABORATIVE INNOVATION COMMUNITY MEETING: IOT, E2ET&S, SMART CAMPUS

April 25, 2017

CINC UP: Collaborative Innovation Community Meeting: IoT, E2ET&S, Smart Campus

AGENDA

- Welcome
- Collaborative Innovation Community (CINC UP) Working Groups Update: Internet of Things (IoT), End-to-End Trust & Security (E2ET&S), Distributed Big Data & Analytics (DBDA), Emily Nichols, Internet2
- Smart Campus Initiatives Update, Emily Nichols, Internet2
- Smart Campus: IoT Systems Risk Management Task Force Update, Chuck Benson, University of Washington and Jan Cheetham, University of Wisconsin-Madison
- Trust, Identity, Privacy, Protection, Safety & Security (TIPPSS) for IoT: ITANA Collaboration and White Paper, Ken Klingenstein, Internet2 and Ed Aractingi, Marshall University
- Smart Campus Cybersecurity Transition to Practice (TTP) Researchers, Aranya Chakrabortty, NCSU, Raju Gottumukkala, University of Louisiana-Lafayette, Fareena Saqib, FIT
- IoT Pedagogy, Ed Aractingi, Marshall University
- Next Steps, Florence Hudson and Emily Nichols, Internet2



Smart Campuses and Cities

Collaborative Innovation Community is the combination of three member-led innovation working groups, focused on areas related to our top two priorities of advanced networking plus trust & identity.

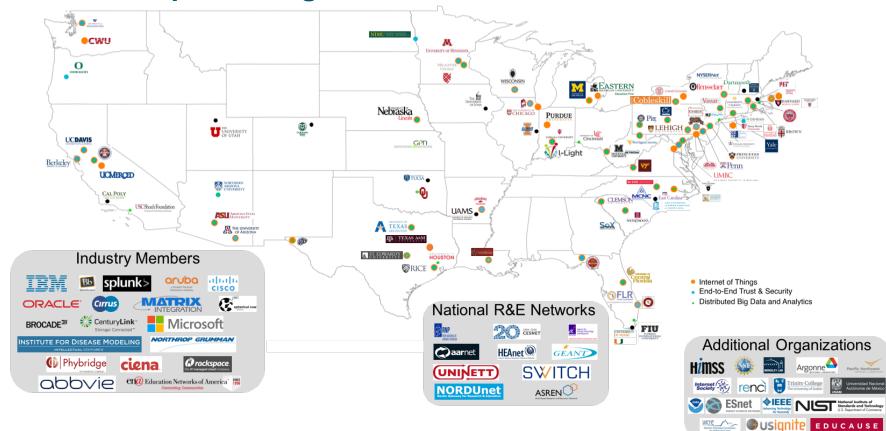
E2E Trust & Security (E2ET&S):

- TIPPSS for IoT Trust, Identity, Privacy, Protection, Safety, Security
- NSF EAGER Cybersecurity Transition to Practice (TTP) Acceleration
- SDP (Software Defined Perimeter), Network Segmentation for IoT

Internet of Things (IoT):

- IoT Sandbox
- Smart Campuses and Cities
- Smart Grid Testbed

Collaborative Innovation Community (CINC UP) includes Special Interest Groups pertinent to use cases identified by members.


- Healthcare & Life Sciences / Genomics
- Smart Campus
- Smart Grid
- IoT Ethics
- Cybersecurity TTP

Join us! Email CINO@Internet2.edu

INTERNET. 2017 SUMMIT Washington DC April 23-26

Internet2 Collaborative Innovation Community has grown to 335+ individuals representing 135 institutions.

As of April 12, 2017

CINC UP Community and CINO Deliverables

- Collaborative Innovation Community / Innovative Working Group Monthly CINC UP Calls
 - Presentations & discussions from members, SMEs on topics of interest to CINC UP Community
- Cybersecurity Research Transition to Practice Acceleration Matchmaking
 - 2016: TechEx 2016 kickoff, Matchmaking Webinar November with cyber researchers and practitioners
 - 2017: Workshop and Showcase at Global Summit, Regional Workshops, more webinars
- Develop & Communicate Key Information Communications & Technology Trends for R&E
 - Present broadly 30 times across regional and university meetings
- Internet2 Smart Campus Initiative
 - Share best practices and recommendations to deploy IoT and Smart Campus capabilities
 - Global Summit and TechEx meetings
 - Engage industry members in collaboration with universities/regionals: IBM, Microsoft, Cisco
 - Microsoft Campus Connections Summit enabling new smart campus initiatives with Internet2 members
- IoT Systems Risk Management Task Force
 - Goal is to increase IoT systems risk awareness and provide deliverables to address risks, including:
 - Brochure on leveraging Shodan and Censys.io
 - IoT Systems Vendor Requirements Document
- Member-led Thought Leadership
 - ITANA / Internet2 led Enterprise IoT working group and TIPPSS for IoT whitepaper effort
 - Enable collaboration across R&E in focal areas. e.g., Smart Grid and Smart Campus/Communities
- Connect member-led innovation initiatives to Internet2 services organizations to inform future services

Smart Campus Initiative created based on member input & innovation working group use cases, with kickoff meeting at Global Summit 2016.

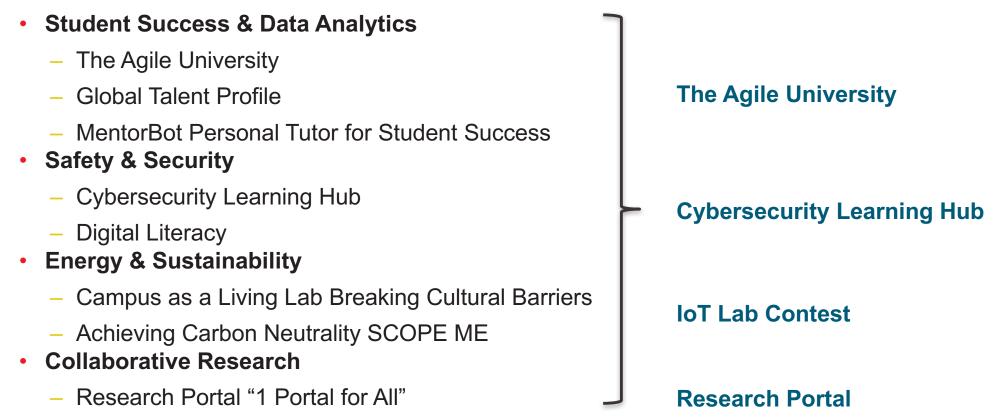
- Share best practices and recommendations to deploy Smart Campus capabilities
- Guided by a Smart Campus CIO Advisory Council

INTERNET

- Commissioned IoT Systems Risk Management Task Force
- Microsoft and Internet2 co-convened first annual Campus Connections Summit, Feb 2017, 140+ university "CIO + 1" attendees from around the world

INTERNET. 2017 SUMMIT Washington DC April 23-26

Research & Education activities are growing in Smart Campus, IoT, End-to-End Trust & Security, Big Data & Analytics, Smart Grid.


°Arizona State University \mathbf{OO} **NC STATE UNIVERSITY** Advanced Networking / Smart Grid research Smart Campus operations & data analytics research **Cybersecurity Research** network testbed Smart Grid research Stanford THE UNIVERSITY MARSHALL UNIVERSITY. Rensselaer NISCONSIN University IoT Lab for Research Smart transportation / Smart Grid research IoT ethics research Smart Grid research and data sharing and Pedagogy **PRINCETON** Wirginia Tech UNIVERSITY of WASHINGTON UNIVERSITY Trust, Identity, Protection, IoT Security, IoT Systems Risk Management Smart Campus operations, trust **Privacy & Ethics** Privacy, Safety, Security & Security and security

Grey - IoT research and pedagogy Red - IoT Smart grid research Blue - IoT security, privacy, ethics

8

February 2017 Microsoft Campus Connections Summit identified initiatives to further the Smart Campus journey.

INTERNET

SMART CAMPUS: IOT SYSTEMS RISK MANAGEMENT TASK FORCE UPDATE

CHUCK BENSON

University of Washington

JAN CHEETHAM

University of Wisconsin-Madison

Internet2 IoT Systems Risk Management Task Force 2016-2017 Outcomes

Internet2 IoT Systems Risk Management Task Force 2016-2017 Outcomes

- Explore notion of *a lifecycle of IoT Systems risk & operational management* in Higher Ed institutions
- Develop 2 tools/practices as starting place:
 - HE practice of using Shodan and Censys tools to develop IoT Systems risk exposure for an HE institution
 - IoT Systems Vendor Management document/checklist to guide multiple departments/orgs within an HE institution on selection, procurement, management of IoT Systems
- Identify potential for future work
- Identify & share other resources

Developing an IoT Systems Risk Mitigation Life Cycle

pre-IoT Systems Implementation --

Risk Mitigation

IoT Systems Vendor Management Guidance Document -- questions to guide purchaser/future owner of IoT Systems

post-IoT Systems Implementation --Operational Risk Management

Institutional leadership, policy, oversight, resourcing for known systems

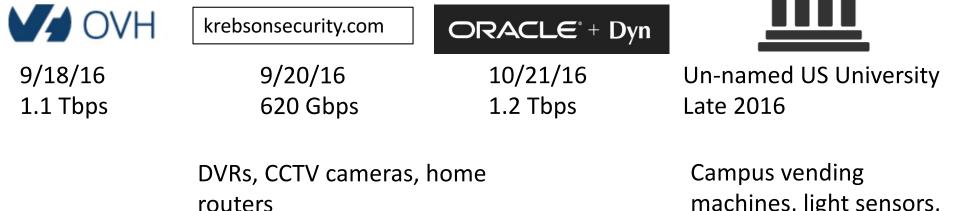
post-IoT Systems Implementation --Cybersec Risk Management/Mitigation

Shodan/Censys/Other tools?

- Systems identification (there can be surprises)
- Risk mitigation

Jan Cheetham Research Cyberinfrastructure Liaison Office of the CIO University of Wisconsin-Madison

IoT research initiatives



WiNEST Template for a model wireless city

IoT Vulnerabilities: DDoS attacks

Mirai, BASHLITE, and evolving malware

machines, light sensors, refrigerators

15

IoT Vulnerabilities: Industrial control systems

2008 Turkish oil pipeline

Industrial Control & Critical Infrastructure in Higher Ed

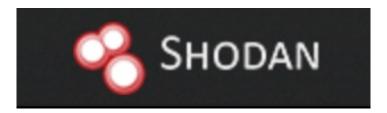
Utility distribution

Building/Room environment control (HVAC)

2014 German blast furnace

We also care about these:

Building, Internal Space, Animal Facility, BSL3 Access



And others ...

Taskforce benchmarking activity

- Proprietary
- Developed by former UCSD student
- Used by private sector and academia

- Open source
- Developed at Univ of Michigan/Illinois
- Daily <u>ZMap</u> and <u>ZGrab</u> scans of IPv4 address space across important ports and protocols

Both do full text searching on protocol banners and other metadata on websites, servers, devices

WARNING: Consult your CISO office before using! Prior notice and authorization may be required.

	🐁 Maps	Share Search	🛓 Download Results	Lill Create Report			
TOTAL RESULT	s			173.13.82.118			
62,186				173-13-82-118- NewEngland.hfc.comcastbus	siness.net	BACnet ADPU Type: Err	for (5)
				Manch Essex Reg Schools Added on 2017-04-14 17:55	40 GMT		
TOP COUNTRI	S			United States Details			
		1 milan		ics			
2		Star Star					
	and and			107.80.7.26			
	B	Be CO.		mobile-107-80-7-26.mycingu AT&T Wireless		Supported SSL Versions SSLv3, TLSv1	fox a 0 -1 fox hello
United States	V-		62,186	Added on 2017-04-14 17:54 United States	.50 01011	Diffie-Hellman Parameters	ι fox.version=s:1.0.1
				Details		Fingerprint: IPSEC SKIF	P id=i:21033
TOP CITIES				ics		1024-bit prir	me hostName=s:107.80.7.26 hostAddress=s:107.80.7.26
Los Angeles New York			3,637 2,399				app.name=s:Station
San Francisco			2,240				app.version=s:3.7.106.5
Ashburn			1,583				<pre>vm.name=s:Java HotSpot(TM) Client vm.version=s:1.5.0_34-b28</pre>
Miami			1,514				os.name=s:QNX
							os.version=s:6.4.1
TOP SERVICES							station.name=s:WSPTCTR0070
Tridium Fox			20,303				lang=s:en timeZone=s:America
BACnet			8,754				timezone-s.America
EtherNetIP OMRON FINS			7,596 5,451				
General Electr	ic SRTP		2,289	172.94.78.159			
			_;	Secure Internet LLC Added on 2017-04-14 17:54	50 GMT		
TOP ORGANIZ/	TIONS			United States, Houston			
Verizon Wirele	ss		6.044	Details			
Comcast Busi			4,885				
Reliablehostin	g.com		3,574	66.212.140.234			
Black Oak Cor	nputers Inc	- San Fran	3,118	9.drmt4.xdsl.nauticom.net Consolidated Communicat	ions	Instance ID: 169999	
AT&T Internet	Services		2,326	Added on 2017-04-14 17:54 United States, Pittsburg		Object Name: i-Vu Sta Vendor Name: Carrier	
				Details			6.5.003.20160413-73418
TOP OPERATIN	G SYSTEMS			ics		Firmware: 0.0	
Linux 3.x			1,326			Model Name: CV19	
Windows 7 or	8		560			Description: i-Vu Sta	andard Server 6.5

tags:scada AN	D location.country_code:	US											Search
IPv4 Hosts	Top Million Websites	Certificates	Tools	- He	elp								
69 226 74 66	(wsip-68-226-74-66.on	a om cox pot)							Page:	1/1,000	Results: 24,9	94 T	i me: 940
	nications Inc., US (22773)		ska United	Statos									
	Is DSC_1146E		ska, Oniteu	States									
	stered_country_code: US	, bachet											
Q tags: scada													
bacnet building													
96.87.226.1 (9	6-87-226-1-static.hfc.o	comcastbusiness	.net)										
	le Communications, LLC, U												
	stry Inc., Bldg Tech Siemen			308/bacne	et								
Q location.regi	stered_country_code: US												
Q tags: scada													
bacnet building	g control scada												
98 173 145 25	51 (wsip-98-173-145-2	51 sd sd cox net)											
	nications Inc., US (22773)												
	ls DSM_RTR 47808/k												
	stered_country_code: US												
Q tags: scada													
bacnet building													
96.56.84.78 (0	ol-6038544e.static.opt	conline.net)											
	Systems Corp., US (6128)		cticut. Unite	d States									
	-Eth Controller 🌣 4780												
	stered_country_code: US												
Q tags: scada													
SU Arizona S University	tate			l EAnet (Ш IND	TINITYPI	OCITV	💼 PR	INCET IVERSI	ON III	I TE	XAS A
					WEIGHTA /			S S L L Y					

What we found **Building Automation** Cameras Sensors ICS/SCADA device servers Search terms "camera" "scada," "ICS," "HVAC," "AMQP" "RabbitMQ" "Tridium Fox," "BACnet," "MQTT" "Modbus" **Potential Risk** Weak, hard-Components of building Complex, layered systems with coded control systems exposed on physical security issues, protocols

passwords

Internet, protocols lacking authentication, encryption

lacking authentication

May be others

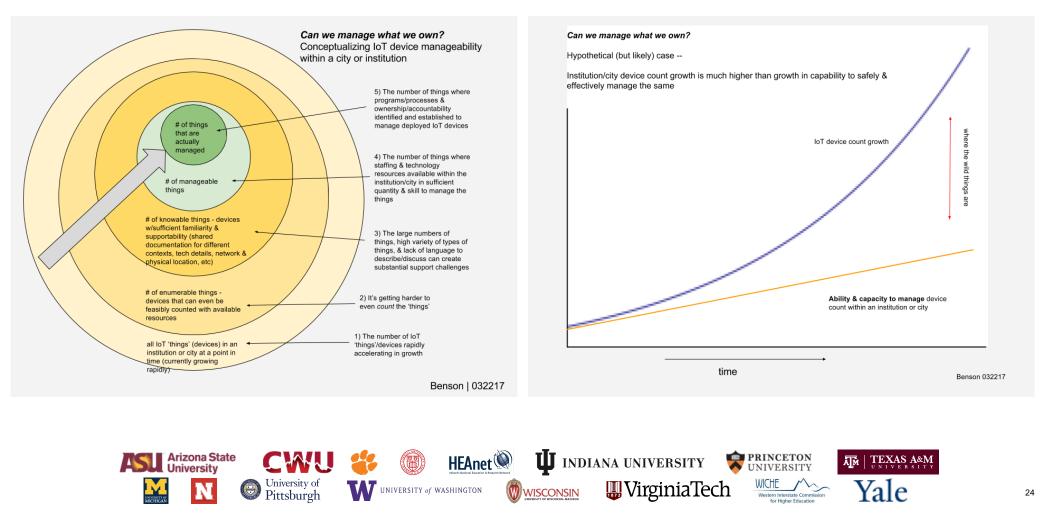
Other types of devices we didn't search for

- Vending machines
- Refrigerators
- Health care monitors

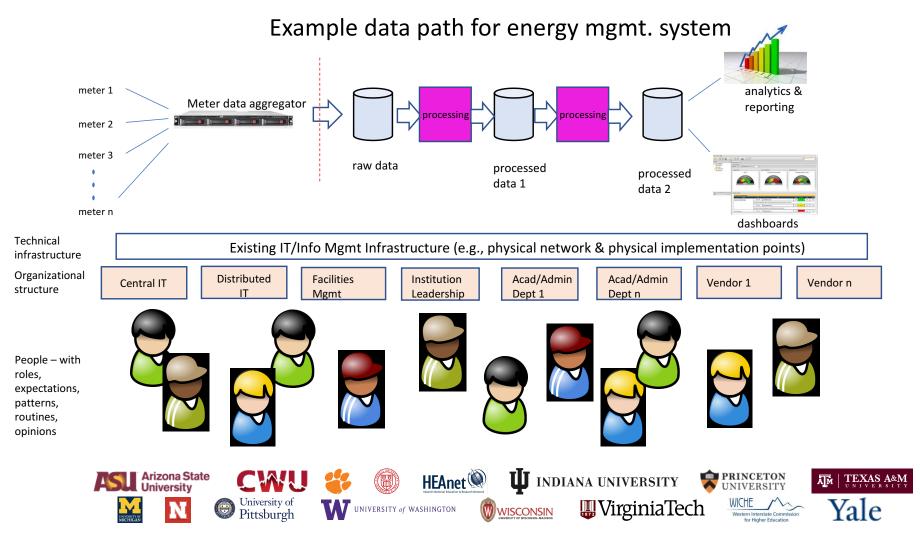
Image sources: MegaLab, AlerSense, UAI Vending

Brief background

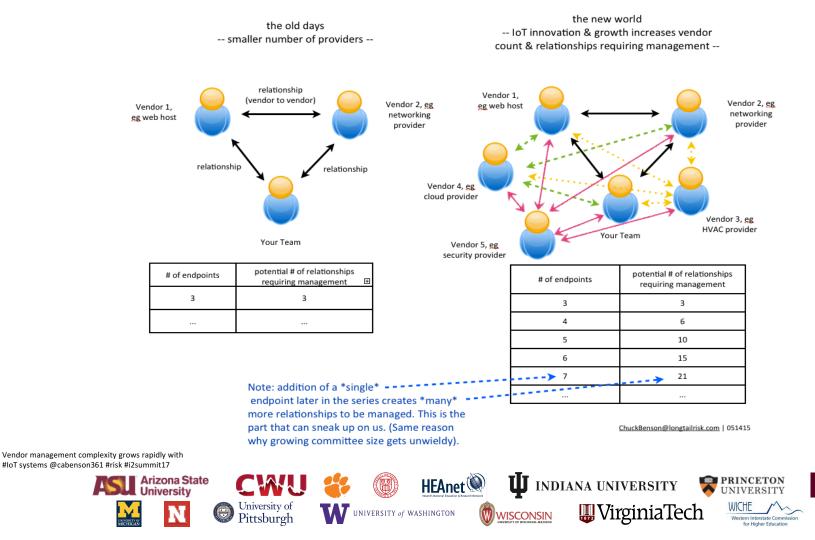
	Chuck Benson	Long Tail Risk
		Internet of Things systems risk management
	Facilities Services IT, UW	
	Drone policy working group, UW Chair Internet2 IoT Systems Risk Management Task Force	HOME DOWNLOADS ABOUT
	Former Chair UW-IT Service Management Board, UW	
	Former Chair Protection of Industrial Controls (PICS) Task Force	
INTERNET®	Chair Internet2 IoT Systems Risk Management Task Force	
Why IT Matters to	Higher Education Articles June & July 2016 –	
-		Creating LoT Systems Managaphility A Dick Managad Set of
EDUCA	"Internet of Things, IoT Systems, and Higher Education" & "Raising Expectations for IoT Systems Vendors"	Creating IoT Systems Manageability – A Risk-Managed Set of Networked Things
	Raising Expectations for for Systems vehicors	
	King's College London	Leave a reply
	Book Chapter on Smart Cities – part of Systems Science/Systems Thinking Series	To achieve IoT Systems ROI and to ensure non-degradation of an institution's existing cyber-risk
	Series	profile. IoT Systems must be manageable. In turn, in order to build IoT Systems manageability, institutions will need to manage their IoT Systems risk with non-traditional approaches that
	"IoT Systems – Systems Seams & Systems Socialization –	includes assigning IoT endpoints (the "things" in IoT) to risk categories that can be independent
CALCTE ITSAMEDIUS	Considerations for Managing IoT Systems Risk in Smart Cities and Institutions"	
(and the obligatory twitte	r feed 🈏 @cabenson361)	
	Arizona State CWU 🌮 🛞 HEAnet 🍥 🔱 INDIANA UNIVERSITY	PRINCETON UNIVERSITY
		WICHE Vala
		Western Interstate Commission for Higher Education


IoT Systems Vendor Management Document

- Shodan, Censys, and non-published tools reveal cracks/attack points in our institutions
 - Creating potentially substantial additional risk
- We can lower that risk
 - By raising the bar & setting expectations of the IoT Systems vendor
 - RFI, RFP, contract negotiation, & relationship management phases with the vendor



A depiction of the outages caused by today's attacks on Dyn, an Internet


Can we manage what we own?

And the IoT System is deployed in a system of human & technical systems ...

Increasing vendor/system count increases systems complexity & management overhead

AM | TEXAS A&M

Yale

IoT Systems Vendor Management Document

- Acknowledge that:
 - IoT Systems increasingly entering institution in non-traditional ways
 - e.g., not central IT but end-users/PI's, facilities, capital planning, planning/budgeting
 - IoT Systems are *deployed in non-traditional ways*
 - These are not traditional enterprise systems
 - Often not with central IT
 - Often with vendor-heavy influence
 - Generally, limited vetting for IoT Systems
 - Many, most? of these systems will not be managed by central IT
- IoT Systems Vendor Management Doc
 - Designed to assist:
 - selection
 - RFI
 - RFP
 - contraction negotiation
 - systems management
 - Doc needs broad utility & consumability -- Needs to be readable or 'parseable' by organizations fulfilling multiple different roles – not just IT

IoT Systems Vendor Management Document

-- example items --

operational risks (eg resourcing & planning)

cybersec (bad guy) risks

Does vendor need 1 (or more) data feeds/data sharing from your organization?

Are the data feeds well-defined?
 Do they exist already?
 If not, who will create & support them

□ Who pays for vendor systems requirements (eg hardware, supporting software, networking, etc?)

Does local support (FTE) exist? Is it available? Will it remain available?

If hosted in a data center, who pays for those costs?If cloud-hosted, eg AWS, who pays for those costs?

Above questions answered for both implementation & long term support?

□ What is total operational cost after installation?

Licensing

Support contracts

Hosting requirements

Business resilience requirements (eg redundancy, recovery, etc for OS, db, other)

□ Can IoT system vendor maintenance contract offset local IT support shortages?

□ for 10's, 100's, 1000's of new endpoints ?

 Is there a commissioning plan? Or have installation expectations otherwise been stated?
 Default logins & passwords changed & recorded?
 Non-required default ports closed?
 Devices port scanned (or similar) after installation

 For remote support, how does vendor safeguard login/account information?
 Is it in contract?

Who, in your organization, will manage the IoT system vendor contract?
 Central IT?
 Facilities?
 Tenant/customer dept ?
 Other? PD/security? CISO? CSO?

both

How many endpoint devices will be installed?
 Is there a patch plan? Who manages this?

 How many IoT systems are you already managing?
 Are you anticipating more in next 18 months?

Is the IoT vendor system implementation documented?
 Architecture diagram ?
 w/IP addresses & physical location of devices?
 w/required ports documented

Does this vendor's system have dependencies on other systems?

□ Is a risk sharing agreement in place for shared institutional information?

Many other resources (some longer to read than others)

- NIST Cybersecurity for IoT Program
 - <u>https://www.nist.gov/programs-projects/nist-cybersecurity-iot-program</u>
 - <u>http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-160.pdf</u>
- FTC & IoT Privacy
 - <u>https://www.ftc.gov/system/files/documents/reports/federal-trade-commission-staff-report-november-2013-workshop-entitled-internet-things-privacy/150127iotrpt.pdf</u>
- Industrial Internet of Things Security Framework
 - http://www.iiconsortium.org/IISF.htm
- GSMA IoT Security Guidelines
 - <u>http://www.gsma.com/connectedliving/future-iot-networks/iot-security-guidelines/</u>
- OWASP IoT Security Guidance
 - <u>https://www.owasp.org/index.php/IoT_Security_Guidance</u>
- DHS Strategic Principles for Securing the Internet of Things
 - <u>https://www.dhs.gov/sites/default/files/publications/Strategic_Principles_for_Securing_the_Internet_of_Things-2016-1115-FINAL....pdf</u>
- Others ...

Possible future work in area

- IoT Systems Costing
 - Few, if any, institutions have a handle on this
- Network segment portfolio strategies
 - Segmentation is all the rage, but how are those segmentation portfolios managed
- Internal ICS & IoT exposure
 - Shodan/Censys do public addresses
 - Internal VLAN's, VRF's, etc not covered
- Benchmark/standard for exposure in HE

Questions/Comments?

TRUST, IDENTITY, PRIVACY, PROTECTION, SAFETY & SECURITY (TIPPSS) FOR IOT: ITANA COLLABORATION AND WHITE PAPER

KEN KLINGENSTEIN

Internet2

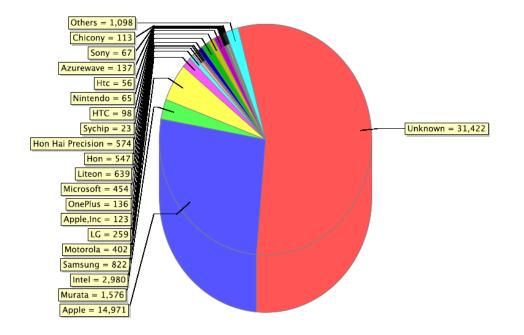
ED ARACTINGI

Marshall University

Enterprise Managed IoT

Enterprise Managed IoT: Topics

- ITANA and I2 T&I + CINO
- Distinctive R&E Use cases
- A Layered View of IoT
- An Overlayered View of Enterprise Managed IoT
- What we might do


- ITANA A group of enterprise architects, supported by Internet2 and Educause
- Trust and Identity the division of Internet2 that does federation and enterprise middleware software
 - InCommon
 - TIER
- CINO Chief Innovation Office A catalytic agent for innovation within Internet2

Distinctive R&E IoT Considerations

- Supporting the researchers in CS and Engineering
- Supporting the applied researchers in Medical Schools
- Decentralized purchasing
- Transient populations of students and faculty
- Distinctive privacy requirements
- 20,000 entrepreneurs whose only concern about the institution is parking

Distinctive – What's on Your Network

● Unknown = 31,422 ● Apple = 14,971 ● Murata = 1,576 ○ Intel = 2,980 ● Samsung = 822 ○ Motorola = 402 ◎ LG = 259
Apple,Inc = 123 OnePlus = 136 Microsoft = 454 Liteon = 639 Hon = 547 Hon Hai Precision = 574 Sychip = 23
● HTC = 98 ● Nintendo = 65 ● Htc = 56 ● Azurewave = 137 ○ Sony = 67 ● Chicony = 113 ○ Others = 1.098

Remember the I in IoT!

ARM

Another Layered View

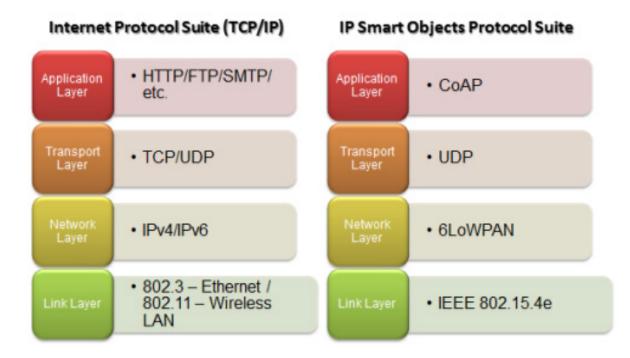
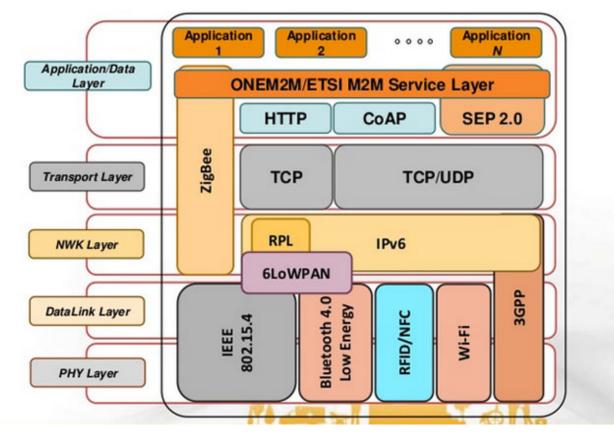



Figure 1 TCP/IP Stack and IP Smart Objects Protocol Stack

Where can the enterprise help manage IoT?

- Where and how to put management?
 - The IP network?
 - Data link layer controls?
 - REST API's
- Who does management?
 - Facilities
 - Campus IT
 - Purchasing
- What's the business model
 - Governance
 - Funding

- Enterprise-IoT will contribute some distinctive use cases to other CINO White Paper activities
- Will investigate several areas:
 - Registries what's needed for things?
 - May feed into TIER activities
 - How do our central middleware concepts- authentication, authorization, delegation, etc. add value to IoT?
 - Is the work within IETF useful and ready?
 - CORE Constrained RESTful Environments
 - ACE Authentication and Authorization for Constrained Environments
- Lots of interest in checklists for vendors and purchasing

Campus IoT Whitepaper Topics

- Overview of IoT on Campus
- IoT in Pedagogy
- IoT in Research
- IoT in Administrative Areas
- IoT in Campus Facilities
- IoT in Campus Safety & Security
- IoT in Student Life
- IoT in Campus Health
- IoT in Campus Sports
- IoT in Campus Residential Communities
- IoT for Visitors and Public on Campus
- IoT for Recruitment and Alumni Relations
- IoT Interaction between Campuses and Business Partners
- Campus IoT Technical Considerations and Architectures

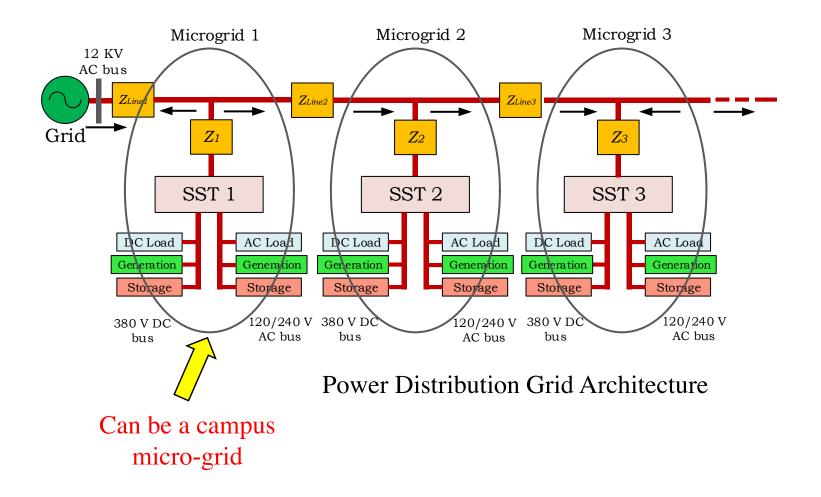
Participate in these IoT whitepaper efforts Email <u>CINO@Internet2.edu</u>

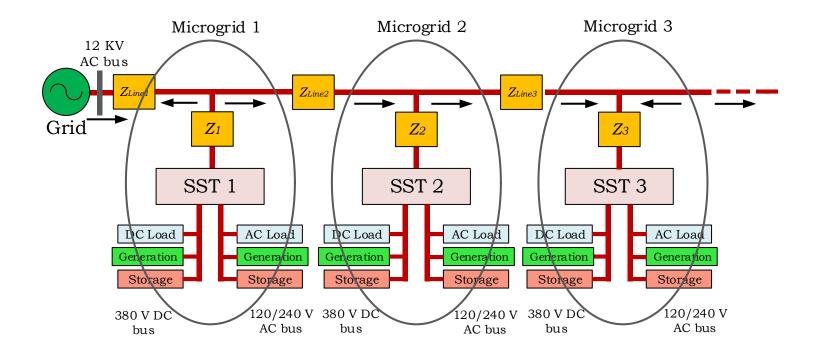
SMART CAMPUS CYBERSECURITY TRANSITION TO PRACTICE RESEARCH

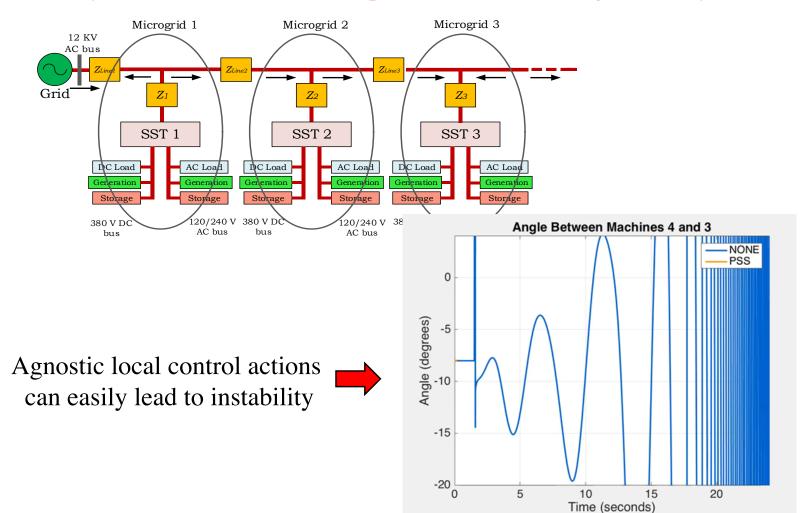
ARANYA CHAKRABORTTY North Carolina State University

Cyber-Security Challenges for Power Distribution in Smart Campuses

Aranya Chakrabortty North Carolina State University

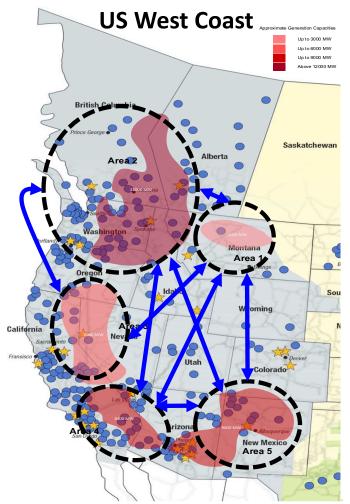

Internet2 Global Summit April 25, 2017, Washington DC

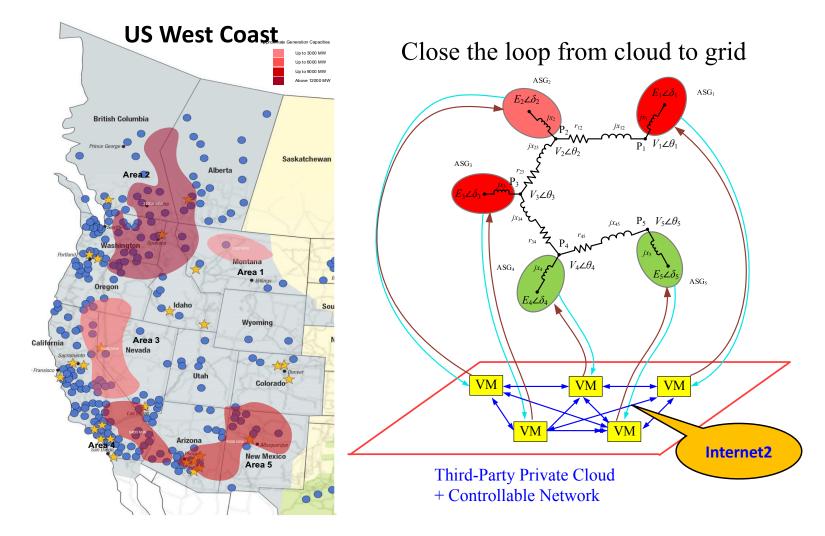


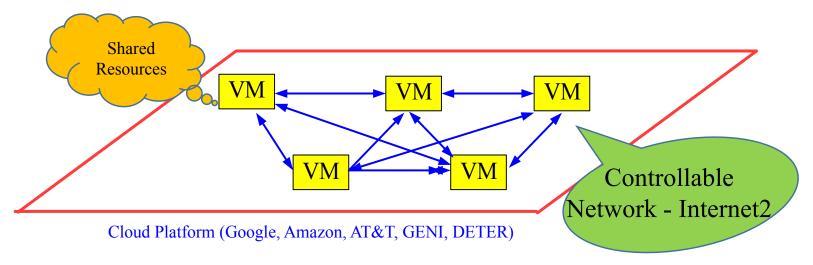




Companies and asset owners take control actions inside their regions <u>agnostic</u> of the health of other parts of the grid

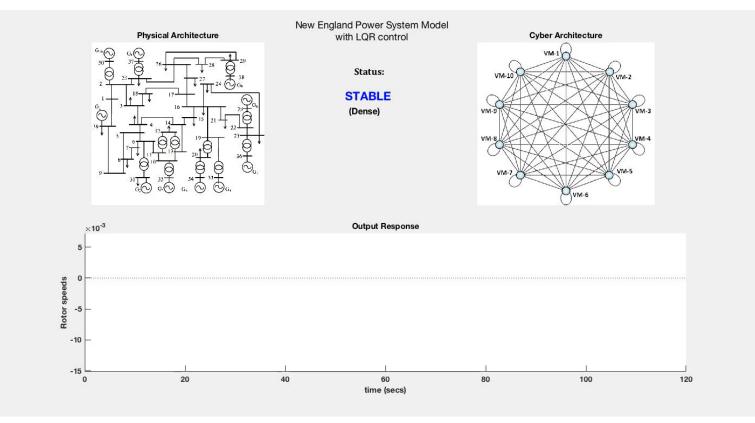


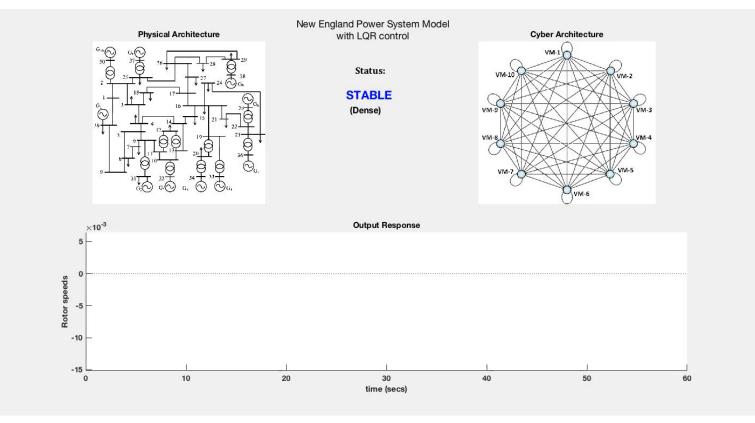

2003 Northeast blackout



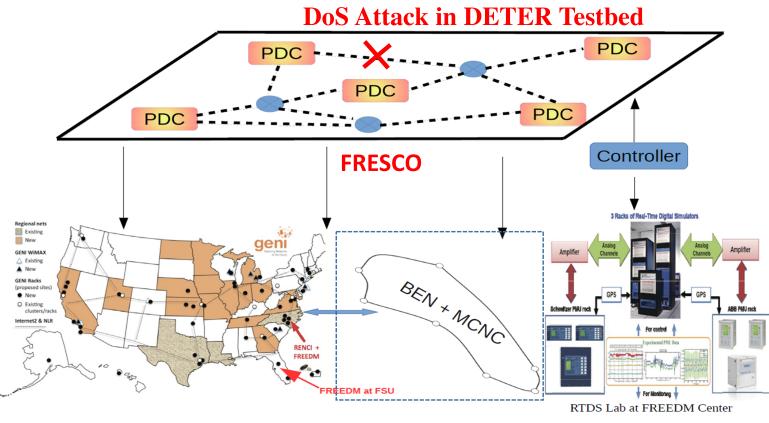
- Continuous status updates between the micro-grids are necessary
- Need a robust, secure, communication network
- SDN, cloud computing, Internet2

Balancing Regions are Sensitive to Data Privacy!

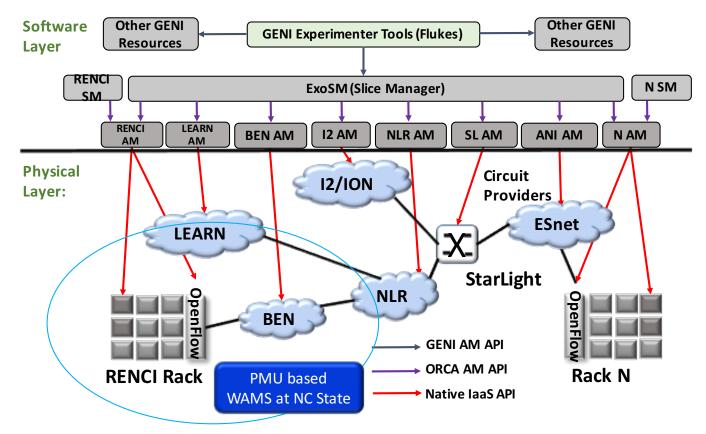

Interesting Things Going on in the Communication Plane


Different types of attacks:

- 1. Denial-of-Service
- 2. Data manipulation
- 3. GPS spoofing
- 4. Replay attacks


Denial-of-Service Attack

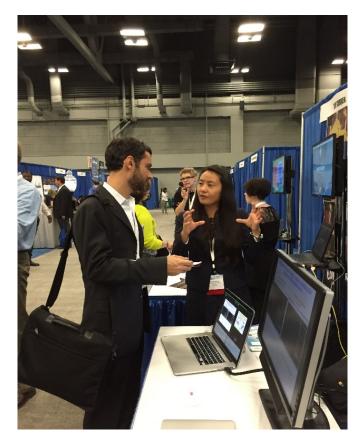
Denial-of-Service Attack


ExoGENI-DETER-WAMS Testbed at NC State

Middleware provided by Green Energy Corporation and RTI

Networked Cloud Computing Testbed - ExoGENI

ExoGENI provides in virtual IaaS services for innovative research on distributed applications for Wide-Area Monitoring and Control (14 rack sites at universities & labs over the US)


Project Impacts:

DETER Demo at NIST & Smart-America 2014

Best Energy App Award at US Ignite 2015

US Ignite & NIST Smart Cities Application Summit, Austin, TX, 2016

Thank You

Email: achakra2@ncsu.edu

Website: http://people.engr.ncsu.edu/achakra2

SMART CAMPUS CYBERSECURITY TRANSITION TO PRACTICE RESEARCH

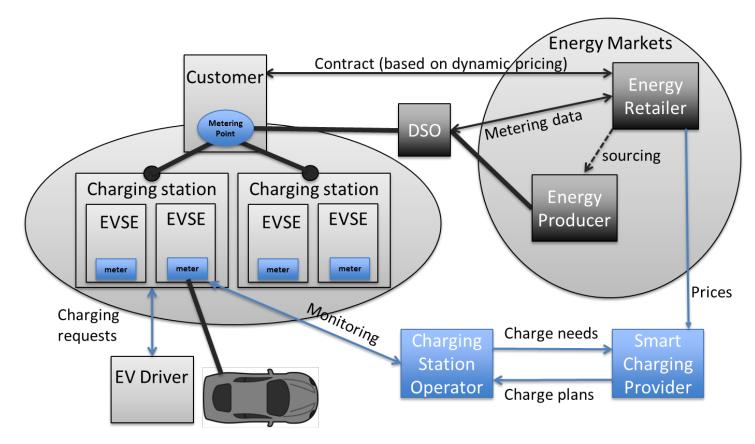
RAJU GOTTUMUKKALA University of Louisiana-Lafayette

Cybersecurity Risks of EV Charging

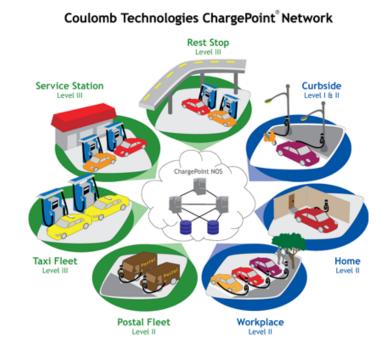
Raju Gottumukkala, Ph.D

Director of Research, Informatics Research Institute Site Director, NSF Center for Visual and Decision Informatic Assistant Professor, College of Engineering

2017 Internet2 Global Summit (04/25/2017)



Informatics Research Institute


How Smart Charging Works?

Source: Lefrançois, Maxime, et al. "Outsourcing Electric Vehicle Smart Charging on the Web of Data." Proceedings of the First International Conference on Green Communications, Computing and Technologies, (GREEN 2016), Nice, France. 2016.

Components in a EVSE

- Electrical/Electronics
 - Metering & terminals
 - PSU, RCD, Smart socket
- Communications
 - RFID reader
 - Wifi/Zigbee/GSM/RS
 - RS-485
- Computing
 - PCB
 - Display unit
 - Firmware

Network of charging stations

What's Inside a PEV (for charging)

Vehicle Energy Management Functions

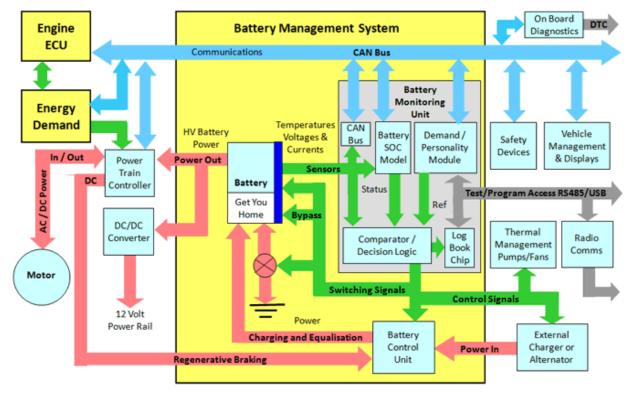
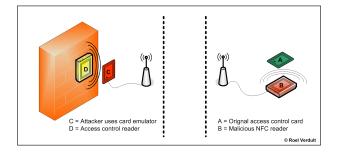
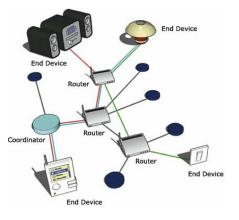



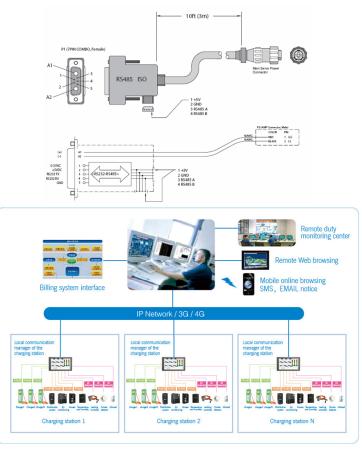
Image source: http://www.mpoweruk.com/bms.htm

RFIDs


- Key characteristics
 - Near short range
 - Convenient, more secure than user-id and password
 - Tamper-resistant not tamper proof
- Types of attacks
 - Functional flaws (protocols, key management, cryptographic algorithms)
 - Physical attack
 - Mess with the card

ZigBee

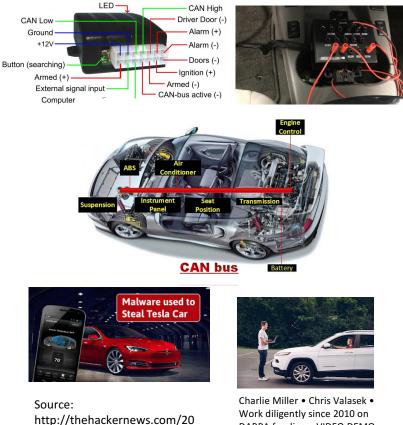
- Key characteristics
 - Short range (10 to 100 meters)
 - Simple, less expensive, low battery life & security
- Types of attacks
 - With key compromise
 - Eavesdropping, spoofing
 - Without key compromise
 - Replay
 - DoS attack



ZigBee communication

RS-485 Communications

- Key characteristics
 - Low bandwidth, high latency multiplexing
 - Used to connect multiple charging stations
 - No in-built security for MODBUS (authentication / encryption)
- Attacks
 - Transceiver can monitor, disrupt and modify communications
 - Several known SCADA system attacks (i.e Stuxnet)

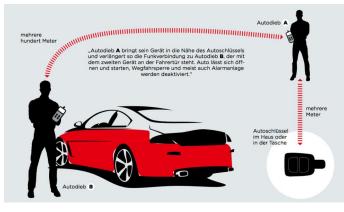


City charging station monitoring system diagram

Image source: http://www.kstarpower.com/index.php/cat/solutions/electric-vehicle-charging-solutions/monitoring-solution/

CANBUS

- Connects all major controls, sensors & actuators
- Attacks
 - Need Physical access without connectivity
 - All connected components are vulnerable

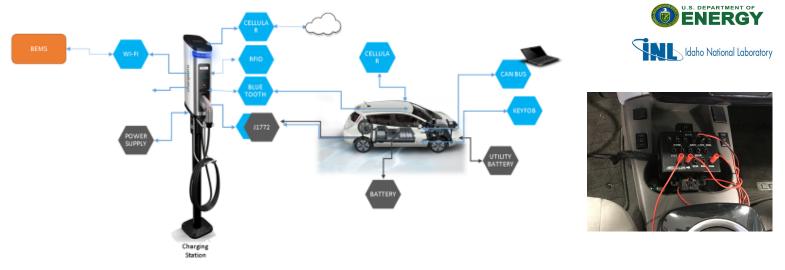


16/11/hacking-tesla-car.html

DARPA funding • VIDEO DEMO Hacking Chrysler Jeep Remotely

Other Vulnerabilities

- Key Fob
- Bluetooth
- Wi-Fi
- Cloud security
- "People"



ADAC shows how two hackers with radio devices can harvest signals and crack cars.

Fahrzeug- hersteller	Modell	Erst- zulas- sung	Reichweite der Keyless- Verlängerung in Testhalle	Illegales Öffnen möglich?	Illegaler Motorstart möglich?
Audi	A3	10/2015	Max.	Ja	Ja
	A4	9/2015	Max.	Ja	Ja
	A6	9/2014	Max.	Ja	Ja
BMW	730d	8/2015	Max.	Ja	Ja
Citroen	DS4 CrossBack	11/2015	Max.	Ja	Ja
Ford	Galaxy	5/2014	Max.	Ja	Ja
	Eco-Sport	10/2015	Max.	Ja	Ja
Honda	HR-V	6/2015	Max.	Ja	Ja
Hyundai	Santa Fee	8/2015	Max.	Ja	Ja
KIA	Optima	11/2015	Max.	Ja	Ja
Lexus	RX 450h	12/2015	Max.	Ja	ja
RangeRover	Evoque	9/2015	Max.	Ja	ja
Renault	Traffic	11/2015	Max	Ja	Ja
Mazda	CX-5	3/2015	Max.	Ja	Ja
MINI	Clubman	8/2015	Max.	Ja	Ja
Mitsubishi	Outlander	12/2013	Max.	Ja	Ja
Nissan	Qashqai+2	11/2013	Max.	Ja	Ja
	Leaf	05/2012	Max.	Ja	Ja
Opel	Ampera	03/2012	Max.	Ja	Ja
SsangYong	Tivoli XDi	09/2015	Max.	Ja	Ja
Subaru	Levorg	8/2015	Max	Ja	Ja
Toyota	RAV4	12/2015	Max.	Ja	Ja
VW	Golf 7 GTD	10/2013	Max.	Ja	Ja
	Touran 5T	12/2015	Max.	Ja	Ja

ADAC's long list of vulnerable cars. It was able to start the engines and open doors of all those tested.

Cvbersecuritv Testbed @ UL Lafayette

Power Supply Communications

Protecting "Smart Campus" Infrastructure

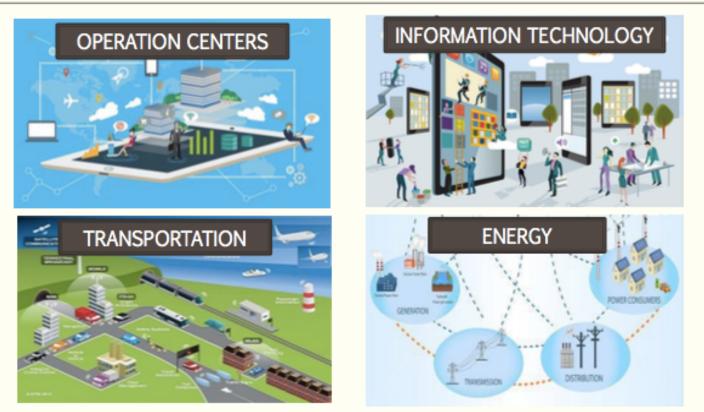
- It ain't smart unless it is secure
- SCADA systems are not designed for IoT
- Lack of tools to detect potential entry points, and attack paths to SCADA systems
- 2015 NIST Industrial Control Systems (ICS) Security Guide

SMART CAMPUS CYBERSECURITY TRANSITION TO PRACTICE RESEARCH

FAREENA SAQIB

Florida Institute of Technology

HARDWARE BASED AUTHENTICATION AND TRUSTED PLATFORM MODULE **FUNCTIONS(HAT) FOR IOTS** 0.0000


Fareena Saqib

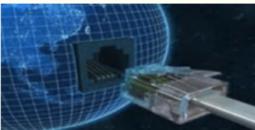
fsaqib@fit.edu **Electrical and Computer Engineering** Florida Institute of Technology

Outline

- Introduction to cybersecurity
- Hardware security attacks and countermeasures
- Research overview: Security challenges in IoTs.
- Q&A

Digital Transformation

Business Operations Enterprise Culture 3rd Party Ecosystem


Cyber security: Where and Why it is important

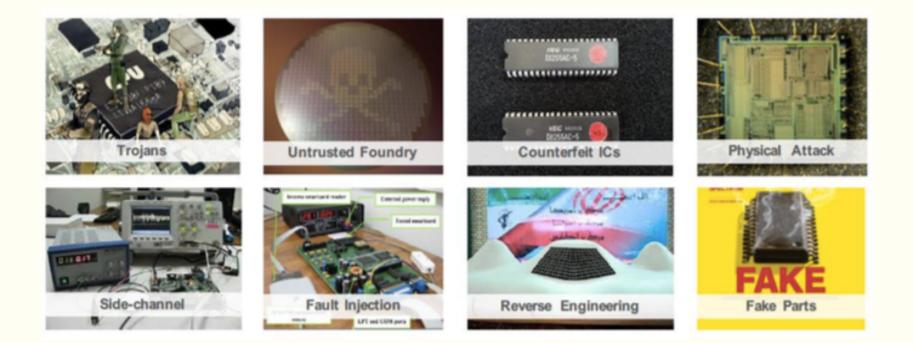
Cloud and distributed system security

IoT Security

Network Security

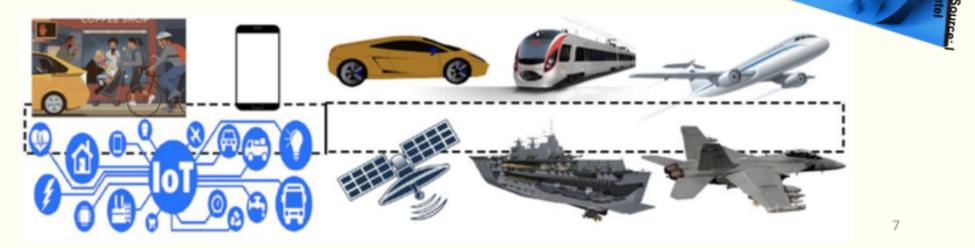
Biometrics and Security

Supply Chain Security


Nanoscale Security

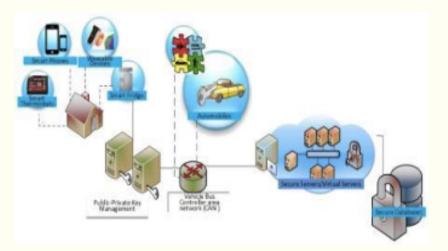
4

Hardware Security


Cyber security traditionally meant software, network and data security considering hardware as root of trust. This assumption is no longer true with evolving semiconductor business landscape.

Security Attacks on Hardware

Applications and Threats


Millions of chips are fabricated and tested in untrusted foundries, assemblies, and are currently in the supply chains

OPPORTUNIT

508

Hardware based Authentication and Trusted Platform Module Functions for IoTs (HAT for IoTs)

Project addresses the need for hardware-oriented capabilities and mechanisms for protecting the increasingly vulnerable microelectronic devices and systems in the internet of things (IoTs). The over-arching objective of the project is to investigate benefits to systems when constituent components are designed with the perspective of security and trust as a fundamental feature of the hardware. Internet of things needs to be redefined as securely connecting devices, exchanging trusted data and delivering value through analytics and smart decisions

Research Projects

Hardware-Oriented Security and Trust (HOST)

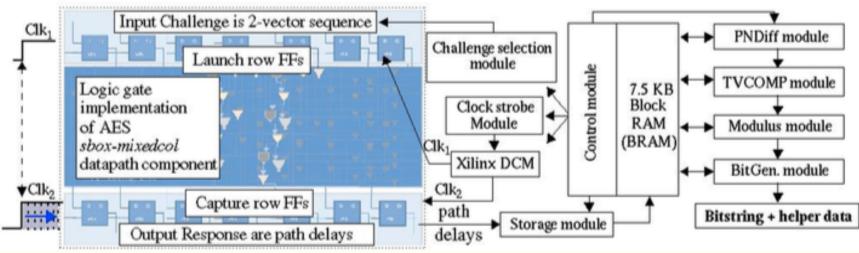
- Physical Unclonable Functions
- Authentication and Encryption
- Differential power analysis countermeasures
- Hardware Trojan Detection
- Obfuscation of chip functionality
- Secure Automotive ECU Design

Embedded Systems

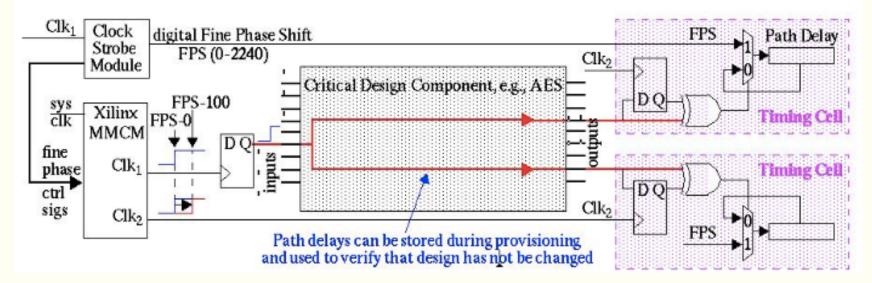
- TrustZone based hardware isolation
- FPGA-based embedded systems
- Hardware acceleration

Supply Chain Issues

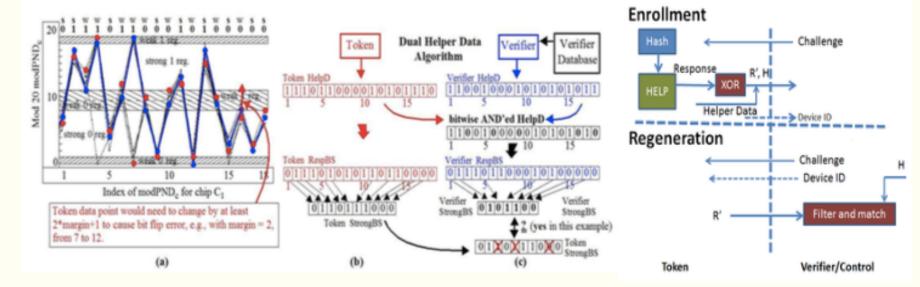
Supply chain threats imposed by grey markets


- Recycled components
- Low reliability parts marked as high reliability
- Older parts marked with newer date
- Low quality clones that include malicious functionality
- Component that are covertly repacked for unauthorized applications
- Overbuilding of authorized components

- Important aspect in addressing the supply chain threats is to assigning chips unique identifiers.
 - Storing digital information in a device in a way that is resistant to physical attacks is difficult and expensive

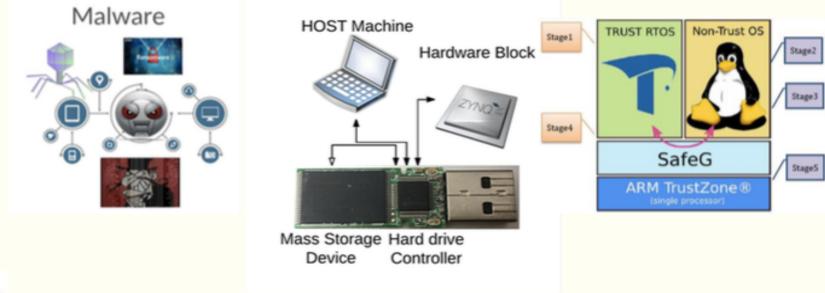

Security Research: PUFs

HELP entropy is path delays of existing functional units. On-chip bitstring generation provides real-time identification.

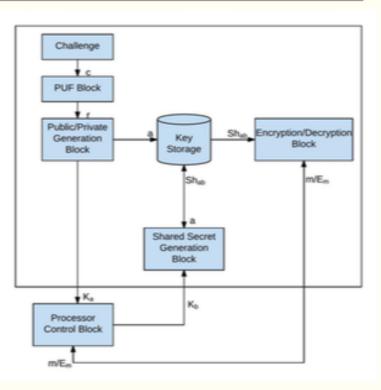

Trust Research: Tamper Detection

Devise a water-marking mechanism by profiling path delays In-field chips compared with the time 0 to detect tamper

Privacy Preserved Authentication in Distributed Environment


A privacy-preserving, mutual authentication protocol using dual helper data

Security based hardware isolation and Access Control

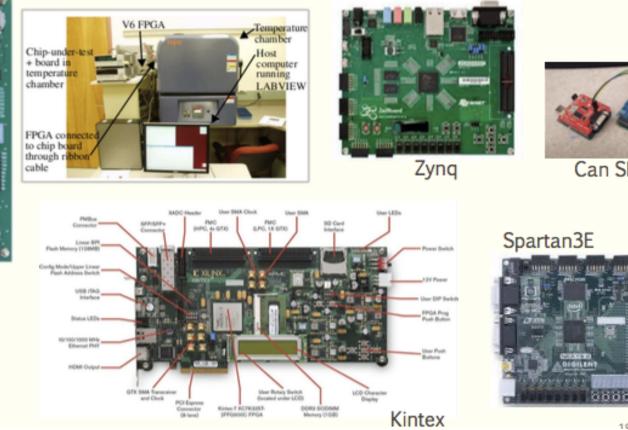

Techniques to mitigate malwares such as Rootkits and Bootkits

Hardware Based Secure Communication over CAN bus

- ECUs are composed of a processing element connecting to an actuation and a telemetry interface of a component.
 - Hitting the brakes pedal should tell the braking system to actuate the brake disks.
 - The interactive dashboard system controlling the climate of the car.

Hardware Security Curriculum Development

- This project address the need to train researchers, practitioners, and students to better understand hardware security and trust challenges as well as emergent solutions.
- ECE-5575 Hardware Oriented Security and Trust
 - HACE Lab: An Online Hardware Security Attack and Countermeasure Evaluation Lab,.



Sponsored by NSF

Hardware Platforms

IHACS Board

Can Shield

10

90

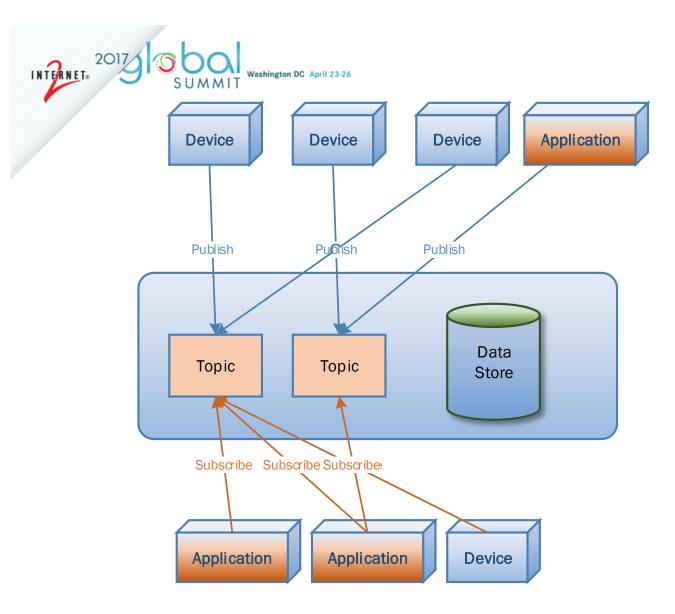
Questions?

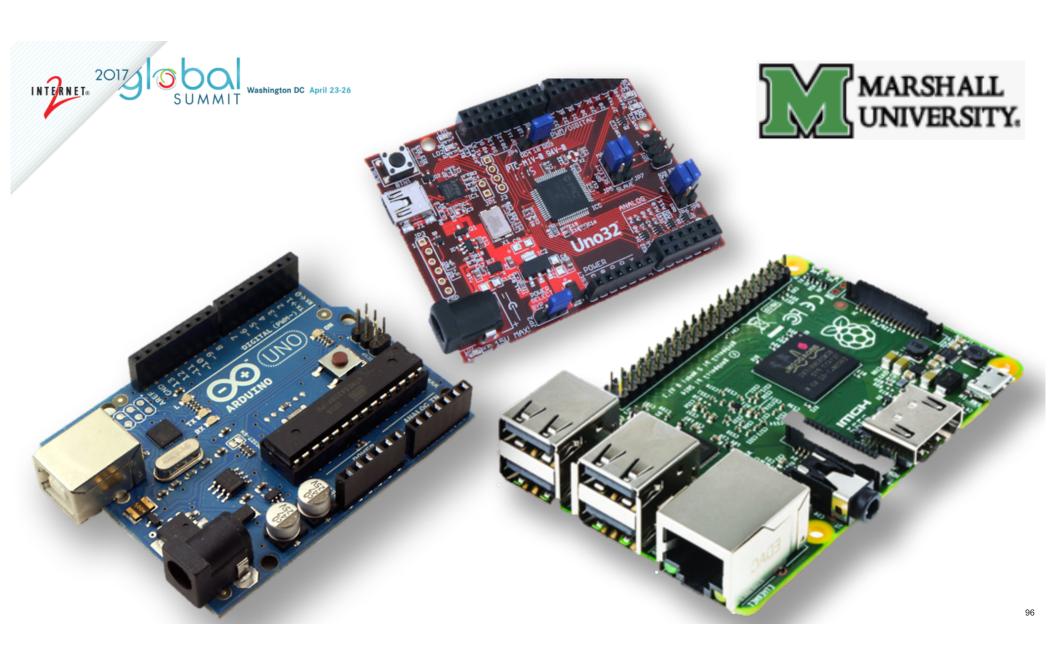
IOT PEDAGOGY

ED ARACTINGI Marshall University

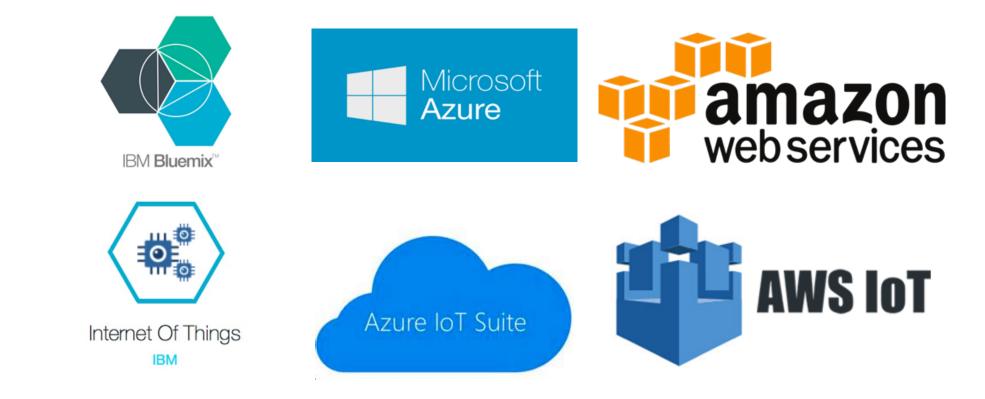
The introduction of the course

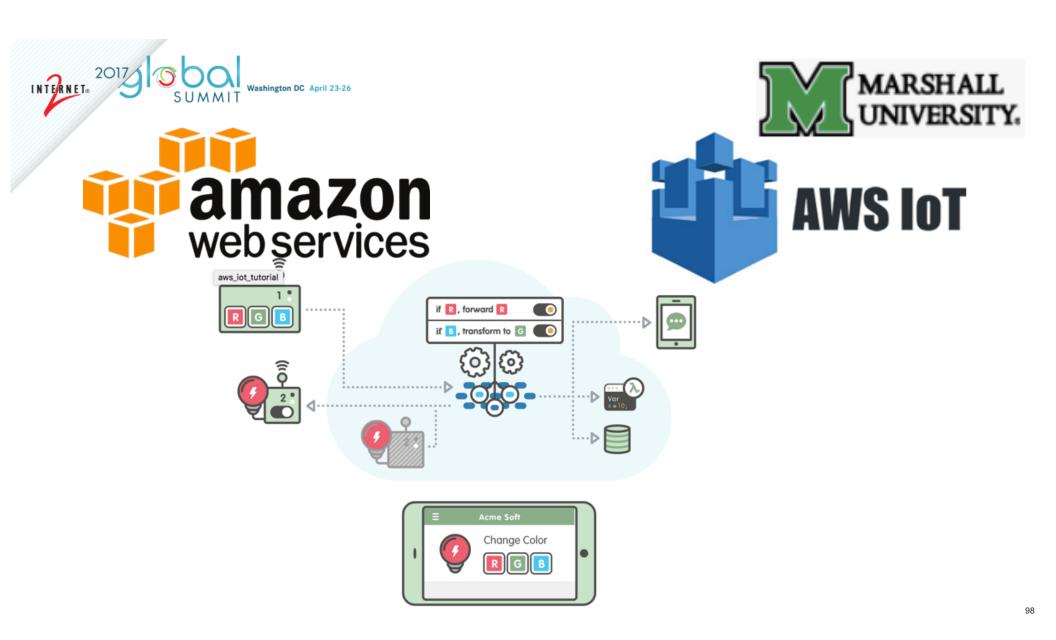
- The course was offered as a Special Topic in Computer Science at the College of Information Technology and Engineering
- Offered in Fall 2015, Spring 2016, Fall 2016, Spring 2017 and scheduled for Fall 2017
- Average of 30 graduate students mostly from Computer Science

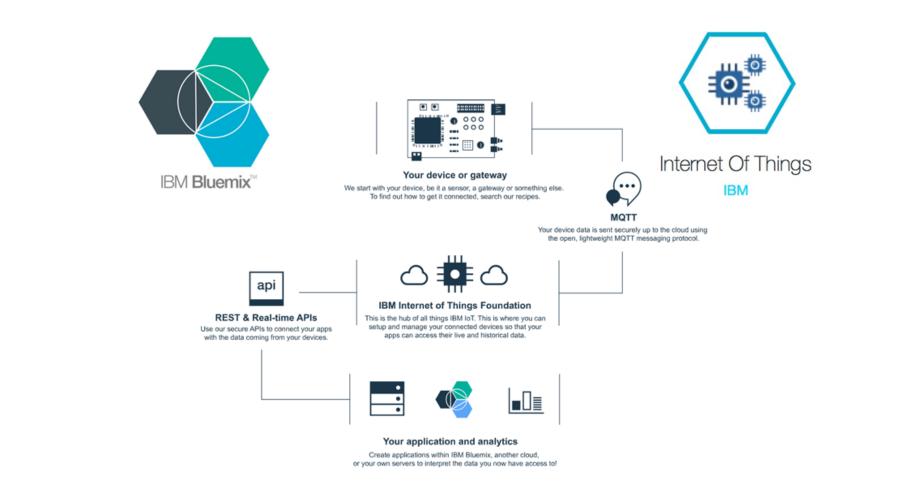


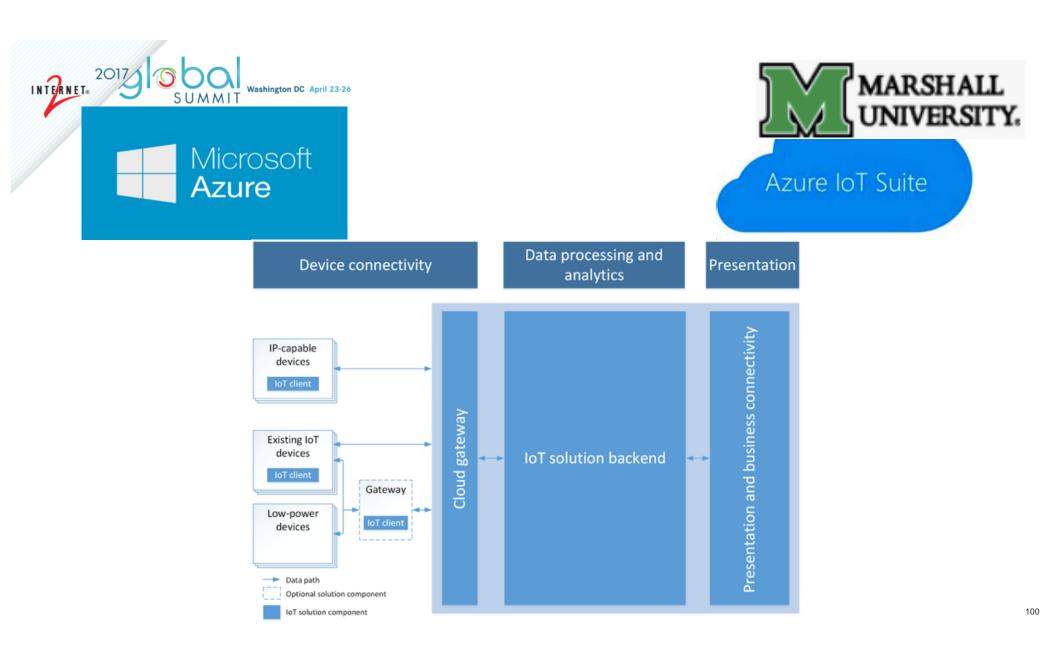


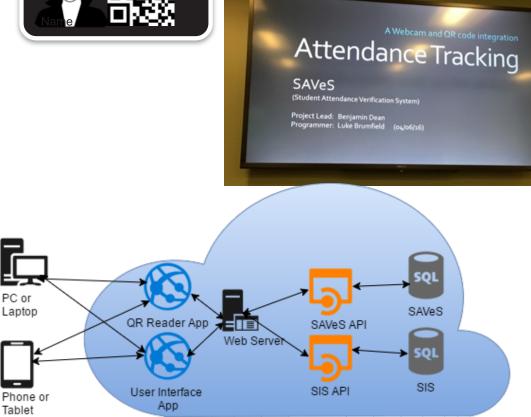
- IoT Use Cases and domains
- Architecture (Subscribe/Publish, Gateways, etc.)
- Technologies (z-wave, zigbee, Bluetooth) and concepts (iBeacan, Geofencing, security, etc.)
- Cloud Services (Azure, Bluemix, AWS and others)
- Devices and sensors (Raspberry Pi, Arduino ...etc.)
- Lab work for course project







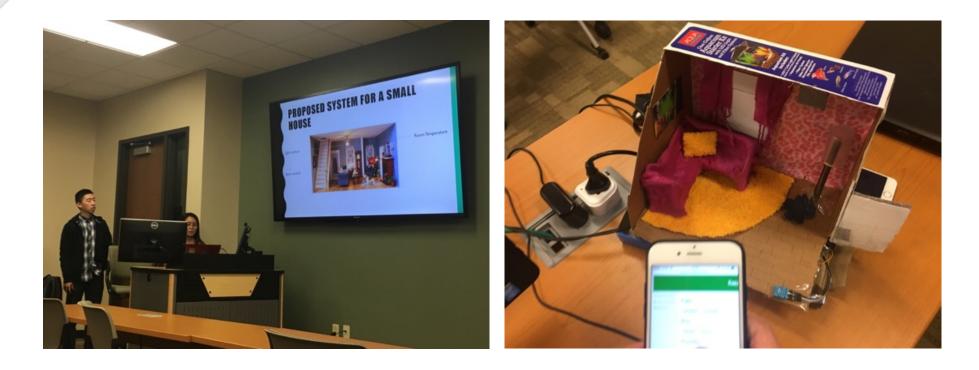


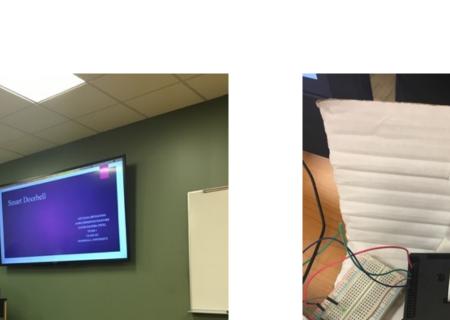

INTERNET. 2017 Washington DC April 23-26 SUMMIT

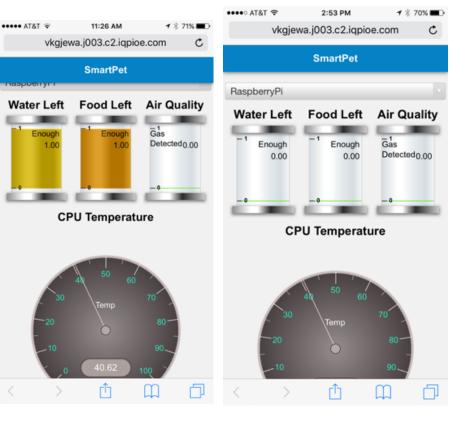
Attendance tracking system

PC or Laptop

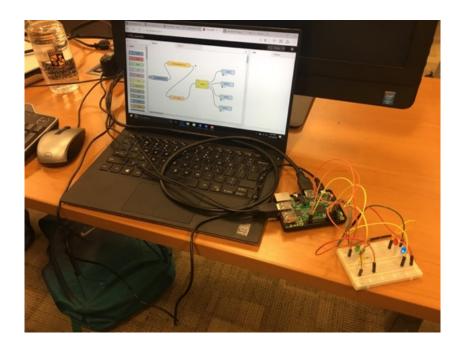
Tablet







Pet care system



NEXT STEPS

EMILY NICHOLS INTERNET2

Internet2 Smart Campus Initiative Next Steps.

- Increase IoT systems risk awareness leveraging Shodan and Censys.io, demos at GS17
- **Share** IoT Systems Vendor Requirements Document at GS17
- Planning Workshop with Princeton University Center for Information Technology Policy (CITP) on TIPPSS and Ethics in Campus IoT Networks, 2017
- Create thought leadership on TIPPSS for IoT for smart & connected campus/communities
 - White paper collaborations: Enterprise IoT ITANA Collaboration and Internet2 CINO PAG-led White Paper
- **Participate** in new initiatives and collaborations toward a Smart Campus
- Identify additional smart campus best practices across the community and enable sharing

CINO Sponsored Schedule of Events at GS17

- Sunday, April 23, 4:15-5:30pm: CINC UP: CINO Program Advisory Group Meeting (Open), Meeting Room 15
- Tuesday, April 25, 8-10am: CINC UP: Collaborative Innovation Community Meeting: IoT, E2ET&S, Smart Campus, Renaissance Ballroom West B
 - Collaborative Innovation Community & Innovation Working Groups Update: IoT, E2ET&S, DBDA
 - Smart Campus Initiatives Update and invitation to participate
 - Smart Campus: IoT Systems Risk Management Task Force Update. Shodan & Censys.io demonstrations 4/24 & 4/25
 - TIPPSS for IoT: ITANA Collaboration and White Paper
 - Smart Campus-themed Cybersecurity Transition to Practice Researcher Presentations
 - IoT Pedagogy

INTERNET.

- Wednesday, April 26, 7:30-8:30am: CINC UP: NSF Big Data Innovation Hubs, Meeting Room 10/11
 - NSF Big Data Hubs and Spokes Overview by Fen Zhao, NSF, and René Bastón Northeast Big Data Innovation Hub ED
 - How to get involved, connections for researchers, regional networks, and IT
- Wednesday, April 26, 12:30-5:30pm: CINC UP: Cybersecurity Research Acceleration Transition To Practice (TTP) Workshop and Showcase (NSF #1650445), Meeting Room 8/9
 - Join us for an interactive discussion to determine how working together we can accelerate Transition To Practice (TTP) of cybersecurity research into operational environments. Regional networks, IT, industry, labs, students: everyone is invited.
 - University CIO Perspective on Leveraging Cybersecurity Research
 - 12 Researcher Presentations on Identity & Access Management, Network Security, Smart Grid, Cloud Security & Storage, Data Analytics & Security, and IoT
 - Discussion, Pilot Opportunities, and Feedback, tell us what cybersecurity assets you need
 - Poster Session & Networking at breaks. Additional poster sessions on Monday and Tuesday: breakfast, lunch, breaks.

110

CINC UP: COLLABORATIVE INNOVATION COMMUNITY MEETING: IOT, E2ET&S, SMART CAMPUS

April 25, 2017

