NRENs and Internet-of-Things

Paul Dekkers September 23, 2016

NRENs and the Internet of Things

SURFnet activities on IoT (LoRaWAN),

what can we do in the future (together)...

- Kind of IoT/sensor-networks
- LPWAN, LoRaWAN
- Architecture
- Where does the NREN fit in

Sensor networks, Things

A mesh network is impractical: low range, passing on data costs energy, coordination

When Bluetooth, BLE, WiFi, NFC, Zigbee limited range, and M2M 2-4G too costly...

SURF NET

4

LoRa, LoRaWAN, LPWAN...?

- LPWAN name for Low Power WAN
 - Star topology
 - Long range
 - Low bandwidth

- Unlicensed spectrum under 1 GHz, range! (433, 868, 915 MHz)
- Multiple solutions, LoRa(WAN) extra interesting:

Global ISM bands

Frequencies, bw, duty-cycle, power

In the EU:

band	frequenties	max. power	duty cycle
433	433.175 433.375 433.575	10 dBm (10 mW)	0,1% (3,6 sec/hour)
867, g	867.1 867.3 867.5 867.7 867.9	14 dBm (25 mW)	1% (36 sec/hour)
868, g1	868.1 868.3 868.5	14 dBm (25 mW)	1%
869, g3	869.5	27 dBm (500 mW)	10% (6 min/hour)

7 SURF NET

	Europe	North America	China	Korea	Japan	India
Frequency band	867-869MHz	902-928MHz	470- 510MHz	920- 925MHz	920- 925MHz	865- 867MHz
Channels	10	64 + 8 +8				
Channel BW Up	125/250kHz	125/500kHz	Φ	/ Technical Committee / Technical Committee / Technical Committee	nmittee nmittee	Ð
Channel BW Dn	125kHz	500kHz	nmitte			
TX Power Up	+14dBm	+20dBm typ (+30dBm allowed)	nical Cor		nical Cor	
TX Power Dn	+14dBm	+27dBm	/ Techr		/ Tech	y Tech
SF Up	7-12	7-10	ld no	ld no	ld no	ld no
Data rate	250bps- 50kbps	980bps-21.9kpbs	lefinitic	lefinitio	In definition	In definitior
Link Budget Up	155dB	154dB	p u	p ul		
Link Budget Dn	155dB	157dB				

LoRaWAN in the US: dwell time

- Dwell time requirement: 400ms time spent at a particular frequency during any single hop
- Maximum 400ms transmissions before hopping channel: rules out SF11 and SF12, transmission would take too long
- Normally 50 channels in US; "hybrid mode" allows 8 channels with reduced power (+21dBm)

LoRa (PHY, modulation technique)

- Chirp Spread Spectrum: bandwidth, decodable under noise-level, even with interference and fading
- Lower speed when higher speeds don't work

Spectrogram

Spectrogram LoRa

On-Off Keying

FSK Frequency Shift Keying

LoRa speeds

13 SURF NET

LoRa speeds

• Spreading Factor (SF), modulation speed

Spreading Factor	Chips/symbol	SNR limit	Time-on-air (10 byte packet)	Bitrate
7	64	-7.5	56 ms	5469 bps
8	128	-10	103 ms	3125 bps
9	256	-12.5	205 ms	1758 bps
10	512	-15	371 ms	977 bps
11	1024	-17.5	741 ms	537 bps
12	2048	-20	1483 ms	293 bps

Short time-on-air preferable for power, duty-cycle, fair-use

14 SURF NET

LoRaWAN: adaptive data rate (ADR)

Dynamic choice for SF based on received signal

SURF NET

15

LoRaWAN classes: we use A

Three classes:

Class A: transmit from a node, transmit window (~52 bytes), 2 receive windows (ACK, evt. data, ~10 bytes)

(**Class B**: besides A also receive windows on set intervals, time-synchronisation beacons - in development)

Class C: continuous receive window (except while sending), if there is sufficient power (and low latency is required)

Class A, packet windows

17 SURF NET

LoRaWAN addresses, security

• Network key (Message Integrity Check, 128-bit)

Application key

- 128-bit AES encryption

Activation by Personalisation (ABP)

- Fixed device address (32-bit)
- Replay-attacks possible

• Over The Air Activation (OTAA)

- Shared secret
- Roaming

Typical LoRaWAN network

SURFnet demo-portal

•			my.lora.surfnet.nl	¢.		+
	SURFnet LoRaW	/AN			WELCOME, PAUL. CHANGE PASSW	ORD / LOG OUT
	Home - Things - Sessions -	Add session				
	Add session					
	Device Address:	010bd039				
	Device EUI:	\$				
	Created:	-				
	Enabled					
	Network session key:	7a0771ef49b449eea16571056b0c2e24				
	Application session key:	f9ce31d3b58085005b8e12000edfd98c				
	Frame count up:	0				
				Save and add another	Save and continue editing	SAVE
				Save and add another	Save and continue editing	SAVE

The Things Network (staging) portal

The Things Network

 Global community LoRaWAN network crowdsourced (think eduroam)

No "single point of control"

End-to-end encryption

Can be combined with private LoRaWAN

No country borders

The Things Network, Architecture

Community network, no centralised infrastructure:

we can be part of this infrastructure!

Measuring coverage gateway

Gateways

PH₃V

21d + Reply

Today i did some Predicted vs Realtime calculations ..

Remarkable how well the prediction comes close to the real-time measurements.

The original contains pixels of 50 by 50 meters.

For example, on the bridge at Zaltbommel there is indeed, albeit limited, coverage.

It is also clear to see that there is less eastward coverage. That's because of the hills. (Utrecht Ridge)

The same prediction made on the basis of my antenna setup ... Antenna 7 meters, urban canyon. That was a big disappointment compared to Utrecht setup 📀

Gateway AA555A00080605B7 'De Uithof' Utrecht, The Netherlands

Green > -112dBm Yellow > -127dBm < -112 dBm

ook metingen in Eindhoven...;-)

Applications? The network is there...

vacuum pump environmental, air-quality, noise asset-management CO2 in lecture rooms dikes cleaning-cart digital seal trash-containers earthquakes smart meters maintenance bridges track OV-bike usage (maintenance) traffic overstroming fridge researchers building mgmt trains streetlights parking spots leakage water plants track wildlife

Paul Dekkers	Internet of Things, IoT, LoRa, LoraWAN	25 JAN 2016
Previous post		Next post

'Things' online

We are constantly surrounded by things; as far as I am concerned, there is no need for them to be online all the time – although I wouldn't have minded if my fridge had let me know there was still some old bread in the freezer compartment. Come to think of it, quite a few things in life might be better if they were online: just take a walk through the city and you'll see full waste containers, half submerged boats, parking spaces, bicycles, lantern posts. The air quality in some places also seems a bit suspect, and could certainly do with the odd measurement. I also keep running into more amusing and useful 'Internet-of-things' applications developed by LoRa users, such as beehive monitoring systems.

SURFnet corporate »

RT @raoulteeuwen: Hands-on LoRaWAN workshop @SURFnet door @pauldekkers

and SURFnet / NRENs?

- Collaborate with The Things Network
 - create infrastructure connected to NREN, eduGAIN / SURFconext
 - collaborate to create open courseware (future MOOC)

and SURFnet / NRENs?

- Workshops, share knowledge, collaborate
- Gateways at some institutions: applications and coverage on campuses, challenge use
- eduroam monitoring sensor, report via LoRaWAN
- Strong authentication, not connected 2nd factor
- How do we help researchers, lecturers, students, ...?

Questions? paul.dekkers [at] surfnet.nl

