Security of Cyberphysical Systems

P. R. Kumar and Le Xie Dept. of Electrical and Computer Engineering Texas A&M University

With Bharadwaj Satchidanandan, Woo Hyun Ko and Tong Huang

Email: prk.tamu@gmail.com Web: http://cesg.tamu.edu/faculty/p-r-kumar/ Teleseminar Internet2 CINC UP September 8, 2017

Securing an automated transportation system

*Video "*Tackling Autonomous Vehicle Cybersecurity Issues*" at https://cesg.tamu.edu/faculty/p-r-kumar/convergencelab/*

Cyber-physical systems

- Next generation of engineered systems in which computing, communication, and control technologies are tightly integrated
- Many societally important future applications
 - Automated transportation
 - Smart grid
 - Unmanned Air Vehicle Transportation System
 - Water treatment facilities
 - Telesurgery systems
- Safety critical

. . .

- Malfunctioning causes physical harm
- Critical infrastructure
 - Important to functioning of economy and society

Vulnerability of cyberphysical systems to attacks

- Hackers hitherto could tamper only with information or bits in cyber layer
- CPS tightly couples cyber and physical worlds
 - Actions in physical world taken based on information from cyber layer
- CPS, therefore, gives hacker ability to cause damage in physical world

Security of CPS

- As more systems are connected to the Internet and become more open, there are increasingly more vulnerabilities
- Can be more harmful than other violent attacks
- Next war may be "cyber" rather than "bombs"?
- Even after many decades we still cannot secure the Operating Systems
 - New patches every day
- We still cannot secure the Internet
- Interaction between bits and physical world is very complex
- How can we possibly secure CPSs?

Several attacks on critical infrastructure systems

- Several instances of attacks in the past
 - Maroochy-Shire sewage treatment plant
 - Davis-Besse nuclear power plant
 - Stuxnet
 - Ukraine power grid
 - Water filtering plant in Pennsylvania
 - Demonstrations of cyber attacks in automated cars
- Maroochy-Shire, Australia, 2003, attack on sewage treatment system, commands issued which led to a series of faults in the system
- Attack on computers controlling Davis-Besse nuclear power plant in Ohio, 2003, Slammer worm disabled the safety monitoring system
- Stuxnet worm, 2010, exploited Microsoft Windows vulnerability to subvert critical computers controlling centrifuges in Iran uranium enrichment facility
- Attacks on Supervisory Control and Data Acquisition system, natural gas pipeline systems, trams, power utilities, and water systems, etc.

Isn't network security enough for CPS security?

- Network and information security implemented through periodic patching.
 - CPS has a dynamic system in the loop, and may not admit controllers going online for patching
- Traditional notion of "Confidentiality, Integrity and Availability" in network and information security does not address real-time availability, which is critical for control system security
- Network or information security fundamentally cannot address physical layer attacks such as in Maroochy-Shire incident

Two-layer approach to CPS security

- Can think of CPS as consisting of two layers:
 - Cyber layer consisting routers, switches, relays, etc. providing communication backbone,
 - Physical layer consisting the plant, sensors and actuators, controllers which manipulate physical signals
- Cyber layer possibly secured using techniques such as cryptography
 - Therefore, network may possibly be abstracted as secure, reliable, delay-guaranteed bit pipes
- But how to secure the physical layer?

Abstraction of cyberphysical systems

- Overall system has
 - Physical plant
 - Actuators
 - Sensors
 - Routers
 - Computational nodes
 - Network
- But some of the routers, computation nodes, sensors, actuators may be compromised
- How do we secure the overall cyberphysical system?

Abstraction of security problem

- Some sensors, actuators may be compromised
- If information from a sensor is compromised, we say sensor is compromised
- It does not matter whether sensor is compromised or its information is compromised downstream

How do we secure the overall cyberphysical system when some sensors and actuators may be compromised?

Towards a paranoid theory of linear stochastic systems

Let's start with linear stochastic systems

- Physical plant modeled as linear stochastic system
 - Most common practical design
- Some actuators/sensors malicious
- Malicious actuators/sensors can collude
- Honest actuators/sensors don't know which nodes malicious

Linear systems theory in a more innocent age

• Linear system x(t+1) = Ax(t) + Bu(t)

When is system controllable (Kalman)?

$$x(n) = A^{n}x(0) + Bu(n-1) + ABu(n-2) + \dots + A^{n-1}Bu(0)$$

$$x(n) - A^{n}x(0) = [B, AB, A^{2}B, \dots, A^{n-1}B] \begin{bmatrix} u(n-1) \\ u(n-2) \\ \vdots \\ u(0) \end{bmatrix}$$

- Controllable subspace = Span[$B, AB, ..., A^{n-1}B$]
- System is stabilizable if unstable modes of A are in controllable subspace

Linear systems theory in a more innocent age

- Linear system x(t+1) = Ax(t)y(t) = Cx(t)
- When is system state observable from outputs?

$$\begin{bmatrix} y(0) \\ y(1) \\ \vdots \\ y(n-1) \end{bmatrix} = \begin{bmatrix} C \\ CA \\ \vdots \\ CA^{n-1} \end{bmatrix} x(0)$$

• Unobservable subspace = Null Space of
$$\begin{bmatrix} C \\ CA \\ \vdots \\ CA^{n-1} \end{bmatrix}$$

 System is detectable if unstable modes are observable

But what if some actuators or sensors are malicious?

$$\begin{bmatrix} x_{1}(t+1) \\ x_{2}(t+1) \\ \vdots \\ x_{n}(t+1) \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix} \begin{bmatrix} x_{1}(t) \\ x_{2}(t) \\ \vdots \\ x_{n}(t) \end{bmatrix} + \begin{bmatrix} b_{11} & b_{12} & \dots & b_{1m} \\ b_{21} & b_{22} & \dots & b_{2m} \\ \dots & \dots & \dots & \dots \\ b_{n1} & b_{n2} & \dots & b_{nm} \end{bmatrix} \begin{bmatrix} u_{1}(t) \\ u_{2}(t) \\ \vdots \\ u_{m}(t) \end{bmatrix}$$

$$\begin{bmatrix} y_{1}(t) \\ y_{2}(t) \\ \vdots \\ y_{p}(t+1) \end{bmatrix} = \begin{bmatrix} c_{11} & c_{12} & \dots & c_{1n} \\ c_{21} & c_{22} & \dots & c_{2n} \\ \dots & \dots & \dots & \dots \\ c_{p1} & c_{p2} & \dots & c_{pn} \end{bmatrix} \begin{bmatrix} x_{1}(t) \\ x_{2}(t) \\ \vdots \\ x_{n}(t) \end{bmatrix}$$

- Some of the u_i 's and y_i 's may be malicious
- What harm can malicious sensors/actuators cause without the honest sensors/actuators knowledge?

Innocent age concerns vs New age concerns

- Nature causes stability/instability
- Malicious agents cause harm
- Stability of benign systems
- Security of malicious systems
- Stabilizability/Detectability of benign systems
- Securability of malicious systems

Passive guarantees based on system structure

The securable and unsecurable subspaces for deterministic systems

- What states can the malicious sensors/actuators drive the system to without the honest sensors/actuators finding out?
- The unsecurable subspace V is the set of states that the malicious sensors and actuators can keep indistinguishable from the 0 state

• The securable subspace is V^{\perp}

The unsecurable states of deterministic systems

• Suppose $x(t+1) = Ax(t) + B_m u_m(t)$

$$y_h(t) = \begin{bmatrix} x_1(t) \\ \vdots \\ x_H(t) \end{bmatrix} = C_h x(t)$$

• Then x(0) can be made indistinguishable from 0 if for some $u_m(0), u_m(1), \dots, u_m(t), \dots$

$$C_{h}x(0) = 0$$

$$C_{h}(Ax(0) + B_{m}u_{m}(0)) = 0$$

$$\vdots$$

$$C_{h}(A^{t}x(0) + A^{t-1}B_{m}u_{m}(0) + \dots B_{m}u_{m}(t-1)) = 0$$

Characterization of Unsecurable and Securable subspaces

 Unsecurable subspace is the maximal subspace V such that for all v in V

 $C_h v = 0$

There exists *u* such that $Av + B_m u \in V$

• Securable subspace is V^{\perp}

Stochastic systems

Malicious sensors and actuators in linear stochastic system

Consider a linear stochastic system

$$x(t+1) = Ax(t) + Bug(zt) + Bmum(t) + w(t+1)$$

$$y(t) = x(t)$$

- w is white noise of variance Σ
- Honest sensors measure y_1, y_2, \ldots, y_H
- Malicious sensors measure $y_{H+1}, y_{H+2}, \dots, y_p$
- Sensor measurements reported are z(t), where $z_i(t)=x_i(t)$ for i = 0, 1, ..., H
- But for the malicious sensor's $z_i(t)$ need not equal $x_i(t)$ for i = H+1, H+2, ..., p
- And malicious actuators may apply $u_m(t)$ different from 0

What performance can be guaranteed for a linear stochastic system?

 Honest sensors conduct Test to detect if there is any malicious activity:

$$\lim \frac{1}{T} \sum_{0}^{T-1} \left(z(t+1) - Az(t) + Bu^{g}(z^{t}) \right) \left(z(t+1) - Az(t) + Bu^{g}(z^{t}) \right)^{T} = \Sigma$$

- To remain undetected malicious sensors/actuators must pass Test
- **Theorem**: Then the error in the reported state error in the securable subspace V^{\perp} is guaranteed to be of zero power

$$\lim \frac{1}{T} \sum_{0}^{T} \left\| \tilde{x}(t)_{V^{\perp}} \right\|^{2} = 0$$

where $\tilde{x}(t)_{V^{\perp}} \coloneqq$ Projection of $(z(t) - x(t))$ on V^{\perp}

Can we do better?

Dynamic watermarking

 Actuator node superimposes a private excitation whose realization is unknown to other nodes

- Private excitation e_i(t) appears in transformed returned signals from sensors at time t+1
- Measurement reported by sensor at time t+1 has to contain suitably transformed contribution of e_i(t)
- So actuator can check if private excitation comes back properly from sensors
- Checks if the reported measurements have the appropriately correlations with e_i(t) reported
- This provides powerful guarantees against general attacks on sensors – not just replay attack

Illustration on simple first order SISO system

- SISO system: x(t+1) = ax(t) + bu(t) + w(t+1) $w(t) \sim N(0, \sigma_w^2)$, i.i.d.
- Dynamic watermarking $u(t) = u^{g}(t) + e(t)$ with $e(t) \sim N(0, \sigma_{e}^{2})$, i.i.d.
- Two tests are conducted by actuator

$$\lim \frac{1}{T} \sum_{t=0}^{T-1} \left(z(t+1) - az(t) - bu^{g}(t) - be(t) \right)^{2} = \sigma_{w}^{2}$$

$$\lim \frac{1}{T} \sum_{t=0}^{T-1} (z(t+1) - az(t) - bu^{g}(t))^{?} = b^{2} \sigma_{e}^{2} + \sigma_{w}^{2}$$

- If either test fails, then there is malicious sensor information
 - System goes into safety mode
 - Halted, checked, rebooted, manual operation, etc

Guarantee provided by Dynamic Watermarking

Theorem

$$\lim \frac{1}{T} \sum_{t=0}^{T-1} v^2(t) = 0$$

• Where $v(t+1) \coloneqq z(t+1) - az(t) - bu^{g}(t) - be(t) = w(t+1)$

Interpretation:

$$z(t+1) - az(t) - bu^{g}(t) - be(t) = w(t+1) + v(t+1)$$

 So reported sensor measurements can distort actual noise w(t) only by zero power signal v(t)

Stability consequences of Dynamic Watermarking

• Theorem:

- Suppose |a| < 1, i.e., system is open-loop stable,
- Then distortion $d[t] \coloneqq z[t] x[t]$ is zero power: $\lim_{T \to \infty} \frac{1}{T} \sum_{k=0}^{T-1} d^2[k] = 0$
- Mean-square performance is same as reported performance

$$\lim_{T \to \infty} \frac{1}{T} \sum_{k=0}^{T-1} x^2[k] = \lim_{T \to \infty} \frac{1}{T} \sum_{k=0}^{T-1} z^2[k]$$

- Suppose $u^{g}(t) = fx(t)$ with |a+bf| < 1
- Then mean square performance is optimal $\lim_{T \to \infty} \frac{1}{T} \sum_{k=0}^{T-1} x^2[k] = \frac{\sigma_w^2 + b^2 \sigma_e^2}{1 - |a + bf|^2}$

More general results

- Results extend to
- ARMAX Systems used in process control: $y[t] = -\sum_{k=1}^{p} a_k y[t-k] + \sum_{k=0}^{h} b_k u[t-l-k] + \sum_{k=0}^{r} c_k w[t-k]$
- MIMO partially observed Gaussian systems

 $\mathbf{x}[t+1] = A\mathbf{x}[t] + Bu[t] + \mathbf{w}[t+1]$ $y[t+1] = C\mathbf{x}[t+1] + n[t+1]$

Some non-Gaussian systems

Example

- System: y(t+1) + 0.7y(t) 0.2y(t-1) = u(t) + 0.5u(t-1) + w(t) $w(t) \sim N(0,1)$, i.i.d.
- Actuator applies u(t) = -0.7z(t) 0.2z(t-1) 0.5u(t-1) + e(t) $e(t) \sim N(0,1)$, i.i.d.
- Closed-loop system:

y[t+1] = 0.7(y[t] - z[t]) + 0.3(y[t-1] - z[t-1]) + e[t] + w[t+1]

Sensor estimates process noise by

$$\hat{w}[t+1] \coloneqq \frac{1}{2} (y[t+1] - 0.7(y[t] - z[t]) - 0.3(y[t-1] - z[t-1]))$$

Example

• Simulates a fake system with a fake noise n(t) - w(t)

 $n(t) \sim N(0,1)$, i.i.d.

- Reports output of fake simulated system
- In absence of watermarking, actuator would not suspect any malicious measurements
- Sensor attack begins at time 4500

Test of autonomous transportation system in CPS lab

Automated vehicles are vulnerable to cyber attacks

- Hackers have demonstrated remote hijack of a Jeep's digital systems over the Internet
 - Resulted in the car manufacturer recalling over a million units to patch identified security vulnerabilities
- Automated cars use various sensors
 - Ultrasound sensor to determine distance of close objects
 - mm-wave radar to map road immediately ahead
- These sensors can be jammed. Researchers from Zhejiang University have demonstrated such sensor attacks
- Several other demonstrations reported recently

Attacks on cars

- Car hacking is the future and sooner or later you'll be hit
 - <u>https://www.theguardian.com/technology/2016/aug/28/car-hacking-future-self-driving-security</u>
- Critical reasons for crashes investigated in the national motor vehicle crash causation survey
 - <u>https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/812115</u>
- Hackers Remotely Kill a Jeep On the Highway- With Me in it"
 - https://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/

• Feature of daily news ...

Testbed architecture

System model for automatic vehicles

Plant model for vehicle i given by its kinematic equations

 $x_i[t+1] = x_i[t] + h\cos(\theta_i[t])v_i[t] + h\cos(\theta_i[t])w_{ix}[t]$ $y_i[t+1] = y_i[t] + h\sin(\theta_i[t])v_i[t] + h\sin(\theta_i[t])w_{iy}[t]$ $\theta_i[t+1] = \theta_i[t] + h\omega_i[t] + hw_{i\theta}[t]$

- *h* is the sampling period (100ms)
- $v_i[t]$ a control input, denoting speed
- $\omega_i[t]$ a control input, denoting angular
- $w_{ix}[t], \underline{w}_{\underline{iy}}[t], w_{i\theta}[t]$ all N(0,2), i.i.d.
- Non-linear system

Watermarked system's performance in absence of attack

Watermarked system

 $x_{i}[t+1] = x_{i}[t] + h\cos(\theta_{i}[t])u_{i}^{g}(\mathbf{z}_{1}^{t}, \mathbf{z}_{2}^{t}) + h\cos(\theta_{i}[t])e_{iv}[t] + h\cos(\theta_{i}[t])w_{ix}[t]$ $y_{i}[t+1] = y_{i}[t] + h\sin(\theta_{i}[t])u_{i}^{g}(\mathbf{z}_{1}^{t}, \mathbf{z}_{2}^{t}) + h\sin(\theta_{i}[t])e_{iv}[t] + h\sin(\theta_{i}[t])w_{iy}[t]$ $\theta_{i}[t+1] = \theta_{i}[t] + h\omega_{i}[t] + he_{i\theta}[t] + hw_{i\theta}[t]$

- Performance with and without watermarking
- Watermarks do not result in any added penalty on performance

Sensor attack

Sensor attack

$$z_{2x}[t_A] = x_2[t_A] + \tau$$
, where τ =bias

$$z_{2x}[t+1] = z_{2x}[t] + h\cos(\theta_2[t])u_2^g(\mathbf{z}_1^t, \mathbf{z}_2^t) + \cos(\theta_2[t])n[t]$$
$$n[t] \sim \mathcal{N}(0, \sigma_x^2)$$

This attack passes Test 2, but fails Test 1

Test Statistics

Automatic Generation Control (AGC)

Automatic Generation Control (AGC)

Dynamic Watermarking in the Context of AGC

Certain indelible pattern of the private injection is imprinted into the measurement feeding to AGC.

$$\lim_{T \to \infty} \frac{1}{T} \sum_{k=1}^{T} \boldsymbol{\nu}_{k} \boldsymbol{\nu}_{k}^{T} = L_{di} \Sigma_{i} L_{di}^{T}$$

$$\text{Test 1} \qquad \Sigma_{i} = C_{di} P C_{di}^{T} + R.$$

$$\text{Test 2} \qquad \lim_{T \to \infty} \frac{1}{T} \sum_{k=1}^{T} \boldsymbol{e}(k-1) \boldsymbol{\nu}_{k}^{T} = 0$$

$$\boldsymbol{\nu}_{k} = \boldsymbol{x}(k|k) - A_{di} \boldsymbol{x}(k-1|k-1) - B_{di} \boldsymbol{f}_{i}(\boldsymbol{z}_{i}^{k-1}) - B_{di} \boldsymbol{e}(k-1)$$

Performance Validation: the Impact of Private Injection

time (min.)

Performance Validation under Replay Attack and Destabilization Attack

Remarks

- CPS is important for society and economy
- Lot of future infrastructure may be CPS
- Societally and economically important
- Security of CPS is a very rapidly emerging area
- Critical for safety of future infrastructure
- Lots of attacks have already been demonstrated

References

- Yilin Mo, and Bruno Sinopoli, "Secure control against replay attacks," Allerton, pp. 911-918. IEEE, 2009.
- Sean Weerakkody, Yilin Mo, and Bruno Sinopoli, "Detecting integrity attacks on control systems using robust physical watermarking," 53rd IEEE Conference on Decision and Control, pp. 3757-3764. IEEE, 2014.
- Yilin Mo, Rohan Chabukswar, and Bruno Sinopoli. "Detecting integrity attacks on SCADA systems," IEEE Transactions on Control Systems Technology, no. 4 (2014): 1396-1407.
- Yilin Mo, Sean Weerakkody, and Bruno Sinopoli, "Physical authentication of control systems: designing watermarked control inputs to detect counterfeit sensor outputs," IEEE Control Systems 35, no. 1 (2015): 93-109.
- Bharadwaj Satchidanandan and P. R. Kumar, "Dynamic Watermarking: Active Defense of Networked Cyber-Physical Systems." Proceedings of the IEEE, vol. 105, No. 2, pp. 219-240, February 2017.
- Woo-Hyun Ko, Bharadwaj Satchidanandan and P. R. Kumar, "Theory and Implementation of Dynamic Watermarking for Cybersecurity of Advanced Transportation Systems." International Workshop on Cyber-Physical Systems Security (CPS-Sec), pp. 235-239, Philadelphia, October 17-19, 2016.
- Bharadwaj Satchidanandan and P. R. Kumar, "Secure Control of Networked Cyber-Physical Systems." Proceedings of 55th IEEE Conference on Decision and Control, pp. 283-289, December 12–14, 2016, Las Vegas.
- Bharadwaj Satchidanandan and P. R. Kumar, "On Minimal Tests of Sensor Veracity for Dynamic Watermarking-Based Defense of Cyber-Physical Systems." Proceedings of the 9th International Conference on Communication Systems & Networks (COMSNETS 2017), pp. 23-30, January 4-8, 2017, Bengaluru, India.
- Bharadwaj Satchidanandan and P. R. Kumar, "Defending Cyber-Physical Systems from Sensor At- tacks." In to appear in From 9th International Conference on Communication Systems & Networks (COMSNETS 2017), Lecture Notes in Computer Science, Springer–Verlag, Berlin.
- Bharadwaj Satchidanandan and P. R. Kumar, "Control Systems Under Attack: The Securable and Unsecurable Subspaces of a Linear Stochastic System." To appear in Emerging Applications of Control and System Theory, 2017.
- T. Huang, B. Satchidanandan, P. R. Kumar, and L. Xie, "An Online Defense Framework against Cyber Attacks on Automatic Generation Control," Working Paper, TAMU-ECE-2017-02. (Submitted to IEEE Transactions on Power Systems).
- Pasqualetti, Fabio, Florian Dorfler, and Francesco Bullo. "Control-theoretic methods for cyberphysical security: Geometric principles for optimal cross-layer resilient control systems." IEEE Control Systems 35, no. 1 (2015): 110-127.
- Pasqualetti, Fabio, Florian Drfler, and Francesco Bullo. "Attack detection and identification in cyber-physical systems." IEEE Transactions on Automatic Control 58, no. 11 (2013): 2715- 2729.
- Pasqualetti, Fabio, Florian Drfler, and Francesco Bullo. "Cyber-physical security via geometric control: Distributed monitoring and malicious attacks." In Decision and Control (CDC), 2012 IEEE 51st Annual Conference on, pp. 3418-3425. 2012.
- Teixeira, A, Iman Shames, Henrik Sandberg, and Karl H. Johansson. "Revealing stealthy attacks in control systems." In Communication, Control, and Computing (Allerton), 2012 50th Annual Allerton Conference on, pp. 1806-1813. 2012.

Thank you