
1/48

Security of Cyberphysical Systems

P. R. Kumar and Le Xie
Dept. of Electrical and Computer Engineering
Texas A&M University

With Bharadwaj Satchidanandan, Woo Hyun Ko and Tong Huang

Teleseminar
Internet2 CINC UP
September 8, 2017

Email: prk.tamu@gmail.com
Web: http://cesg.tamu.edu/faculty/p-r-kumar/



2/48

Securing an automated 
transportation system

Video “Tackling Autonomous Vehicle Cybersecurity Issues“ at
https://cesg.tamu.edu/faculty/p-r-kumar/convergencelab/



3/48

Cyber-physical systems

◆ Next generation of engineered systems in which computing, 
communication, and control technologies are tightly integrated

◆ Many societally important future applications
– Automated transportation
– Smart grid
– Unmanned Air Vehicle Transportation System
– Water treatment facilities
– Telesurgery systems
– …

◆ Safety critical
– Malfunctioning causes physical harm

◆ Critical infrastructure
– Important to functioning of economy and society
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Vulnerability of cyberphysical systems to 
attacks

◆ Hackers hitherto could tamper only with information or 
bits in cyber layer

◆ CPS tightly couples cyber and physical worlds
– Actions in physical world taken based on information from 

cyber layer

◆ CPS, therefore, gives hacker ability to cause damage 
in physical world
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Security of CPS

◆ As more systems are connected to the Internet and become 
more open, there are increasingly more vulnerabilities

◆ Can be more harmful than other violent attacks
◆ Next war may be “cyber” rather than “bombs”?

◆ Even after many decades we still cannot secure the 
Operating Systems
– New patches every day

◆ We still cannot secure the Internet

◆ Interaction between bits and physical world is very complex

◆ How can we possibly secure CPSs?
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Several attacks on critical infrastructure 
systems

◆ Several instances of attacks in the past
– Maroochy-Shire sewage treatment plant
– Davis-Besse nuclear power plant
– Stuxnet
– Ukraine power grid
– Water filtering plant in Pennsylvania
– Demonstrations of cyber attacks in automated cars

◆ Maroochy-Shire, Australia, 2003, attack on sewage treatment system, 
commands issued which led to a series of faults in the system

◆ Attack on computers controlling Davis-Besse nuclear power plant in Ohio, 
2003, Slammer worm disabled the safety monitoring system

◆ Stuxnet worm, 2010, exploited Microsoft Windows vulnerability to subvert 
critical computers controlling centrifuges in Iran uranium enrichment facility

◆ Attacks on Supervisory Control and Data Acquisition system, natural gas 
pipeline systems, trams, power utilities, and water systems, etc.
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Isn't network security enough for 
CPS security?

◆ Network and information security implemented through 
periodic patching.
– CPS has a dynamic system in the loop, and may not admit controllers 

going online for patching

◆ Traditional notion of “Confidentiality, Integrity 
and Availability” in network and information security does not 
address real-time availability, which is critical for control 
system security

◆ Network or information security fundamentally cannot 
address physical layer attacks such as in Maroochy-Shire 
incident
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Two-layer approach to CPS security

◆ Can think of CPS as consisting of two layers:
– Cyber layer consisting routers, switches, relays, etc. 

providing communication backbone,
– Physical layer consisting the plant, sensors and actuators, 

controllers which manipulate physical signals

◆ Cyber layer possibly secured using techniques such 
as cryptography
– Therefore, network may possibly be abstracted as secure, 

reliable, delay-guaranteed bit pipes

◆ But how to secure the physical layer?
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Abstraction of cyberphysical systems

◆ Overall system has
– Physical plant
– Actuators
– Sensors
– Routers
– Computational nodes
– Network

◆ But some of the routers, 
computation nodes, 
sensors, actuators may 
be compromised

◆ How do we secure the 
overall cyberphysical 
system?
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Abstraction of security problem
◆ Some sensors, 

actuators may be 
compromised

◆ If information from a 
sensor is 
compromised, we 
say sensor is 
compromised

◆ It does not matter 
whether sensor is 
compromised or its 
information is 
compromised 
downstream
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Towards a paranoid theory of linear 
stochastic systems
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Let’s start with linear stochastic systems
Can honest 
nodes 
diagnose 
system?

What 
performance 
can they 
achieve?

x(t +1) = Ax(t)+ Bu(t)+w(t)
y(t) = Cx(t)+ v(t)

Linear stochastic system

um

u1

yp

y1

◆ Physical plant modeled as linear stochastic system
– Most common practical design

◆ Some actuators/sensors malicious
◆ Malicious actuators/sensors can collude
◆ Honest actuators/sensors don't know which nodes malicious
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Linear systems theory in a more 
innocent age

◆ Linear system
◆ When is system controllable (Kalman)?

◆ Controllable subspace = Span
◆ System is stabilizable if unstable modes of A are in 

controllable subspace

x(n) = Anx(0)+ Bu(n −1)+ ABu(n − 2)+…+ An−1Bu(0)

x(n)− Anx(0) = [B,AB,A2B,…,An−1B]
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x(t +1) = Ax(t)+ Bu(t)
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Linear systems theory in a more 
innocent age

◆ Linear system

◆ When is system state observable from outputs?

◆ Unobservable subspace = Null Space of

◆ System is detectable if unstable modes are 
observable
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y(t) = Cx(t)
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But what if some actuators or 
sensors are malicious?
x1(t +1)
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◆ Some of the ui’s and yj’s may be malicious
◆ What harm can malicious sensors/actuators cause without the 

honest sensors/actuators knowledge?
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Innocent age concerns vs
New age concerns

◆ Nature causes stability/instability
◆ Malicious agents cause harm

◆ Stability of benign systems
◆ Security of malicious systems

◆ Stabilizability/Detectability of benign systems
◆ Securability of malicious systems
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Passive guarantees based on 
system structure
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The securable and unsecurable 
subspaces for deterministic systems

◆ What states can the malicious sensors/actuators 
drive the system to without the honest 
sensors/actuators finding out?

◆ The unsecurable subspace V is the set of states 
that the malicious sensors and actuators can keep 
indistinguishable from the 0 state

◆ The securable subspace is V ⊥
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The unsecurable states of deterministic 
systems

◆ Suppose

◆ Then x(0) can be made indistinguishable from 0
if for some um(0), um(1),…, um(t),…

x(t +1) = Ax(t)+ Bmum (t)

yh (t) =
x1(t)
!

xH (t)

⎡
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⎢
⎢
⎢
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⎥
⎥
= Chx(t)

Chx(0) = 0
Ch Ax(0)+ Bmum (0)( ) = 0
!

Ch Atx(0)+ At−1Bmum (0)+…Bmum (t −1)( ) = 0
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Characterization of Unsecurable and 
Securable subspaces

◆ Unsecurable subspace is the maximal subspace V
such that for all v in V

◆ Securable subspace is 

Chv = 0
There exists u  such that Av + Bmu ∈V

V ⊥
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Stochastic systems
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Malicious sensors and actuators in linear 
stochastic system

◆ Consider a linear stochastic system

◆ w is white noise of variance S
◆ Honest sensors measure y1, y2, … , yH

◆ Malicious sensors measure yH+1, yH+2, … , yp

◆ Sensor measurements reported are z(t), where zi(t)=xi(t) for i = 
0, 1, … , H

◆ But for the malicious sensor’s zi(t) need not equal xi(t)
for i = H+1, H+2, … , p

◆ And malicious actuators may apply um(t) different from 0

x(t +1) = Ax(t)+ Bug (zt )+ Bmum (t)+w(t +1)
y(t) = x(t)
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What performance can be guaranteed for 
a linear stochastic system?

◆ Honest sensors conduct Test to detect if there is any malicious 
activity:

◆ To remain undetected malicious sensors/actuators must pass 
Test

◆ Theorem: Then the error in the reported state error in the 
securable subspace is guaranteed to be of zero power

lim 1
T

z(t +1)− Az(t)+ Bug (zt )( ) z(t +1)− Az(t)+ Bug (zt )( )T
0

T −1

∑ = Σ

V ⊥

lim 1
T

x!(t)
V⊥

0

T

∑
2

= 0

where x!(t)
V⊥ := Projection of z(t)− x(t)( )  on V ⊥
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Can we do better?
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Dynamic watermarking

◆ Actuator node superimposes a private excitation whose 
realization is unknown to other nodes
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Why does it help?

◆ Private excitation ei(t) appears in transformed returned 
signals from sensors at time t+1

◆ Measurement reported by sensor at time t+1 has to contain 
suitably transformed contribution of ei(t)

◆ So actuator can check if private excitation comes back 
properly from sensors

◆ Checks if the reported measurements have the appropriately 
correlations with ei(t) reported

◆ This provides powerful guarantees against general attacks 
on sensors – not just replay attack
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Illustration on simple first order SISO 
system

◆ SISO system:

◆ Dynamic watermarking

◆ Two tests are conducted by actuator

◆ If either test fails, then there is malicious sensor information
– System goes into safety mode
– Halted, checked, rebooted, manual  operation, etc

x(t +1) = ax(t)+ bu(t)+w(t +1)
w(t) ∼ N(0,σ w

2 ),  i.i.d.

lim 1
T

z(t +1)− az(t)− bug (t)− be(t)( )2 =?
t=0

T −1

∑ σ w
2

lim 1
T

z(t +1)− az(t)− bug (t)( )=? b2σ e
2 +

t=0

T −1

∑ σ w
2

u(t) = ug (t)+ e(t) e(t) ∼ N(0,σ e
2 ),  i.i.d.with
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Guarantee provided by Dynamic 
Watermarking

◆ Theorem

◆ Where

◆ Interpretation:

◆ So reported sensor measurements can distort actual noise
w(t) only by zero power signal v(t)

v(t +1) := z(t +1)− az(t)− bug (t)− be(t) = w(t +1)

lim 1
T

v2
t=0

T −1

∑ (t) = 0

z(t +1)− az(t)− bug (t)− be(t) = w(t +1)+ v(t +1)
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Stability consequences of Dynamic 
Watermarking

◆ Theorem:
◆ Suppose |a| < 1, i.e., system is open-loop stable,

◆ Then distortion                          is zero power:

◆ Mean-square performance is
same as reported performance

◆ Suppose                     with

◆ Then mean square
performance is optimal 

lim
T→∞

1
T

d 2
k=0

T −1

∑ [k]= 0

lim
T→∞

1
T

x2
k=0

T −1

∑ [k]= lim
T→∞

1
T

z2
k=0

T −1

∑ [k]

ug (t) = fx(t) | a + bf |  <  1

lim
T→∞

1
T

x2
k=0

T −1

∑ [k]= σ w
2 + b2σ e

2

1− | a + bf |2

d[t] := z[t]- x[t]
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More general results

◆ Results extend to

◆ ARMAX Systems
used in process
control:

◆ MIMO partially observed
Gaussian systems

◆ Some non-Gaussian systems

y[t]= − ak
k=1

p

∑ y[t − k]+ bk
k=0

h

∑ u[t − l − k]+ ck
k=0

r

∑ w[t − k].

x[t +1]= Ax[t]+ Bu[t]+w[t +1]
y[t +1]= Cx[t +1]+ n[t +1]
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Example
◆ System:

◆ Actuator applies

◆ Closed-loop system:

◆ Sensor estimates process noise by

y(t +1)+ 0.7y(t)− 0.2y(t −1) = u(t)+ 0.5u(t −1)+w(t)
w(t) ∼ N(0,1),  i.i.d.

u(t) = −0.7z(t)− 0.2z(t −1)− 0.5u(t −1)+ e(t)

y[t +1]= 0.7(y[t]- z[t])+ 0.3(y[t -1]- z[t -1])+ e[t]+w[t +1]

w![t +1] := 1
2
(y[t +1]− 0.7(y[t]− z[t])− 0.3(y[t −1]− z[t −1])

e(t) ∼ N(0,1),  i.i.d.
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Example

◆ Simulates a fake system with a fake noise

◆ Reports output of fake
simulated system

◆ In absence of
watermarking, actuator
would not suspect any
malicious measurements

◆ Sensor attack begins at
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Test of autonomous transportation 
system in CPS lab
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Automated vehicles are vulnerable to 
cyber attacks

◆ Hackers have demonstrated remote hijack of a Jeep's digital 
systems over the Internet
– Resulted in the car manufacturer recalling over a million units to patch 

identified security vulnerabilities

◆ Automated cars use various sensors
– Ultrasound sensor to determine distance of close objects
– mm-wave radar to map road immediately ahead

◆ These sensors can be jammed.
Researchers from Zhejiang University have demonstrated 
such sensor attacks

◆ Several other demonstrations reported recently
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Attacks on cars
◆ Car hacking is the future and sooner or later you'll be hit

– https://www.theguardian.com/technology/2016/aug/28/car-hacking-
future-self-driving-security

◆ Critical reasons for crashes investigated in the national 
motor vehicle crash causation survey
– https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/812115

◆ Hackers Remotely Kill a Jeep On the Highway- With Me in it”
– https://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/

◆ Feature of daily news …
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Testbed architecture
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System model for automatic vehicles

◆ Plant model for vehicle i given by its kinematic equations

◆ h is the sampling period (100ms)
◆ vi[t] a control input, denoting speed
◆ wi[t] a control input, denoting angular
◆ wix[t], wiy[t], wiq[t] all N(0,2), i.i.d.

◆ Non-linear system

xi[t +1]= xi[t]+ hcos(θi[t])vi[t]+ hcos(θi[t])wix[t]
yi[t +1]= yi[t]+ hsin(θi[t])vi[t]+ hsin(θi[t])wiy[t]
θi[t +1]= θi[t]+ hω i[t]+ hwiθ [t]
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Watermarked system’s performance 
in absence of attack

◆ Watermarked system

◆ Performance with and
without watermarking

◆ Watermarks do not result
in any added penalty on
performance

xi[t +1]= xi[t]+ hcos(θi[t])ui
g (z1

t ,z2
t )+ hcos(θi[t])eiv[t]+ hcos(θi[t])wix[t]

yi[t +1]= yi[t]+ hsin(θi[t])ui
g (z1

t ,z2
t )+ hsin(θi[t])eiv[t]+ hsin(θi[t])wiy[t]

θi[t +1]= θi[t]+ hω i[t]+ heiθ [t]+ hwiθ [t]
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Sensor attack

◆ Sensor attack

◆ This attack passes Test 2, but fails Test 1

z2x[tA ]= x2[tA ]+τ ,  where τ=bias

z2x[t +1]= z2x[t]+ hcos(θ2[t])u2
g (z1

t ,z2
t )+ cos(θ2[t])n[t]

n[t] ~ N (0,σ x
2 )
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Test Statistics

◆ Fails Test 1

◆ Passes
Test 2
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Automatic Generation Control (AGC)
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Instead	of	honestly	reporting	the	real	measurement	𝒚𝒊,	the	
sensors	might	be	manipulated	to	report	𝒛𝒊,	where	𝒛𝒊 ≠ 𝒚𝒊. 
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Automatic Generation Control (AGC)
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Dynamic Watermarking in the 
Context of AGC
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Performance Validation: the Impact 
of Private Injection
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Performance Validation under Replay 
Attack and Destabilization Attack

Replay Attack

Destabilization Attack
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Remarks

◆ CPS is important for society and economy

◆ Lot of future infrastructure may be CPS

◆ Societally and economically important

◆ Security of CPS is a very rapidly emerging area

◆ Critical for safety of future infrastructure

◆ Lots of attacks have already been demonstrated
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Thank you


