W

Repositories in Web, SOA, WOA, and
Enterprise Architectures

Dan Davis
Advanced Camp
June 19, 2007/

Agenda

Goals

Dealing with Complexity

Repository fit with the Web Architecture (as Example)
Key Trends

Web and Enterprise Paradigms

Service Oriented and Web Oriented Architectures
The Fedora Dilemma

Fedora Design Goals as Example

Repository for Integration

Challenges to Address

How can | link all my existing assets,
create new business logic, and tie it all
together in a way that automates my
mission?

... and drive flexibility and efficiency
at the same time?

... despite the highly decentralized Systems
nature of higher education Partners

Partners
Institutions

Institutions
Employees

pEn .

Existing Applications Existing Databases

David Clark’s Internet Hourglass

Simple Interface = IFaP Specs

David Clark's Internet Hourglass

Examples

Identifier
Address
Reference
Name

Format
Document
Message
Container

Protocol
Method
Operation
Process

IP

IP Address

IP Packet

IP Protocol

@ Address

RFC 2822

SMTP
(Simple Mail
Transfer
Protocol)

URI
(Uniform

Resource
Identifier)

HTML
(Hypertext
Markup
Language)

HTTP
(Hypertext
Transfer
Protocol)

URI

SOAP
Envelope

SOAP
Protocol

Hourglass Model of Middle-Out Architecture

Middle-out is an architectural style that enables decentralized
change through the following minimal constraints:

Generic Systems: Underlay a wide range of Complexity
unexpected uses -
Generic

Simple Interface: Minimal specification of
Systems

easily applied identifiers, formats and
protocols

Federated Components: Overlay a wide range
of unexpected implementations

Extensible: Easy and dynamic forward and
backward compatibility

()
o)
7))
o
()
.’
X
LLI

Source: Gartner

Federated
Components

Complexity

Integrated Information Spaces

A

g
D¢ /7

Made up of inter-related, content-neutral digital objects
Separates content, view, and cross-references

Enables typed relations for all content formats

Enables third-party annotation and remote resource access
Persists the content AND the relations (the graph)

Relevant Technology Trends

e Service-oriented architecture

e Semantic Web (Web 3.0)

Implications of Web 2.0 & Web 3.0

e Keythemes
Services (not packaged apps)
Architecture of participation
Remix/transform data sources
Harness collective intelligence

e Emergent Behavior

Upcoming generations of scholars will have a completely different paradigm
and expectations regarding technology

Collaborative classification (e.g., flickr)
Power of collective intelligence (amazon)
Alternative trust models (reputation — ebay; open-source)

A Repository is Not Just Storage

A repository is able to deliver value added services over storage (mediation)

Content can be stored and delivered using multiple interfaces including the Web,
intranet services, Web services, ESB, Internet protocols, ...

Virtually every method of delivering static content is much faster than using a
repository but with less agility

But repositories are able to deliver complex content and integration loosely
coupled services (silo, stovepipe killer for 85% of your data)

Document, disconnected, and event business integration patterns
And the Web is about HTML period, end of sentence
The Web operates largely with a low trust model; What is your trust model?

The Web uses humans (or very adaptable software) to overcome its unreliable
architecture

But the Web is a ubiquitous, infinitely scalable system
Upon which an enormous number of applications are developed

Overlap between Web and Enterprise Paradigms

e Both the Web and Enterprise Content Management are content-driven systems with
overlapping needs

— Content Creation and Capture, Collaboration
— Content Storage differs on time scale optimizations
e Content managers — Creation and Collaboration

e Trusted repositories (archives) — Long term storage, integrity, and
preservation

— Both require information lifecycle management capabilities
— Support for other services and applications
e Both need a well-defined trust and security model

The Repository Dilemma

e Must implement an Enterprise paradigm core because:
— Trust Model
e All repositories have a significant trust requirement
e Low fault tolerance for repository content custodianship
e Specifiable fault tolerance for mediation capabilities

e Create (Ingest), Read, Update, and Delete must be transactional
e Near ACID semantics

— Architectural Fit
e Fit asa componentin a SOA
e Ability to create contextualized, durable data persistence

e Clustering, High-Availability, Transactions, Messaging, Workflow
e Federation

e But must also support the Web paradigm

Characteristics of the Enterprise
Paradigm

e Enables distributed systems solutions:

— For mission critical applications and business processes

— With both technological and organizational complexity

— Needing support for a high trust and security model

— Needing support for transactions (2-phase) and messaging (asynchronicity)
e An enterprise system:

— Requires well-defined integration points & standards to succeed

— Uses enterprise programming practices having a high learning curve

— Should be augmented with a well-defined Enterprise Architecture defining business
semantics, formats, processes, policies, and standards (a.k.a governance)

e Use of a Service-Oriented Architecture is the preferred approach

Notional Software Architecture

Select
Content Mgmt

Components
b\

~
~
~

1

1

1 \\

1 S ~

W:b & Workflow Search
pPp A A

Servers °p op

Digital
Asset Search

Services Services S1

Select
Support
Comp?nents

App
Servers

Domain
Service

Develop
Customer
Specific
Ser\‘/ices

Develop
Customer
Specific Apps

and Workflows

Pl

7
7
7

\
\
\
1

4 7
S'é;t:tn Domain Domain
; App A1 App A2
App pp PP

Connect To
Middleware

A 4

iddleware M1, M2

Domain Legacy Legacy
. System System
Service
S2 Interface Interface
L1 L2

Integrate
Customer
Legacy
Systlems

}
1
1
|
1
}

Search | System | System
Engine Admin Mgmt
Services |Services | Services

Notional Component View

Records
Management
Application
Web Submission
Browser Information SIP
Package Builder

Workflow angfg;t Preservation |Archives System FIPERWEIN
Apps Editor Manager
AN

Content
Services
Layer

Repository Ingest Preservation Search
Services Services Services Services

Storage Database Search
W:E)rkf_low Management Management Engine Svst
ngine Format Services Services Services System ystem
L Translation Admin Services

Services . .
Services Services Layer

SOA Meets WOA

e SOA is:
+ modular
+ distributable
+ shareable

+ loosely coupled

e WOA is:
+ SOA
+ WWW
+ REST

http://serviceorientation.org

What will the average developer use?

SOA and WOA Described

http://blogs.zdnet.com/Hinchcliffe/?p=27

e WOA is a subset of SOA
e SOA:

— more trustworthy
e transactions (2-phase)
® messaging
e asynchronicity

— harder to use

e WOA:

— fairly trustworthy

— much easier to use
— more robust over the Web
— Lightweight ESB?

The REST of WOA: Representational
State Transfer

The Key to a Successful
e The secret to the Web's dramatic interoperability Spaynning Iijayer: u

("mashability") is its narrow waist: a small number of The Hourglass Model
uniform operations.

e Fundamental Principles:
— Universal identification of resources: URI Generic
— Manipulation of resources through /

representations GComplementors
— Self-descriptive messages and uniform

intermediary processing model .
— Hypermedia as the engine of application state SImple IFaPs

Enablers

Federated

Providers

Fedora Design Goals

e Fedora can potentially bridge paradigms

Still maintains Web interfaces
Adds a reliable WOA interface

Can be incorporated into an Enterprise SOA with transactional and
asynchronous messaging functionality plus workflow

e Fedora is potentially the model for the new content server

Store anything

Act as a Web server

Act as a Dissemination Server through WOA
Act as a service in an enterprise SOA

Add new functionality to be conceived
Format, Person, Service, Anything registry

e Store everything needed to run the system

Global and Enterprise Class
Repositories

Repository for Integration

Next Gen. of Global
Class (Web 2.0 &
WOA)

= WOA and basic WS
= Consumer Culture
= Outward-Facing

= Very Loosely
Coupled

= Security: Assume
Everything Is a
Threat

Next Gen. of
Enterprise Class

= Standards-based
(WS-*,JMS,...)

= Normalized
Transactions

= Inward-Facing

= Somewhat Loosely
Coupled

= Security:
"Lockdown"

ittt

Conclusions

e While Web 2.0 is a major implementation trend among emerging Web-based
applications

e We can combine the Web, Web 2.0, WOA, and SOA into an integrated system that
leverages the best qualities of each

* And Web 3.0 uses semantics to help slay complexity (we hope).
Move volatility into data and technology stability into code and content.

Empower stakeholders with the freedom to responsibly use, study, copy and
change the system.

Embrace consumers as an integral part of the application and content development
process.

Embrace Web mashups as important model to create composite enterprise .
applications and opportunistic user applications. Most uptake will be in lightweight
services.

Use SOA to create composite services where high reliability and security is needed.

Strclmg move expected to infrastructure systems due to economy of
scale

