

Acknowledgements

Our grateful thanks to Edward Chin, without whose unstinting support and organisational nous our
bold experiment would never have got off the ground, much less achieved the penetration it has
today.

Intended Audience

This document is aimed at Security and IT practitioners (especially architects) in end-user
organisations who are responsible for implementing an enterprise-wide Identity and Access
Management (IAM) system. It is neither a conceptual treatment of Identity (for which we would
refer the reader to Kim Cameron's excellent work on the Laws of Identity) nor a detailed technical
manual on a particular product. It describes a pragmatic and cost-effective architectural approach
to implementing IAM within an organisation, based on the experience of the authors.

Starting in early 2009, we built an IAM system for a large and established Australian financial
services company, using a rather unconventional approach. While the system has not yet reached
its envisioned target state, we have had significant success so far, and we believe our experience
carries valuable lessons for others considering a similar journey. Identity Management as an
applied practice does not enjoy a rich knowledge base in the public domain, so we are pleased to
contribute our experience herewith. Most of what we describe here is from what we have already
implemented and proven. Some of it refers to planned designs to meet forthcoming requirements,
and some of it reflects (with the benefit of hindsight) the way we wish our solution had been
designed! We have distilled these learnings into an architectural approach we call LIMA1.

Our background and experience are largely with Java-based technologies, so Java shops would
probably be best positioned to benefit from our suggestions, but we are sure these general
principles can be suitably adapted to other technology platforms.

As with any piece of unsolicited advice, the usual caveats apply. No guarantees or warranties are
provided or implied. The reader is expected to apply commonsense and sound design judgement
when developing a solution based on this approach.

Cover Illustration

The male and female faces on the cover are South African photographer Mike Mike's “average”
faces of Sydney, morphed from a hundred photographs of real people in the suburb of Bondi,
Sydney. From the standpoint of identity, they are as non-specific as a fingerprint or barcode are
specific, and we hope that provides you with something philosophical to mull over with your
evening glass of wine.

1 Low-cost/Lightweight/Loosely-coupled Identity Management Architecture

2

© 2011 Ganesh Prasad and Umesh Rajbhandari.
Licensed under the Creative Commons Attribution – No Derivatives Licence

Table of Contents
Introduction..5
The Modern Enterprise – A Reality Check..7

So You Think You're Going to Change the World...7
Who's Your Sugar Daddy? Funding Models That Work...8
First Things First – Objectives of Identity and Access Management...9
The Trouble with Brand-Name Products...10
Misconceptions about Security...13
Auditors, Security and Words of Wisdom..14

Introducing LIMA – A Different Architecture for IAM..15
Loose Coupling – A Firm Foundation for IAM..15
Sneak Preview – What a LIMA Implementation Looks Like...18

Access Management, LIMA-style...22
Access Management Concepts..22
How Single Sign-On Works...26
The Best Things in Life (and in IAM) are Free..28
Central Authentication Service and the CAS Protocol...29
Shibboleth's Federated Identity Model...31
CAS Server Configuration and the “Two-Layer Protocol Architecture”...33
Enhancing Access Management Functionality Incrementally...35

Extension Case Study 1: LAN SSO Integration with SPNEGO..35
Extension Case Study 2: Two-Factor Authentication with SMS One-Time Tokens...................39
Extension Case Study 3: Federated Identity with SAML Tokens...41

Limits to the Two-Layer Protocol Architecture..44
Miscellaneous Topics in Access Management...46

Protecting Non-Web Applications...46
IAM and Cloud Computing..47
What Do We Do with Active Directory?..48
Tailoring Coarse-Grained Access Control..49
Using CAS to Centralise Enforcement of Authorisation Rules..50
Using a Reverse-Proxy Device as a Common Interceptor...51
Access Management for “Portal” Applications...52

Identity Management, LIMA-style..53
Identity Management Concepts..53
Separating Church and State – The Roles of Directory and Database...54
Designing the IAM Directory..55
User UUID – The One Ring to Rule Them All...58
Decoupling Authentication, Coarse-grained and Fine-grained Authorisation Realms..................59
Person UUID – The Ultimate Identity Reference..60
Data Replication and Master Data Management..62
Designing the IAM Database..63
Rest Easy with REST Services...69
Automated User Provisioning – Invocation of REST Services..71
User Administration...73
IAM, Protect Thyself...76
Provisioning Users to Downstream Systems..77
Designing User Provisioning Messages..79

3

Implementing LIMA..83
Transitioning to the Target State..83
The BAU of IAM – A “Cookie-Cutter” Implementation..85

Conclusion..87
Appendix A – Typical Security Requirements from an IAM System...88
Appendix B – Mapping the LIMA Design to the OASIS Model of IAM...90
Appendix C – Special Case Example 1 (Multiplexing User IDs)..91
Appendix D – Special Case Example 2 (Resetting LAN Passwords)..93
Appendix E – A Sample Phased Roll-out Plan...94
About the Authors..95

4

Introduction
When you read the literature or talk to the experts, you may come away with the impression that
IAM (Identity and Access Management)2 is a huge and complex domain.

In our experience, that's just not true. Like SOA (Service-Oriented Architecture), IAM may not be
easy. But it is simple3. Here is essentially the value that Identity and Access Management adds to
your business functions:

Once you understand some simple principles, you can very quickly see what needs to be done to
enable this, and (with some guidance) even how to do it. But ah, actually doing it is the killer! It
takes political will, a battering ram and very thick skin to be able to steer an organisation to a
simpler place, from which point onwards (funnily enough), everything becomes easy as well.

But what happens in practice? Faced with a task that is simple but not easy, organisations generally
do the most expedient thing. They go out and buy a product. Because buying a product is easy.

A couple of years and oodles of dollars later, organisations then wonder why the promised goodies
failed to materialise. The honest ones organise a court-martial and a firing squad. The dishonest
ones (the majority) tend to declare victory regardless. In one egregious case, an organisation we
know spent tens of millions of dollars on IAM without even achieving Single Sign-On capability!
And no heads rolled.

It doesn't have to be that way. This document is meant to cut a lot of time, expense and suffering
out of your IAM journey. It won't give you the political will or the thick skin, of course. That's your
stuff. What it will do is show you how simple IAM really is. The architecture we describe here can
quite literally save you millions of dollars, if you can just get your organisation around to
implementing it.

The following diagram shows you the basic functions of IAM at a glance4, and the subsequent
sections will gradually provide more detail, so as to ease you into this really simple way of
approaching IAM. (Confidentiality agreements with employers past and present prevent us from
sharing specific design details and code from our experience, but principles, patterns and tips are
as free as the air we breathe, and as precious.)

We hope our experience will benefit you in your own journey. Good luck!

2 To be exact, Identity Management includes Access Management, so we will refer to the combined capability as IAM
(Identity and Access Management) throughout this document, although the common industry term seems to be
just Identity Management.

3 By way of analogy, “Don't tell lies” is a simple principle, but not an easy one to follow!
4 Also see Appendix B for a more formal model of Identity and Access Management.

5

Authentication
(Are you who

you say you are?)

Authorisation
(Are you allowed

to do this?)

Your Business
Function

Auditability
(We have proof of
what you just did)

User

Identity and Access Management at a Glance

6

When users attempt to use business applications, the Access Management function controls their access to them by verifying
their identity and access rights against a repository of user data, so only valid and authorised users can gain access to the
applications' functions. The user data repository is maintained through a separate User Administration function and also by
automated “provisioning” from other systems. In turn, other systems may also be automatically provisioned with user data
from this repository. All critical business and security-related actions are recorded (logged) for audit purposes.

This is IAM in a nutshell. Conceptually, it's no more complicated than this, although implementation may present a few
challenges.

Business
Applications

Access Management

User Administration
Application

Other Organisational
Systems

User Data

External User Internal User

User
Provisioning

Authenticate Users,
Check Access Rights

User
Administration,

Reporting

Audit logs

Allowed access
Record

Record Record

All IAM components are in light blue

The Modern Enterprise – A Reality Check

So You Think You're Going to Change the World
If you're reading this document, it's probably because you're an enthusiastic and idealistic change
agent who wants to shake up their organisation with a simpler, faster and cheaper model. That's
great, but we're painfully aware that even our simple and cost-effective approach may not work
for you, because your organisation may just not have the right culture to accept solutions like this.

What makes it really hard to implement an IAM system isn't the technology. You would be half
right if you thought it was data. Yes, cleaning and reorganising huge volumes of legacy data are
moderately hard tasks, but they're not exactly insurmountable. What can stop your IAM initiative
in its tracks is that elusive beast known as organisational culture.

Here are some killer characteristics we have identified. If you think these are insurmountable, stop
reading this paper right now. It will only frustrate you needlessly.

Brand-Name Idolatry: Some organisations will only buy “reputed” products from big brand-name
vendors. We've heard all the arguments about risk that are raised in such organisations, and our
cynical observation is that this is more about political risk to decision-makers (i.e., “Nobody ever
got fired for buying IBM”) than any real risk to the organisation. In our experience, the brand-name
path involves plenty of effort and expense, and a rather low probability of success5, for reasons we
cover in a later section. If this is your organisation (especially if your security auditors put their
faith in products rather than in adherence to principles), you should probably fall in line and
console yourself with the thought that they deserve to waste their money anyway. Cost-effective
solutions take a back seat to political survival at such organisations.

Hostile Fiefdoms: People and systems need to play ball, at least to some extent. If there are areas
in your organisation that require to be brought under the ambit of IAM, but they refuse to change
the way they work and are powerful enough to resist pressure to do so, then you should probably
pick an easier project. Likewise, when powerful persons or groups decide for whatever reason to
oppose your approach, either overtly or in a passive-aggressive manner, you will need powerful
backers of your own, or else failure is virtually guaranteed.

Zombies: Sometimes, past (misguided) attempts at implementing an IAM system create legacy
components that continue to limp on in a twilight zone. You will find it extra hard to convince
people of the superiority of your approach if it means undoing what has been done earlier. That
would be an admission of failure – always a no-no from a political perspective! In addition, some
managements don't seem to understand the term “sunk costs” and may keep throwing good
money after bad. It will be hard to turn this Titanic around once it has set its heart on reaching that
iceberg, so it would be prudent to grab a lifeboat and abandon ship.

If you've made it this far, it probably augurs well for your plans, so let's proceed.

Notice that we have not listed “Funding Model” as a problem for our approach. Why not?

5 Projects that greatly exceed budgets should also be counted as failures.

7

Who's Your Sugar Daddy? Funding Models That Work
It's true that inadequate attention to funding can kill many prospective IAM initiatives. That's
because most organisations have a “first project pays” policy even for the creation of shared
enterprise utilities. Integration of applications with big brand-name Identity Management products
typically involves huge upfront costs (licensing as well as initial effort), and the very first roll-out
tends to be too expensive for any single business project to bear. That's why many IAM initiatives
fail at the starting line. Sometimes, a one-time injection of enterprise funding gets such projects
over the starting line, but IAM needs to cover all major applications to be effective, and from a
logistical angle, this is necessarily a multi-year roll-out exercise. Without a long-term vision and a
phased multi-year budget, subsequent roll-outs tend to go unfunded or place an onerous burden
on business projects. Accordingly, these initiatives then either peter out or drag on at great cost to
the organisation.

The approach we describe here has been specifically designed to work around these funding
constraints, because this is a problem we ourselves faced and had to tackle. It is therefore
lightweight and can be rolled out piecemeal.

Every component is simple, minimal and relatively inexpensive. Using this approach, you can roll
out your IAM system over a multi-year period without incurring the full cost up front. The loosely-
coupled nature of the solution also makes it feasible to implement just the parts each project
needs. There are no artificial dependencies that force the deployment of unnecessary components
at extra cost. Every project can independently justify the business case for funding that part of the
IAM solution that it requires, because the returns are also immediate and incremental6.

We recommend that you plan and organise these incremental roll-outs into a coherent multi-year
roadmap that leads to your desired target state through a series of intermediate stages. Align
these stages with the specific capabilities that business projects are looking for, and piggyback off
those projects for funding7. You may also find that each step on this journey costs less than the
previous one because you leverage off the assets that have already been created and only add
smaller and smaller additional capability. Eventually, rolling out IAM to a new application becomes
a “cookie-cutter” operation8.

Enterprise funding is a bonus with this approach, but not essential. Enterprise funding could be
seen more as a lubricant, paying for tasks and components that the more finicky business projects
may baulk at paying for. Such funding would typically be small and infrequent, and definitely not
comparable to the Big Bang roll-outs of enterprise IAM initiatives. Squirrel away a small slush fund
that can enable such activities :-).

6 The next section lists the major benefits from IAM that can be used to build up a business case.
7 Appendix E provides a sample roadmap that you can tailor to your organisation's context.
8 One of the last sections in this document lists out the typical tasks involved when you get to the “cookie-cutter”

roll-out stage.

8

First Things First – Objectives of Identity and Access Management
Before we get all excited and dive into the details of our solution, it's critically important to
understand why you may need an IAM solution in the first place. Far too many organisations jump
into the product procurement activity without a clear understanding of what they intend to
achieve from implementing IAM. The term “Single Sign-On” is often used synonymously with IAM,
but while this is readily understandable to end-users, it's only a nice-to-have in the larger scheme
of things, and the business case simply doesn't stack up when that is the only planned benefit.
Fortunately, it so happens that IAM is about a lot more than Single Sign-On.

Put simply, the drivers for IAM revolve around just three considerations – Risk & Compliance, Cost
Reduction and Convenience. Typical objectives, in descending order of importance, are:

I Risk & Compliance

1. To secure information assets and restrict their access only to legitimate users through
authentication and authorisation, and to protect against business, legal and reputation risk
arising from inappropriate access

2. To ensure compliance with enterprise security policy across all applications and information
assets (e.g., through password policies, role-based access control, etc.) and meet internal and
external audit requirements

3. To ensure accountability through role-based access, approval processes and audit trails of
relevant user activity (e.g., logins, failed logins, application accesses, etc.)

II Cost Reduction

1. To reduce the effort (i.e., support staff headcount) involved in manual provisioning, de-
provisioning and user management, through automation and self-service, especially with
increasing volumes

2. To eliminate or reduce the cost of errors, delays and inefficiencies arising from manual
processes and other elements of waste (e.g., orphan accounts, unused storage, etc.)

III Convenience

1. To provide a Single Sign-On (SSO) environment to users (no need to remember multiple sets of
authentication credentials)

2. To expedite operations through self-service features (e.g., password reset/forgotten password,
delegated administration, etc.)

That's basically it.

If you want to make out a business case for an IAM system, you will need to provide some variant
of the above list of benefits from the proposed exercise. Hopefully, the approach we outline in the
following pages will also give you enough input to help you quantify the cost of the solution, so
you can see if your business case stands up. We think it will.

9

The Trouble with Brand-Name Products
This is probably one of the most controversial topics in this document, which is why we have
devoted a fair bit of effort to discussing it. We have arrived at our architectural approach after
exhausting the alternatives, so we are very familiar with the pros and cons in this debate.

If your organisation is like most others, then the first thing you would do after determining that
you need an IAM system is to look for a good off-the-shelf product. Many organisations have a
practice of consulting the Gartner Magic QuadrantTM or Forrester WaveTM to identify the top
players in the relevant market segment, then they issue RFPs (Requests for Proposal) to them,
evaluate the responses, create short-lists, organise vendor presentations and Proofs of Concept,
then after conducting commercial due diligence and negotiations, settle on a product and set
about planning an implementation.

When organisations apply this typically “corporate” approach to sourcing an IAM solution, they
usually overlook six 'C's, problems that are common to all their candidate alternatives:

• Conceptual Subtlety
• Centralised Model of Design
• Commoditised Functionality
• Complexity of Features
• Custom Requirements
• Closed Interfaces

Conceptual Subtlety: Human nature has a bias towards the tangible. People expect the heavy
lifting in an IAM ecosystem to be performed by components that they can see and touch, so to
speak. A suggestion that effective integration can be achieved through appropriate data and
protocol design is often unconvincing. Techniques like the use of open protocols, meaning-free and
universal identifiers, master data management principles, idempotent messages, one-way
notifications instead of synchronous service calls, etc., seem somewhat anticlimactic compared to
“a product that does everything”. Yet it is precisely these understated and unobtrusive elements of
design that are the most effective. The judicious use of these techniques reduces the need for
dedicated products, which may be all the more reason that IAM products don't emphasise them!

Centralised Model of Design: IAM products are in a sense victims of their own hype. A prestigious
(and expensive) IAM product is expected to comprehensively manage user data by itself, because
its purchase cannot otherwise be justified. Such an expectation places an onerous burden on any
single application, because by its very nature, an enterprise has many different applications, many
of them standalone, off-the-shelf commercial products with their own user databases, role
definitions and fine-grained access control rules. If a centralised product has to manage all of this
detailed and dispersed data, it will lead to two practical, logistical problems.

One, the IAM user repository will become overpopulated and excessively complicated in structure,
because it has to store the fine-grained roles and access control rules of every application in the
enterprise, along with the mappings of users to all those roles.

10

Two, since it will in most cases be impossible to remove the fine-grained access control logic from
each individual application, some sort of replication, often two-way, will need to be set up to keep
the IAM repository and the individual application databases in sync. What seems at first to be a
simple and elegant model of centralisation is in fact operationally cumbersome and error-prone.

A model where the IAM product only manages coarse-grained roles and access control rules, and
leaves fine-grained ones to each individual application, will work better in practice. However, it will
seem wasteful to perform user management in multiple places, and the value of purchasing an
IAM product will be questioned. “We've paid a lot of money for this product. We should use it to
the maximum,” will be the inevitable argument. It is very hard for commonsense to prevail unless
expectations are managed from the start. The vendors are mostly to blame for raising expectations
in the pre-sales period which their products cannot realistically meet in a diverse ecosystem.

Commoditised Functionality: Quite frankly, the Access Management aspect of IAM is a thoroughly
commoditised capability today. You can source solutions from a competitive market that includes
some very capable Open Source implementations, so you don't have to pay the premiums that the
market-leading vendors charge for it. You may be surprised to hear that many vendor products are
priced on a per-transaction (based on the number of “hits” on a website) or per-user basis. The
vendors make more money as your volumes increase, but the same capability can be sourced
without having to pay such a rent, if you know where to look.

Complexity of Features: Some functions and data structures seem common to most organisations,
but the generic implementations provided by major IAM products tend to be a superset of
required capabilities that is more complex than warranted for any single organisation's needs. One
reputed product we evaluated boasted five different administrator roles, which could confuse most
administrators at any organisation. Sometimes, this complexity of features comes about because a
vendor's product suite is made up of disparate products brought together through various
acquisitions, and the integration is consequently clunky and unnatural.

Custom Requirements: IAM is an area where every organisation has some unique requirements,
and we provide two such examples in Appendices C and D. Not all specialised requirements can be
met by simple configuration settings on a generic product, no matter what the brochures may tell
you. Many of them will require custom development. This has two downsides.

One, your own in-house resources may be unable to make these changes because of their
unfamiliarity with the new product, so you have to rely on vendor resources to make these
changes for you. You will have to pay for the vendor's own consultants to work on your project and
provide ongoing support for those customisations, and this is not something an organisation
always budgets for at the outset.

Two, customised products are difficult to upgrade. When the vendor releases the next version of
the product and your current version goes out of support, you will find it harder and costlier to
migrate because of all the customisations you have made to the current version.

11

Closed Interfaces: The components of many brand-name products are often described as “tightly
integrated”. To a SOA-sensitised architect, the approving tone that usually accompanies this
pejorative is a source of endless surprise and amusement. Tight integration in a product is not a
desirable feature! It is a warning sign. Loose coupling is what we should be after.

What “tight integration” means in practice is that products only play well with others from the
same stable. Many of them have proprietary “hooks” into complementary products even when
open protocols would suffice. We know of one vendor whose interceptor component would only
work in conjunction with their own policy/rules engine, which in turn was dependent on their
specialised directory server. It was impossible to deploy one component without deploying at least
two others, and interoperability with competing products was out of the question. This happens to
a greater or lesser extent with all commercial vendors. It's part of their competitive DNA. Vendor
lock-in also leads to a higher TCO (i.e., ongoing and switching costs, even if not up-front costs).

Conclusion: The combination of high upfront licence and consultancy fees, the tight coupling
between components that complicates roll-outs and rules out incremental funding, the complexity
of the product (impacting its understandability and maintainability), its impractical centralised
model, the necessary customisations you need to make and the possibility of being locked into a
particular vendor, contrasted with the simplicity of data design that can facilitate robust integration
and the availability of a significant subset of IAM capability at commodity prices, should give you
pause.

Well, this paper offers a much more attractive alternative. Our prescribed approach is simple:

1. Use the venerable architectural principle of “High Cohesion, Low Coupling” to identify the
core functional components of an IAM system. Design loosely-coupled interfaces between
them, often based on just data elements. Economy and agility follow from this principle.

2. Use Open Source components to deliver commoditised functionality (we'll name some
good products you can use). There are many organisations that provide commercial
support for these products for a reasonable annual fee, if you don't want to do it yourself.

3. You may find that the functionality gap to the simplest system that meets your
requirements is quite bridgeable. Many of these requirements are necessarily specific to
your organisation and we would be no better at predicting these than the big IAM vendors.
So rather than hack an unfamiliar product to deliver that functionality, build it in the
simplest way possible, using the tools your in-house developers know best. This is cheaper
than using vendor consultants, maintenance is easier, and upgrades are on your own
schedule with no artificial dependencies. We will identify some likely data structures and
functions, and provide some tips on how to build these simply yet adequately.

We estimate that with this approach, you could save about 60%9 of the cost of a comparable
implementation using a brand-name commercial product.

9 Our estimate is based on projections from empirical data that show that a 5-year roll-out of IAM at a medium-sized
organisation (about 10 major applications, 5,000 employees and B2B users , and 100,000 customers) using a brand-
name vendor product would cost about $5 million, while the approach we describe here would cost about $2
million. These are rough estimates, and your mileage will certainly vary, but we have no doubt the savings will be
very significant.

12

Misconceptions about Security
While it's easy to mock organisations that blindly worship at the altar of big brand names, we also
accept that there is some method in that madness. Big brand names are a convenient shorthand
for compliance with the various security principles and standards that need to be followed in such
an obviously risk-sensitive area.

Having said that, let us be under no illusions here. Even if you start with a certifiably secure
product, as soon as you install it in your organisational environment, connect it to a couple of
other systems, change a few configuration settings and customise some of its workflow, all that
certification is moot. What may appear to a lay person (i.e., not a security specialist) as a trivial
change could often introduce security holes into a previously secure system. Therefore, you will
need to have your particular implementation audited and certified afresh. And this is not a one-
time activity either but a periodic requirement, because changes are constantly applied to systems,
and fresh security vulnerabilities could be introduced at any time in the application's lifecycle.
There is no exemption from this procedure for organisations that implement an off-the-shelf
product as opposed to an in-house build. At best, some subsystems that are untouched may be
treated as black boxes. Keep in mind that a brand-name IAM product with a bunch of security
standards certifications does not obviate the need for a security audit of your end-to-end system
design10.

The good news is that we're not necessarily starting off with no guidance or direction. There are
many relevant security principles and standards that need to be followed in IAM, and we will
demonstrate as we go along that the design we describe in this document is not a “cowboy”
solution but an approach that is scrupulous in its adherence to security best practice.

For example, the Access Management side of IAM, which most requires the use of cryptographic
techniques, is something we would not recommend writing in-house (unless your organisation
specialises in writing security products). We recommend off-the-shelf, yet commoditised, products
to perform these functions. The Single Sign-On ticketing server we recommend (CAS) provides
various configuration points to enforce different aspects of security policy, such as token
expiration, authentication throttling, and very high levels of cryptographic strength.

Some typical IAM-specific security requirements are listed in Appendix A, along with suggestions
on how a LIMA-based system can support them.

In short, implementing IAM "on a shoestring" does not mean cutting corners on security. Far from
it. Security is extremely important, as we will emphasise again and again. However, you should not
allow anyone to use security as a bogeyman to scare you into paying much more for IAM than you
really need to.

That's what this document is about.

10 We're reasonably confident about the soundness of the approach we describe here because we had our system
independently audited by an external consultancy. There were code and design reviews as well as penetration
tests. Only after the review concluded with no serious findings did the system go live. You will almost certainly
need to do the same with yours, regardless of whether you buy a vendor stack or “roll your own”.

13

Auditors, Security and Words of Wisdom
The proof of the security pudding is in the audit review, so to speak. However, security auditors will
generally not sit down with you up front and help you design an IAM system, because it could
compromise the independent stance they need to maintain. What they will probably do, though, is
give you some principles to follow. Here are some that we learnt from our internal auditors:

Data Classification

– Levels of sensitivity

An organisation's data may belong to one of several categories, e.g., Public, Internal,
Commercial-in-confidence, Confidential, Secret, etc. This categorisation is key to
understanding the levels of access that should be granted to them, and should be carried
out at the outset for any business system or application. Operations on data should also be
categorised by sensitivity.

Access Management

– Secure-worthiness

In general, it is wasteful to expend effort to secure a resource beyond the value of the
resource itself.

– Privacy

This relates to the confidentiality level of the data being considered. Encryption is one of
the key mechanisms to ensuring privacy, and public key cryptography is a fairly standard
technology used in IAM systems. Most of the security standards in the Identity
Management area (AES, FIPS-140-2, etc.) pertain to cryptography.

– Least Privilege/Need to Know

Access should not be granted beyond the levels justified for a given purpose. The need to
implement this uniformly then creates the justification for role-based access control
mechanisms.

Identity Management

– Segregation of duties

One of the core principles in risk management is aimed at preventing corruption and fraud,
by implementing proper controls. For example, a user cannot approve the request they
have themselves made. This creates the justification for implementing two-step
request/authorise functionality in IAM.

– Auditability

Any action that is deemed to be significant within a system needs to be logged with all
relevant details surrounding it, – who did it and when, what was the purpose, who
authorised it, etc. Audit logs need to be guaranteeably produced whenever such sensitive
actions are performed, and the logs need to be secure against tampering or loss. Audit
functions are a big part of an IAM system.

The Open Web Application Security Project (OWASP) lists a few more principles that you may want
to cover off as well: https://www.owasp.org/index.php/Category:Principle

14

https://www.owasp.org/index.php/Category:Principle

Introducing LIMA11 – A Different Architecture for IAM

Loose Coupling – A Firm Foundation for IAM
We've mentioned before that a major failing of big-name vendor products is the “tight integration”
they feature. While “tight integration” means that components snap together readily, it could also
mean they won't work without another component from the same vendor being present, or that
they won't talk to third party components at all. These “lock-in” and “lock-out” consequences are
the hidden costs of “tight integration”.

The LIMA approach is consciously the opposite. We look for ways to decouple functions and retain
the bare minimum functional dependency between them that is justifiable. Loose coupling makes
it just as easy to “snap components together”, but without the “lock-in” and “lock-out”
disadvantages of proprietary interfaces. We have also learnt that appropriate data design can be a
very effective way to achieve such loose coupling. We don't necessarily need a physical component
to act as a decoupling intermediary.

User Identity

User Identity is the fundamental concept we are dealing with in an IAM system, and this can itself
be treated in a decoupled manner with appropriate thought and design.

Tip 1: Identity references should be meaning-free

A major source of conceptual confusion comes from mistaking system accounts for user identity. A
user may have a login account name of 'jbloggs', but this is just their identity on that localised
system. It must not be conflated with a more global identity for that user. Even the user's login ID
on the SSO server is not their identity, even though this is the identifier that grants them access to
a multitude of systems. Any system-specific identifier is limiting because its scope is restricted.

Having a meaning-free identifier, on the other hand, provides tremendous flexibility. It can be
associated with any set of identity attributes on any number of different systems. Those attributes
and their mapping to this identifier can be modified quite easily to suit changing circumstances
(e.g., a user changing their name or login ID on a system), and control can still be maintained.

So instead of linking attributes and meaning directly to a user's identity, make it meaning-free and
associate it loosely with groups of attributes, including local identifiers on different systems.

Tip 2: A UUID is the most flexible meaning-free identifier

Universally Unique IDs (UUIDs) are extremely large numbers (128 bits long), traditionally expressed
as 36-character hexadecimal strings12. UUIDs that are randomly generated have another very
useful property. They are virtually guaranteed never to conflict, because their range of values is so
large. Therefore, unlike sequence numbers, UUIDs don't have to be generated by a single source
for uniqueness. Multiple sources can simultaneously generate UUIDs, and they would still be
guaranteeably unique. This becomes useful in IAM because more than one “upstream” system
may provision new users. Standardising on a UUID gives you the flexibility to let those systems

11 The “IMA” part of LIMA stands for “Identity Management Architecture” of course, but you can choose to interpret
the “L” as either “Low-cost”, “Lightweight” or “Loosely-coupled”, depending on whether your interest is economy,
agility or architecture for its own sake.

12 A 128-bit integer would be expected to translate to a 32-character hexadecimal string, not 36. It's the convention
though, to express UUIDs with hyphens separating groups of digits. E.g., 0fec5f44-1dc6-4b4e-8dd0-a5404520118d

15

generate a UUID themselves and maintain a mapping from it to any local ID they may define. The
treatment of user identity then becomes uniform from then on. You don't need to rely on a
centralised component to provide unique identifiers to users from different provisioning sources.

Tip 3: Exploit the UUID to aid the audit function

One of the requirements of the audit function is to correlate activities performed on different
systems. The challenge with traditional approaches is that when a message goes from one system
to another, the user IDs on the two systems could be different, and the timestamps would also
invariably be different. This makes it hard to prove that a log record on one system corresponds to
a log record on another system. The User UUID is a good bridging mechanism. If each system logs
the user's local ID and the UUID, it will be far easier to correlate activities across systems that
belong to the same “thread” of execution. This doesn't remove the need for other correlating
attributes like transaction IDs, but it strengthens the association of the activity with the user.

The other major advantage of including the UUID in log records is that the logs can be held on
another system. Perhaps a centralised, enterprise logging service may in time replace the
individual logging mechanisms of various systems, and you would then need to replace the system-
specific identifiers with something global. Including the UUID reference from the start would make
log records readily portable.

Identity versus Access

Identity refers to who someone is. Access refers to what they are allowed to do. While the two
concepts are closely related, they are not the same. Therefore, they should not be coupled
together more tightly than they need to be.

Tip 4: Decouple identity information from access control information

Following from Tip 1, treat the two groups of attributes relating to identity and access
independently, and associate both of them with the user they refer to through a meaning-free
identifier. In practical terms, this means the user repository that deals with authentication should
be independent of the user repository that deals with authorisation. This counter-intuitive insight
is explored in greater detail when we discuss the design of the IAM directory and database.

User Provisioning

The major benefit from automating user provisioning is the saved effort that would otherwise go
towards setting users up on all the systems where they need to be defined. But almost by
definition, this multi-system provisioning scheme needs to deal with multiple schemes for
identifiers. Some older systems only take limited length numeric identifiers (e.g., “7634”), while
others take longer alphanumeric ones (E.g., “jdoe” or “john.doe”). Still others may use email
addresses as identifiers. Some are case-sensitive while others are not. It's not feasible to unify the
schemes used for identifiers because of this diversity. A number of techniques could be used to
manage this complexity, though.

Tip 5: User provisioning must exploit the mapping of UUIDs to local user IDs

Application systems need to set users up with IDs that conform to local schemes. However, it
would be good if those local IDs could be mapped to a global, meaning-free ID and held within
each system (as far as possible). There are a few complications here, as when downstream systems
cannot hold references to UUIDs, and also when it is not possible for a provisioning message to
know in advance what local user ID a user will be assigned on a system. These are explored in
greater detail when we discuss user provisioning.

16

Opportunities for Loose Coupling in IAM

17

User Authentication
Credentials

Coarse-grained User
Access Rules

Coarse-grained User
Attributes

Fine-grained User
Attributes

Fine-grained User
Access Rules

User UUID-based Data Link

User UUID-based Data Link,
Any replication of User data

governed by MDM principles

Pub/Sub notification,
Idempotent messages

User Authentication
Credentials

IAM LDAP Directory Other LDAP Directory

IAM User Database

Application Local User Database

IAM Service Interface

External Consumers
of IAM functions

By breaking all the needless dependencies between
functional components, as this diagram suggests,
tremendous flexibility can be achieved, which translates
into agility (time-to-value) and cost-effectiveness in
development and operations.

Sneak Preview – What a LIMA Implementation Looks Like
We will go into the details in later sections, but for now, this is a quick overview of some of the
components a LIMA implementation may include.

Infrastructure:

• Use commodity infrastructure components – e.g., Intel x86_64 servers, Linux, Tomcat and
stock-standard network devices that can filter accesses, perform network address
translation and load-balance web servers. Higher-end infrastructure will generally cost you
more without delivering any greater benefit.

• Use commodity directory, database and message queuing products. If you don't already
have preferred products in these categories, OpenLDAP, MySQL (or PostgreSQL) and
ActiveMQ are perfectly adequate Open Source offerings. There are some complications
here for organisations that already use Microsoft's Active Directory, but we will cover that
case a bit later.

Data design:

• It may be counter-intuitive, but you must use both an LDAP directory and a relational
database, and split user data between them. Store only authentication credentials in the
directory using the simplest possible tree structure and store all other attributes in the
database13. The database design will be unique and specific to your organisation.

• Use a globally unique “User UUID” to associate multiple system accounts (application-
specific user IDs) across different systems, including the IAM directory and database. This
mapping provides the foundational capability to manage a user's attributes and access
rights across multiple systems using a single, meaning-free identifier.

• Use a single “Person UUID” to associate multiple “User UUIDs”. This provides the
foundation to build sophisticated audit capabilities across multiple incarnations and
engagements of the same physical user over a multi-year horizon.

• Adopt a simple model for user roles and keep IAM's role-based access control tables
relatively coarse-grained (e.g., application-level access rights only). Finer-grained roles
within IAM to control access to application functions are neither necessary nor practical.

Access Management:

• Choose CAS (JA-SIG's Central Authentication Service product) as the heart of the Access
Management solution. This is a ticket-based Single Sign-On system based on the Kerberos
architecture but specially tuned for web applications. (We'll cover non-web applications
later.)

• Shibboleth is a good choice for a federated identity solution, and we will describe its use in
some detail.

• There is a wide choice of interceptors. CAS provides a servlet filter that you can simply
configure and bundle with every web application. Or you can set up an authenticating
reverse proxy that is common to a group of applications. There are other options as well.

13 Our thanks to Stan Levine of Hyro Ltd for this extremely useful suggestion.

18

Identity Management:

• Expose user administration functions as simple REST-based services. Upstream “sources of
truth” for user data such as HR applications and resource management systems should
initiate user provisioning/de-provisioning and the grant and revocation of user access rights
by invoking these services. You can restrict access to these HTTP-based services using IAM's
own Access Management capability.

• Build simple user administration screens using an agile toolkit of your choice (e.g., Grails,
Roo) that can also reuse these REST services.

• The invocation of REST services and the use of user administration screens may require
“user events” to be generated downstream in addition to local updates to the IAM
directory and database.

• The interaction between upstream systems and IAM need be no more complex than
synchronous request/response. However, the interaction between IAM and downstream
systems needs to be asynchronous and loosely-coupled for maximum flexibility. These
aspects are described below.

• Implement user provisioning to applications downstream of IAM using an event notification
mechanism rather than tightly-coupled service calls. To make them future-proof, keep the
“user event” messages generic rather than tailored to each downstream application. Using
persistent messages, durable subscriptions and listeners on all target applications, changes
to user data can be managed across the enterprise in a flexible, reliable and robust manner.
Applications can be added or decommissioned at any point in the system's lifetime without
any downtime.

• Make your provisioning messages idempotent, for a really simple reliability mechanism.
The ability to retry an operation without danger of duplication is very powerful and
liberating.

• Where responses are required from downstream systems, use the same notification
mechanism with separate “user event acknowledgement” messages that only IAM listens
for.

• Errors encountered by downstream systems when processing user events must be handled
in a decoupled way. A separate error reporting mechanism, even a separate error queue, is
preferable. User event notification, acknowledgement responses and errors are not to be
treated as they would be in synchronous request/response systems. This is an important
aspect of loose coupling that keeps the Identity Management solution simple and modular.

These are the basic ingredients of a cost-effective IAM solution, and we will describe and explain
them in detail in the rest of this document.

The following diagrams illustrate the logical and physical components of LIMA.

19

Logical Components of the LIMA Ecosystem

20

“IAM Core”

Single Sign-On
and

Provisioning Hub

Application 1 Application 2 Application N...

Interceptor

Upstream
Provisioning

System(s)

Interceptor Interceptor

Listener Listener Listener
Provisioning
service calls

Authentication
Directory

User
Database

Internet/Intranet

User Access Management

Identity Management

Challenge/assertion
protocols

Administrator

User
events User events User events User events

Redirection

User administration

REST
services

AcksAcks

Error queue (separately monitored)

Errors Errors Errors

User Event Bus (Pub/Sub notification with idempotent messages)

All IAM components are in light blue:

Physical Components of the LIMA Ecosystem

21

Public
Internet

Partner
Extranet

Corporate
Intranet

Application Servers

Load-balanced
Application servers

Load-balanced
Application servers

Replicated Directory
Servers

High-Availability
Database Servers

Broker/Message
Queue Infrastructure

External-facing
systems

Internal-facing
systems

Core Systems

Customers (B2C users) Business Partner's staff (B2B users)
(includes delegated administrators)

Employees/Internal (B2E) users
(includes administrators)

Host databases for
user data, CAS ticket

registry and audit logs

Host CAS and
delegated (B2B)

user administration
modules

Host CAS, REST
services and user

administration
modules

Host business applications with
bundled IAM interceptors and

user event listeners

Host user
authentication
credentials and

password policies

Transports user events

All IAM components
are in light blue:

Access Management, LIMA-style
Let's now go through the detailed conceptual steps that build up to the solution above.

Access Management Concepts
Take Access Management first. Let's say we want to control access to a web application. The
simplest model is when the application itself challenges the user for credentials (e.g., asks for a
user ID and password by popping up a login page) and validates them against its own database
before allowing access to its functions. The application performs both authentication (“Is the user
who they claim to be?”) using the password, and authorisation (“Is the user allowed to access this
information or perform this function?”) using stored access rules. The diagram below illustrates
this.

While this is a simple model, it becomes operationally cumbersome when an organisation has
many such applications. Each application needs to maintain an independent set of credentials,
which means users may need to remember many user IDs and passwords. It becomes logistically
expensive to manage user data consistently across multiple systems, to “provision” new users or to
“de-provision” them when they leave the organisation. Processes are necessarily manual and
error-prone. Security policies are not uniformly applied across all applications. The list goes on.

A simple extension is to have all applications validate user credentials against a common
repository, most frequently an enterprise LDAP directory. Here's what the picture then looks like:

22

Application User
DB

1.
 A

tt
em

pt
ed

 a
cc

es
s

2.
 C

ha
lle

ng
e

3.
 U

se
r c

re
de

nt
ia

ls

4. Validation

Browser

Application A Enterprise
Directory

A1. Attempted access

A2. Challenge

A3. User credentials

A4. Validation Application B

B1. Attempted access

B2. Challenge

B3. User credentials

B4. Validation

This is somewhat better because applications can now delegate the management of user
credentials (and even access rights) to an external component. User credentials are held in and
validated against a single repository (i.e., centralised authentication). When access rights are also
similarly held and validated, this is centralised authorisation. User provisioning and de-provisioning
are a lot simpler because only one datastore needs to be managed. Security policies are more
consistent across applications because they are essentially defined at a single point (although
enforcement is still at each application's discretion).

From an auditor's perspective, although this is progress, it is still not guaranteeably secure because
enforcement of enterprise security policies, however well defined, is still left to individual
applications. Moreover, it still isn't as convenient to users as it could be, because it isn't really
“Single Sign-On”. True, users now only have to remember one set of credentials, but they have to
enter them afresh when accessing each application they use. It's more “Single set of credentials”
than “Single Sign-On”. Can something be done about these points? In other words, can the
enforcement and challenge parts of the process be delegated to an external component as well?

The answer is yes, and modern Access Management systems do exactly this.

Delegating the challenge for user credentials is done as follows. The application needs to redirect
the browser, on initial access, to a centralised component (the SSO server), which performs the
challenge and validation steps before redirecting the browser back (transparently) to the
application. If the user credentials are not valid, the SSO server will essentially block this access.
The application now trusts the identity of the user that is passed in, because this has been vetted
by a trusted system.

This delegation provides true “Single Sign-On”, and we will shortly explain why a second login is
not required for subsequent accesses to other applications. However, enforcement of access
control is still left to the application, and the delegation of this function is typically addressed using
a dedicated security “interceptor”.

23

Application

Enterprise
Directory

1.
 A

tt
em

pt
ed

 a
cc

es
s

4. Challenge

5. User credentials

6. User
validation

SSO server

2.
 R

ed
ire

ct
 to

 S
SO

3. Redirected access

7. Validated redirect

8.
 A

ut
he

nt
ic

at
ed

 a
cc

es
s

Direct access

Redirected access

Browser

The interceptor is a component that sits in front of an application and redirects access to the SSO
server. It may also perform the access control (authorisation) function based on the user identity
and any other user attributes sent back by the SSO server. The application is then completely
agnostic to the presence of the authentication and authorisation functions that are being
performed14. A specialised interceptor component not only relieves the application from having to
implement these aspects of security, it can be treated as part of the enterprise security framework
and is also a more easily auditable control point. This is illustrated in the following diagram.

Note that we need the extra steps 9, 10 and 11 to make this foolproof. The interceptor has to
perform a further level of validation against the SSO engine to ensure that the security token is
genuine. The SSO server needs to confirm the authenticity of the token. It may also send back
extra user attributes along with this confirmation. The interceptor uses these attributes to enforce
access control rules (authorisation). And with this, the access management model is complete.

There are some details that need to be understood about this essentially simple model. There are
two types of security tokens required to make this system work. The first is related to
authentication and the second is an “application access token” that is loosely related to
authorisation. In fact, because authentication is for the user but access relates to the user and an
application, only one authentication token is generated per user but there will be as many access
tokens as there are applications that the user wants to access. A diagram will explain this.

14 In practice, the application will still perform fine-grained authorisation (“i.e., Can the user perform this function?”)
based on the user attributes passed in, but authentication and coarse-grained authorisation (i.e., “Can the user
access this application at all?”) are done by the SSO server and interceptor, respectively.

24

Interceptor

13. Trusted
access

9. Request
token validation

11. Token valid,
user attributes

Application

Enterprise
Directory

1.
 A

tt
em

pt
ed

 a
cc

es
s

4. Challenge

5. User credentials

6. User
validation

SSO Server

2.
 R

ed
ire

ct
 to

 S
SO

3. Redirected access

7. Redirect to application
with security token

8.
 R

ed
ire

ct
ed

 a
cc

es
s

w
ith

 se
cu

rit
y

to
ke

n

Browser

10. Validate
token, retrieve
user attributes

Direct access

Redirected access

Shared enterprise utility (IAM components)

12. Authorisation
check

The authentication token is generated by the SSO server once the user is authenticated. As the
diagram above shows, the SSO server shares this token with the user's browser15. If the browser
presents this token to the SSO server again (within a reasonable time window), the SSO server will
not demand a fresh login and authentication cycle. This is Single Sign-On, of course. We'll see the
details of how this works in the next section, but note that both types of tokens are stored by the
SSO server in a token database, because they will need to be retrieved for validation later.

The application-specific access token for a user and application is generated after authentication.
This second token (or more specifically, the handle or ID of the token) needs to accompany the
redirected request back to the application, and the application's interceptor will need to have it
validated by the SSO server to prevent spoofing. That's why it needs to be saved in the token
database.

As we have seen, the interceptor may also use the user identity and other attributes to perform an
authorisation check before allowing the user in16.

As we will see in our discussion of CAS, a common optimisation is for user attributes retrieved
when authenticating access to the first application, to be stored with the Authentication Token in
the token database. This allows the SSO server to send user attributes to each application's
interceptor without having to retrieve them repeatedly from the user repository.

15 This is usually a session cookie, and we'll see more of this when discussing the CAS product.
16 It is also possible to ensure that the application access token is only generated by the SSO server after it performs

this authorisation itself. So verifying and enforcing authorisation rules may be done either by the SSO server or by
the interceptor, and both are optional in any case, which is why we said this token is only loosely related to
authorisation.

25

Token
Database

SSO serverBrowser
Authentication Token
(shared with browser,

established once per session)

Application Access Token
(generated specifically for each
application, sent to application
as part of redirected access, to

validate access)

Application

Both tokens are stored in
a Token Database for later
reference. User attributes
are often stored with the

Authentication token.

How Single Sign-On Works
To understand how SSO works, let's see what happens when a user accesses a second application
within the Single Sign-On environment after having been successfully authenticated and granted
access to the first one. Follow carefully the flows in the diagram below. It may look complex at first
glance, but follows quite simply from what we have seen earlier.

What is happening here?

When the interceptor redirects the browser to the SSO server, the browser produces the
Authentication Token that the SSO server gave it at the time of its first login (when the browser
tried to access the first application). The SSO server checks the validity of the Authentication Token
against its Token Database. If the token is valid, it means the Single Sign-On session is still active
and the user doesn't have to log in again. So the user will not see a login screen this time. This is
SSO!

What about authorisation? Well, there are a few options on how this can be done. The diagram
above shows how coarse-grained authorisation works in the general case. The SSO server
generates an Application Access Token for this application anyway, stores it in the Token Database
and then redirects the browser back to the application along with the token's “handle”, usually as a
URL parameter. As before, when the application's interceptor receives the token handle, it checks
back with the SSO server to see if this is genuine and still valid. The SSO server retrieves the full
token from its Token Database based on the “handle” and validates it. The Application Access

26

Interceptor

12. Trusted
access

8. Validate Application
Access Token using handle

10. Application Access Token
valid, plus user attributes

Application B

Token
Database

1.
 A

tt
em

pt
ed

 a
cc

es
s

4. Check Validity of
Authentication Token

SSO server

2.
 R

ed
ire

ct
 to

 S
SO

3. Redirected access

6. Redirect with Application
Access Token handle

7.
 A

cc
es

s w
ith

 A
pp

lic
at

io
n

Ac
ce

ss
 To

ke
n

ha
nd

le

Browser
5. Generate and store
Application Access Token

9. Retrieve tokens and user
attributes

Direct access

Redirected access

Shared enterprise utility (IAM components)

11. Authorisation check

Token is also linked to the Authentication Token, which has a bunch of user attributes stored along
with it. The SSO server passes all of this back to the interceptor. If the Application Access token is
certified to be valid, the interceptor may apply authorisation checks based on the user attributes
accompanying the response, and then allow or disallow access to the application as a whole. This
is coarse-grained authorisation. The interceptor may also pass these user attributes through to the
business application for it to do any fine-grained authorisation.

In a later section, we will see how to implement simple extensions to the challenge protocol to
exploit the existing Windows-based LAN session, support multi-factor authentication and also
federated identity systems. We will also explore a more tailored version of coarse-grained
authorisation. However, the model described here is all there is to Access Management, so it is
conceptually quite simple.

We stated earlier that Access Management is also the most commoditised part of IAM, so let's
now look at two of the best (and cheapest) products you can find to implement Access
Management.

27

The Best Things in Life (and in IAM) are Free
If you're looking for a secure and tested product to implement the Ticketing Server-based Single
Sign-On Access Management model that we just described, then CAS (JA-SIG's Central
Authentication Service) is far and away the simplest and least expensive.

Likewise, if you're looking for a federated17 Single Sign-On Access Management solution, you
cannot do better than Shibboleth18.

Both of these are Open Source, which means there are no licence fees, but more importantly, that
there are no hidden hooks or dependencies (our infamous “tight integration”) to lock you into the
product and lock out competing vendors' products. You will find that integration and operational
costs, more than licence costs, are the real arguments in favour of an Open Source solution.

If you have strong Java support skills in your own organisation, then the only ongoing cost of
implementing these products is the cost of the staff dedicated to supporting them. However, most
organisations would also prefer to back up such front-line support with some kind of commercial
support agreement (second- and third-level support). Here again, because of the Open Source
nature of these products, you are very likely to find companies that understand and are willing to
support them for a reasonable annual fee19.

With both CAS and Shibboleth, the SSO ticketing model works roughly analogously:

1. A client application (browser) attempts to access a business application

2. There is an interceptor of some sort that redirects the browser to an SSO server. With
Shibboleth, locating the SSO server is a little more involved because it's not a local system.

3. The SSO server challenges the browser to provide user authentication credentials.

4. Once the browser has submitted these credentials and the SSO server has validated them
in some way, it generates an Authentication Token and an Application Access Token of its
own and redirects the browser back to the business application with the handle of the
Application Access Token. (The Authentication Token is given to the browser to store as a
session cookie and produce each time it returns to the SSO server.)

5. The interceptor again blocks the redirected request and finds the handle of the Application
Access Token. It issues a confirmation query to the SSO server internally (without
redirecting the request through the browser) to check if this is a valid token.

6. If the SSO server confirms the validity of the token, the interceptor allows access to the
application, after optionally checking the accompanying user attributes.

17 We have a rather simple and practical definition of federated identity management as opposed to local identity
management. If you provision user data (including authentication credentials) into repositories, for your own
organisation's use, then all you need is local identity management. But if you have to grant access to users who you
do not yourself provision but rely on other organisations to vouch for, or if other organisations need you to vouch
for users in your repositories who will access their systems, then what you need is a federated identity system. In
both these cases, one organisation trusts another to vouch for users who are not provisioned in the first
organisation's repository.

18 Why not just use Shibboleth for everything, since its capabilities are obviously a superset of CAS's? Shibboleth is a
more complex product than CAS to install, maintain and roll out, so if you don't need federated identity, you're
probably best off using just CAS. Even if federated identity is part of your requirement, we discuss a couple of ways
in which you can keep the consequent complexity restricted to only a part of your infrastructure.

19 An organisation used to traditional commercial software support agreements would very likely be pleasantly
surprised at the support rates they are likely to be quoted for Open Source products.

28

Central Authentication Service and the CAS Protocol
In the 1980s, MIT developed an authentication system for distributed applications that would work
even over an untrusted network. The protocol was called Kerberos, and it has since become the
most successful Single Sign-On mechanism used in the industry.

Yale University then took the Kerberos idea and implemented a version called CAS, tailored to web
applications. While the tokens used in CAS are not kerberized tickets (i.e., they don't use the same
formats that Kerberos does), the types of components and the sequence of interactions between
them is an exact analogue of Kerberos.

CAS is a product that is extremely popular in academia, with most major universities using it to
secure their websites and web applications and provide Single Sign-On to them. However, it has
not been as popular in corporate circles, and the reason for that is probably just corporate
snobbery with regard to academia! There is certainly nothing deficient in the product that either
we or our auditors could find. We believe you will find CAS to be an extremely efficient, secure and
maintainable piece of software.

Here is the Kerberos/CAS authentication model at a glance, using the appropriate terminology:

1. The Requesting Authority (RA), which could be any application but specifically a browser in
the CAS implementation, tries to access an application (the Service Provider or SP). The SP
is nothing but a web application in the CAS model.

2. The Service Provider has no way of authenticating the RA or of trusting any credentials that
the RA may present to it directly. So it redirects the RA to an Identity Provider (IdP) that it
trusts, and will only accept a proof of authentication from that trusted source. With CAS,
this is a simple HTTP redirect to the URL of the IdP, with the URL of the SP appended. The
latter URL is required because the IdP needs to be able to redirect the RA back to the
original SP after successful validation of the RA's credentials.

3. The RA follows the redirect and accesses the IdP. With CAS, since the URL contains the SP's
URL, the IdP knows which application is being accessed.

4. The IdP challenges the RA to provide authentication credentials. In the case of CAS, this is
usually just a login page that employs HTTP Form-based Authentication.

5. The RA submits its credentials to the IdP. With CAS, a user fills in the login page with a user
ID and password and submits the form. The form submission is over HTTPS for security.

29

Requesting
Authority

Service
Provider

Identity
Provider

Ticket
Registry

1 2 7

3
4
5
6

8 9

At this point, the IdP validates the user's credentials against a repository (usually an LDAP
directory). If the credentials are valid20, the IdP generates two tokens – the Authentication
Token is called a “Ticket-Granting Ticket” (TGT), which is the Single Sign-On token.
Production of this token by the RA within a certain session duration means the RA will not
have to log in afresh. The Application Access Token is called a “Service Ticket” (ST) that the
Service Provider requires if it has to allow the RA access to its functions. In CAS, the TGT is a
session cookie while the handle to the ST is a string appended to the application's URL. The
tickets are also stored in a local Ticket Registry for future reference, as will be seen 21. The
TGT is typically stored for a few hours because that defines the length of an SSO session,
while the ST only needs to be stored for a few seconds or a couple of minutes until the SP
asks to verify its validity.

6. The IdP sends both tokens to the RA. With CAS, this is another HTTP redirect. The Ticket-
Granting Ticket is placed in a session cookie that is only shared between the RA and the IdP
and never with any SP. The redirect URL is the SP's URL which was appended to the original
redirect to the IdP in step 2. In addition, CAS appends the ST's handle to the URL as a
standard URL parameter.

7. The RA follows the redirect instruction and accesses the SP again. This time, the ST handle
is part of the URL. The TGT is not sent to the SP because that is a cookie shared only
between the browser and the IdP.

The SP picks up the Service Ticket handle from the URL but has no way to verify its
authenticity.

8. The SP sends the ST handle to the IdP to validate it. In CAS, this is a direct HTTP call (not
redirected through the browser since the RA is not yet trusted at this point).

The IdP uses the ST handle to retrieve the ST from its Ticket Registry and validate it. The ST
does not need to be held in the Ticket Registry for more than a few seconds, because the
verification request from the SP typically comes in almost immediately after the IdP sends
the RA the redirect request containing the ST handle. The ST has a reference to the TGT, so
the IdP also retrieves the TGT with its associated user attributes.

9. The IdP sends back a response to the SP verifying the authenticity of the ST22 along with the
user attributes it has retrieved. At this point, the RA is authenticated. The SP uses these ser
attributes to decide whether to grant access to its functions or not.

The CAS website provides plenty of detailed technical material: http://www.jasig.org/cas

20 If the credentials are not valid, CAS can be configured to simply display the login page again. This can continue until
the directory server locks out the user account.

21 CAS can be extended to retrieve any additional user attributes from a user repository after authentication, and to
store these attributes along with the TGT in a “blob” attribute that is meant for this purpose. This is done just once
at initial login, and these user attributes can thenceforth be retrieved from the Ticket Registry on each subsequent
application access, saving a fresh user repository access each time.

22 The Service Ticket validation message sent back by CAS is accompanied by the user attributes that were stored in
the Ticket Registry as a “blob” attribute of the TGT. This approach saves a separate database access during the
performance-critical login process. We used an XML structure in the response body to transport attributes but any
suitable data format can be used.

30

http://www.jasig.org/cas

Shibboleth's Federated Identity Model
In many ways, Shibboleth's industry street-cred is better than CAS's, which, as we have mentioned,
is unfairly viewed as a product for academic institutions. Three disparate federated identity
schemes (Liberty ID-FF, Shibboleth and the earlier SAML 1.1) fed into the recent SAML2
specification. Many of the spec writers were Shibboleth developers, and this must have played no
small part in ensuring the close match between the SAML2 standard and the Shibboleth
implementation. Open Source has thus managed to gain the inside track on federated identity. Any
commercial product that claims compatibility with the SAML2 spec is by definition interoperable
with Shibboleth. The implication is that interoperability with business partners is not a concern
that should stand in the way of your implementing Shibboleth for your federated identity
management capability.

Here is how Shibboleth works. Keep in mind our earlier description of a ticketing server-based SSO
solution as well as the CAS model, and you will see the main differences.

1. The browser attempts to access the business application protected by an interceptor. This
combination is referred to as the Service Provider (SP).

2. The interceptor may redirect the browser to a service called WAYF (Where Are You From),
which determines the appropriate Identity Provider (IdP) for the user. However, the IdP can
also be resolved using a number of different mechanisms.

3. The browser is then redirected to that Identity Provider. This usually belongs to the user's
“home organisation”, where they have been provisioned and where their authentication
credentials are stored.

4. The Identity Provider challenges the user to provide the appropriate authentication
credentials for that organisation and receives those credentials. This could again use any
number of challenge/assertion protocols.

31

Browser

Service Provider

Interceptor

Application WAYF
Service

Identity Provider

1

8

2 3

5

6

7

4

5. After successful authentication, a set of tokens is generated for this session, and the
browser is redirected back to the Service Provider with a service token.

6. The interceptor requests the Identity Provider to validate the service token and queries for
user attributes.

7. The Identity Provider validates the service token and provides user attribute information as
per its attribute release policy.

8. If the token is valid and the user's attributes also conform to the application's specified
requirements, the interceptor grants access to the application.

As you can see, the federated access management model is virtually identical to the local one in its
general outline, with the only additional feature being the WAYF service that resolves the correct
Identity Provider to use. Within a local context, every interceptor knows the location of the SSO
server, so there is no need for a specialised component to perform this resolution function.

The main complexity in Shibboleth is the requirement to set up a Service Provider capability at
each business application node, which is a lot more onerous than the equivalent simple CAS
interceptor. Therefore, you wouldn't want to use Shibboleth in preference to CAS unless you have a
legitimate requirement for federated identity23.

Let's look at CAS in greater detail now. Although CAS is simple, it can be enhanced with very little
effort to cover a number of different Access Management situations, such as integration with
Windows-based LANs and Two-Factor Authentication for applications requiring greater security.
We will show how this can be done using case studies.

It's only when we start to talk about federated identity that Shibboleth needs to come into the
picture. We will look at federated identity and its unique requirements later using a specific case
study.

A good external reference to Shibboleth:
http://www.jisc.ac.uk/whatwedo/themes/accessmanagement/federation/shibbolethdemo.aspx

23 With the increasing popularity of cloud-based solutions, this could become a common requirement very soon. Not
every cloud-based system requires federated identity, though. We cover this subtle point in a later discussion on
Cloud Computing.

32

http://www.jisc.ac.uk/whatwedo/themes/accessmanagement/federation/shibbolethdemo.aspx

CAS Server Configuration and the “Two-Layer Protocol Architecture”
Here are some tips for setting up CAS as your SSO server.

Tip 1: Cater for high availability of the IAM solution

IAM can become the single point of failure for all your applications unless you take steps to ensure
its availability. You would of course set up your directory in a replicated configuration, and your
database is also likely to be set up in HA (High Availability) mode. But what about the SSO server?

CAS servers are stateless (i.e., they maintain no data in session state), so there is no need to cluster
them. A load-balanced configuration is sufficient to provide high availability. Any standard
hardware-based load-balancer will do nicely, as shown below:

Tip 2: Don't reveal your SSO implementation through your domain naming scheme

As the diagram above suggests, keep your domain names technology-neutral. When an
application's interceptor redirects a browser to CAS, the browser will display the URL of the CAS
server (or more correctly, the URL of the load-balancer) at the top of the SSO login page. As long as
this says something neutral like “sso.myorg.com” and not “cas.myorg.com”, it will not provide any
clues about the actual product being used to implement SSO. It is prudent to avoid revealing
details of your organisation's implementation in case a hacker exploits a known vulnerability in the
product at some future date.

Tip 3: Share repositories between internal- and external-facing CAS servers

While CAS is stateless (i.e., no in-memory state), it does reference data in three datastores, i.e., the
directory, the user database and the ticket registry.

Sharing the directory and database makes sense because you can provision all users to a single
repository and have them access either internal- or external-facing applications, from either within
the corporate LAN or from outside. A suitable directory structure as we will describe later can
support all types of access.

Similarly, sharing the ticket registry can also make sense. In certain use cases, it may be necessary
to grant access to an application that is normally internal-facing to an external user or vice-versa.
Having a shared ticket registry can ensure that SSO spans both internal and external systems with
no additional effort.

33

Load-balancer

CAS SSO Server

CAS SSO Server

Internet
sso1.myorg.com

sso2.myorg.com

sso.myorg.com

Tip 4: Most importantly, try and adopt a “Two-Layer Protocol Architecture” and use CAS to hide
the various challenge/assertion protocols required, from application interceptors

As we will see in the next three sections, we often have a requirement for other
“challenge/assertion” protocols to authenticate users. Rather than complicate the entire Access
Management infrastructure to support these varied protocols, we suggest a simple “Two-Layer
Protocol Architecture” that looks like this:

Layer 1: The CAS protocol should be the sole “internal” protocol seen by application interceptors,
i.e., they will expect CAS service tickets with every initial access from a browser and will redirect
the browser to a CAS server if they don't find one. They will also make a validation request to the
CAS server to verify the authenticity of every service ticket presented to them.

Layer 2: The CAS server (and any associated products) will manage the various “external”
challenge/assertion protocols that may be required.

The Two-Layer Protocol Architecture is illustrated below:

The next three sections will illustrate the utility of the Two-Layer Protocol Architecture when we
extend our Access Management infrastructure to cover three different situations:

1. LAN-based Single Sign-On using SPNEGO

2. Two-Factor Authentication using SMS One-Time Tokens

3. Federated Identity using SAML224

24 There is a potential problem with using the Two-Layer Protocol Architecture for federated identity situations, which
we will cover when we get to that discussion.

34

Layer 2
Various external challenge/assertion protocols as required
(e.g., Form-based, Windows SPNEGO, Two-Factor Authentication, etc.)

Layer 1
Internal SSO Protocol (CAS only)

Application

Interceptor

SSO infrastructure
(CAS + associated

systems)
Internet/Intranet

Client/Browser

Browser
redirection to
and from CAS

CAS Service
ticket validation

Challenge Assertion

Security protocol-agnostic
layer

Enhancing Access Management Functionality Incrementally
Let's see how the LIMA approach, especially the Two-Layer Protocol Architecture for Access
Management, can help you painlessly enhance the functionality of your IAM system to cater to
additional requirements.

Extension Case Study 1: LAN SSO Integration with SPNEGO
A frequent requirement, especially for intranet applications, is to exploit the fact that the user has
already logged into the corporate LAN through their Windows workstation login screen. There
should be no need to log in again to a web-based application. Without LAN integration, even web-
based Single Sign-On implies two logins, which is not ideal.

The solution lies in a Microsoft protocol called SPNEGO (Simple and Protected Negotiation), by
which a web application can transparently query the browser for a token from the Windows
security environment which it can verify against Active Directory. So without the user having to log
in again explicitly, the system can perform an authentication and thereby secure web applications
by leveraging the earlier LAN authentication25.

This is the way SPNEGO would work in the straightforward case:

25 SPNEGO refers to the negotiation protocol. The actual authentication protocol, which is invisible at the level we are
interested in, is either NTLM or Kerberos.

35

Windows Workstation

Interceptor

1.
 A

tt
em

pt
ed

 a
cc

es
s

2.
 S

PN
EG

O
 C

ha
lle

ng
e

5. Token 4. Windows proprietary
protocol to retrieve

token

3. Request for
token

7. Token validation
request

6.
 To

ke
n

Active Directory

Browser Security
subsystem

8. Token validation
response

Application

9. Trusted access

In our experience, the same web application may have to support both internal (LAN) users as well
as external users (B2B and B2C) who do not have a prior Windows LAN login session. Implementing
the model above would mean that an application (or its interceptor) would need to understand
and implement two different protocols (SPNEGO and CAS) to cater to these two sets of users.

As we suggested in the last section, a Two-Layer Protocol Architecture can manage this complexity.
The application interceptors only understand CAS as always. The CAS server itself is capable of
issuing an SPNEGO challenge and validating the token presented by the browser, so SPNEGO
should be delegated to the CAS server, as shown below:

Step 1:

The browser attempts to access the application and the CAS interceptor redirects it to the CAS SSO
server as usual.

The default behaviour of CAS is to try various types of authentication mechanisms in a particular
order (as specified in a configuration file) until one of them successfully authenticates the user. For
example, CAS can try SPNEGO first and if that fails, it can display a login form. Alternatively, the
interceptor can provide a hint of some sort to CAS that this access requires to be authenticated
through SPNEGO rather than a login form. We'll talk about a simple way to do this at the end of
this discussion.

36

Windows Workstation

Interceptor

1.
 A

tt
em

pt
ed

 a
cc

es
s

2.
 R

ed
ire

ct
 to

 C
AS

Active Directory

Browser Security
subsystem

Application

CAS
SSO Server

3. Redirected
access

Step 2:

Now CAS issues the SPNEGO challenge, receives the token from the browser and validates it
against Active Directory.

At this stage, the situation is very similar to the standard CAS protocol at the point where CAS has
just succeeded in authenticating the user against the directory. From here on, the sequence of
events resembles the standard CAS protocol.

37

Windows Workstation

Interceptor

4. Token

3. Windows proprietary
protocol to retrieve

token

2. Request for
token

6. Token
validation
request

5. Token

Active Directory

Browser Security
subsystem

7. Token
validation
response

Application

CAS
SSO Server

1. SPNEGO
challenge

Step 3:

The CAS server generates its two tokens (Ticket-Granting Ticket and Service Ticket) before
redirecting the browser back to the application. The interceptor receives the Service Ticket as part
of the redirected access request and validates it against CAS. CAS retrieves user attributes stored in
the Ticket Registry and sends a response back to the interceptor. If everything checks out, access is
granted.

From the perspective of the interceptor, the only protocol it has to know about is CAS. The domain
names can be set up so that internal (LAN) users and external users access the application through
two slightly different URLs. This difference in URLs is all the hint that CAS requires to use different
challenge protocols for the two types of user.

We recommend the same architectural approach when supporting any other challenge/assertion
protocol. Keep the interceptor logic simple and standard (i.e., based on CAS). Delegate the actual
challenge/validation logic to the centralised server. This way, all complexity is contained within a
single unit (the SSO server) rather than dispersed across the network. Applications and their
interceptors are all standard regardless of the kind of authentication protocol used.

38

Windows Workstation

Interceptor

Active Directory

Browser Security
subsystem

Application

CAS
SSO Server

1. Validated
redirect

2.
 R

ed
ire

ct
ed

 a
cc

es
s

(w
ith

 C
AS

 S
er

vi
ce

 T
ic

ke
t)

3. Service Ticket
validation
request

6. Trusted
access

Ticket
Registry

4.Validation of Service
Ticket and retrieval of
user attributes

5. Validation
response with
user atributes

Extension Case Study 2: Two-Factor Authentication with SMS One-Time Tokens
Sometimes, web applications have the requirement for “Two-Factor Authentication” for extra
security. In other words, the user is expected to produce two independent sets of credentials to be
successfully authenticated. Two-Factor Authentication is also described as “what you have and
what you know”. This is more secure than merely having two passwords, because two passwords
can be stolen as easily as one, but two factors are harder for a malicious user to steal from a
legitimate user than one, because a physical object has to be stolen in addition to a piece of
information.

There are many forms of Two-Factor Authentication26, but what we will illustrate here is a simple
scheme involving a mobile phone (what the user has) and a password (what the user knows).

Remember that CAS is an Open Source product with several customisation/extension points,
making it easy to add the functionality we need. One of these extension points is the login screen.
We will touch on the ability to customise the login screen using stylesheets specific to a partner
organisation later on, but the customisation that we will use here is a change of screen flow27.

CAS uses Spring Web Flow internally, so any Java web developer with a knowledge of Spring Web
Flow should find it easy to make the change we describe below.

The idea behind this implementation of Two-Factor Authentication is that every user of the
protected business application has a mobile phone that they always carry with them. They also
know their Single Sign-On password. The CAS server will prompt them for a user ID and password
as always, but instead of generating tickets and letting them into the application upon successful
authentication, it will also test for their possession of their mobile phone at that point in time, and
grant access only if they can prove it.

For this to work, the user will have to have been provisioned earlier on in the IAM database with
their mobile phone number as an important attribute. As soon as CAS successfully authenticates
the user against the LDAP directory, it retrieves the user's mobile phone number from the
database. It also generates a One-Time Token (OTT), e.g., a random number of (say) 6 digits, stores
the OTT temporarily in the database against the user record along with a timestamp, and sends the
OTT to the user's mobile number through an SMS gateway. It then displays a second screen to the
user prompting them to enter the OTT. (This is the simple Spring Web Flow customisation we
referred to). If the database has the correct mobile number and the user is in possession of the
phone at that time, they will receive the OTT as an SMS message and can then enter it at the
second screen. CAS will then validate the OTT against the value stored in the database (checking
the timestamp to make sure the value isn't stale). If the OTT matches, it means the user has passed
the second factor test. CAS then generates its tickets and proceeds to redirect the user's browser
back to the application as normal.

The diagram on the following page illustrates the flow of logic.

26 CAS already supports authentication through either passwords or X.509 certificates. With a simple code tweak, it
can be made to require both, thereby providing another implementation of Two-factor Authentication.

27 Keep in mind that although the change we describe should not negatively impact security, it will need to be
documented and the new design reviewed by auditors before it can go into production. The auditors must confirm
that the extension implemented does not compromise the basic CAS security protocol in any way, since it is only
meant to add an extra authentication step before tickets are generated.

39

Two-factor Authentication using SMS One-Time Tokens (OTT)

40

Factor 2:
What I have

(mobile phone)

4. Send OTT to
user's mobile

Mobile network SMS Gateway5. SMS
with OTT

6. SMS
with OTT

10. Generate standard
CAS tickets and
redirect browser to
application

CAS SSO IAM
Database

3. Generate and
store One-Time

Token (OTT),
retrieve user's
mobile phone

number

1. Regular user ID/password challenge

8. Enter OTT on second screen

Internet/Intranet

9. Verify OTT
against stored

value

Factor 1:
What I know
(password)

7. Read OTT
from SMS

2. Authenticate user
based on password

Extension Case Study 3: Federated Identity with SAML Tokens
In theory, it is fairly simple to extend our Two-Layer Protocol Architecture to support federated
identity mechanisms as well.

As we mentioned before, the key aspect of federated identity is that the organisation that receives
user credentials does not have to have that user previously provisioned within its user directory.
The information about the user (a set of assertions) is taken on trust because it is asserted by a
trusted partner organisation. For this to happen, we need a way to authenticate the assertions
rather than the user. This is usually done by validating a digitally signed document against the
signing organisation's public key that has previously been received through a trusted channel.

To understand federated identity systems better, we find it useful to refine the standard model
containing a Service Provider (SP) and an Identity Provider (IdP), by identifying a third component
that we call an Identity Consumer (IdC). The identity Consumer is just a role played by the Identity
Provider itself when the Service Provider requests it to validate a service token, but we find it
useful to separate this role out under a separate name, and you will see why shortly.

In the standard CAS model, the CAS SSO server is the one that performs authentication of user
credentials against a directory, checks their access rights to the application28 and generates tickets.
At this point in time, it is the Identity Provider, because it is generating one or more identity
tokens. The interceptor (on behalf of the application) then receives a service ticket that it is
expected to trust. Typically, the interceptor will ask the CAS SSO server to validate the presented
ticket before it grants access to the resources it protects. It's a way of asking, “Do you really know
this guy?” At this point, the CAS SSO server plays the role of the Identity Consumer, because it is
being presented with an identity token that it has to verify.

In the non-federated case, the CAS SSO server is both the Identity Provider and the Identity
Consumer and sits within the corporate network.

28 Of course, as described before, the actual enforcement of access control may be performed by the interceptor
instead of by CAS based on the roles that are (or aren't!) passed in. However, the logical function of validating
authorisation is performed by CAS.

41

My organisation's CAS SSO Server

- Authentication
- Authorisation
- Ticket Generation

- Ticket verification
- Attribute retrieval

Identity Provider Identity Consumer

Interceptor

Application

Identity Assertion
(CAS Service Ticket)

Identity Assertion Check
(CAS Service Ticket)

In the federated case, imagine the two halves of the CAS SSO server being stretched across a
network and implemented on opposite sides of the corporate firewall. Let's say the business
partner organisation implements the Identity Provider function. Then your organisation must
implement the Identity Consumer.

Not all organisations use CAS, so we can hardly expect the Identity Assertion to be a CAS Service
Ticket. The industry standard for identity assertions is a SAML229 token. We therefore need a way
to validate SAML2 tokens. But as we have seen, token validation is not all there is to federated
identity management. Even if we extend CAS to integrate with a SAML2 token validation
component, that's not an architectural fit for the federated case. This is where Shibboleth enters
the picture.

Rather than set up a completely independent infrastructure based on Shibboleth for the federated
identity case, we would like to follow our architectural approach of using the CAS protocol
internally, so that our interceptors do not have to know about Shibboleth. The University of
California at Merced has pretty much the same idea, and they provide a Shibboleth-CAS “gateway”
to keep interceptors innocent of the existence of Shibboleth. They have a more interesting way to
justify the Two-Layer Protocol Architecture. In their eloquent words, it is easier to “CASify”
applications than to “Shibbolize” them.

The following diagram shows a setup combining CAS and Shibboleth to provide federated identity
using the same pattern as for LAN integration with SPNEGO.

29 Security Assertion Markup Language, a dialect of XML.. CAS version 4 is slated to support the SAML2 format even
for its own Service Tickets, but the version we used was CAS 3.3.1, which used a native format.

42

My organisationBusiness Partner
Organisation

- Authentication
- Authorisation
- Ticket Generation

- Ticket verification
- Attribute retrieval

Identity Provider Identity Consumer

Interceptor

Application

Identity Assertion
(SAML token)

Identity Assertion Check
(SAML token)

Partner Extranet

How to Leverage CAS and Shibboleth to provide Federated SSO, yet keep applications and interceptors ignorant of Shibboleth

43

My organisation
Business Partner

Organisation

- Authentication
- Authorisation
- Ticket Generation

Fed. Identity Provider (IdP)

Fed. Identity Consumer

Interceptor

Application

1. Attempted access

10. CAS Service
Ticket validation

2. Redirect to CAS,
which redirects to
Shibboleth

Shibboleth
Service Provider

(Web Proxy)

3. Redirected access to
Shibboleth Service Provider.
(Many steps occur after this: The
SP redirects to the external IdP,
which challenges the user for
credentials, issues the SAML2
token, and redirects the browser
back to the SP.)

Shibboleth
SAML Validator

(Daemon)

“CASShib” Gateway
(Special CAS

implementation)

CAS Ticket
Registry

4. SAML2 token

5. Validation

6. Trusted call to generate CAS
tickets and redirect to app

7. Store generated tickets
for later validation

9. Redirected access
to app with CAS
Service Ticket

Local Identity Provider
and Consumer

11. Trusted access

Note the impact of the two-layer protocol
architecture. The interceptor believes it is
talking only to a CAS server and is entirely
ignorant of the existence of Shibboleth.

CAS is the local Identity Provider and Identity
Consumer.

Shibboleth is the Federated Identity
Consumer.

8. Redirect browser back
to app with CAS Tickets

Browser
(External user)

Limits to the Two-Layer Protocol Architecture
At first glance, we seem to have managed to preserve our model (i.e., the Two-Layer Protocol
Architecture) even when faced with a requirement to support federated identity. The developers
of the CASShib Gateway certainly have the right architectural idea.

However, the implementation of CASShib lacks maturity at the time of writing. The product and
architecture have not been security-certified. More worryingly for its prospects, it has not
gathered the critical mass of development activity required for a successful Open Source project,
and its development has languished. Therefore we don't believe we can avoid the complexity of a
full-fledged Service Provider infrastructure at each business application node where federated
identity is to be supported.

A more realistic implementation of federated identity may look like the diagram below. The same
application when accessed by locally-provisioned users as well as by users not locally provisioned,
would need to be exposed as two separate domain names (URLs) and protected through two
different mechanisms. This model is more complex at each application node, but it has its own
overall symmetry when you gaze at it for a while.

44

Partner Organisation

Application

Federated
Interceptor

(Shibboleth SP)

Local (CAS)
Interceptor

CAS SSO
Server

Any SAML2-
compliant IdP

Browser Browser

Internet/
Intranet

“Federated URL” “Local URL”

1. Attempted
access

1. Attempted
access

3. Challenge/
assertion

3. Challenge/
assertion

5. Token validation/
Attribute retrieval 5. Token validation/

Attribute retrieval

Locally-provisioned
user

User not
provisioned locally

User
repository

User
repository

IAM components
are in light blue

2. & 4.
Redirection

2. & 4.
Redirection

Your
Organisation

Internet/
Extranet

6. Trusted access

A similar architecture in reverse would apply if your organisation's users had to be granted access
to a partner organisation's applications. You would host a Shibboleth IdP backed up by a user
repository, and your partner organisation would host some SAML2-compliant SP to protect their
application.

It is important not to confuse a locally-provisioned user with an internal (B2E) user. A locally-
provisioned user could be a B2E, B2B or B2C user, but you are responsible for provisioning them in
your organisation's user repository. Users who are not provisioned locally are those for whom your
partner organisation is responsible. Your partner organisation will vouch for the identity, roles and
other attributes of these users. You know nothing about them because they are not found in your
user repository. You take all these attributes on trust, because you have the mechanism to verify
that it is indeed your trusted partner organisation that is making those assertions.

That should give you a good picture of federated identity and how Shibboleth works. There's a bit
of work involved in setting it all up, but hopefully you will see that it's conceptually quite simple.
The challenge is to resist the pulls of expediency and to implement a clean design.

45

Your Organisation

Partner Organisation

Application

Any SAML2-
compliant SP

Shibboleth IdP

Browser

Internet/
Extranet

1. Attempted
access

3. Challenge/
assertion

5. Token validation/
Attribute retrieval

Locally-provisioned
user

User
repository

IAM components
are in light blue2. & 4.

Redirection

6. Trusted access

Miscellaneous Topics in Access Management
There are a few items we haven't covered in the course of our study of the LIMA Access
Management model, so let's do so right away.

Protecting Non-Web Applications
While web applications are the bulk of an organisation's modern fleet of applications, there are
important applications built using earlier generations of technologies.

Native Windows-based applications are probably the second-largest group.

Standalone Java applications are probably another significant group.

Mainframe-based “green screen” applications are a third set altogether.

And then there are Unix system accounts.

Let's be realistic. We can't provide a seamless IAM “layer” over all these disparate types of
applications, but we can come pretty close. Here's how.

Windows-native applications can use SPNEGO directly and transparently authenticate against
Active Directory. They'll need to skip coarse-grained authorisation and implement just fine-grained
authorisation. This is no real loss of capability or security vulnerability if the fine-grained access
control logic is implemented right.

Standalone Java applications have a choice of techniques, because some of them are client-server
systems, while others run purely on the client. We recommend building a common security
module for the client side of all Java apps, bundled as a jar file with all of them. The CAS classes
that authenticate against the IAM directory, perform coarse-grained access control checks against
the IAM database and retrieve user attributes from it, should be replicated within a separate
server module to serve Java client applications. The client security module should call this server
module (over HTTP or RMI) to invoke its services for authentication, coarse-grained authorisation
and attribute retrieval. The client-server systems can have a listener on the server side to hook into
the IAM User Event Bus to provision users.

The pure client systems can't do this and you will have to explore other mechanisms, some of
which may have to be manual. It's a bit of work and unlikely to be 100% satisfactory, but then, it's a
different technology and will require effort to harmonise with the rest of the ecosystem. There are
smartcard technologies that will allow better integration, such as Sun's Sun Ray system. It depends
on how far you want to go to acquire seamless integration and how you define “good enough”.

Mainframe “green screen” programs have their own security model (RACF/ACF2). The best that we
believe is possible is to hook up the provisioning on the mainframe with IAM's User Event Bus.
Having template or model users with canned access rules is a good shortcut for user provisioning,
since these can be referenced when creating new users. Access Management will have to be
handled entirely by the mainframe.

For Unix system accounts, consider using a Pluggable Authentication Module (PAM) to interface
with the IAM directory rather than rely on the local “passwd” and “shadow” files to store user
data.

46

IAM and Cloud Computing
When Yoda said, “Clouded our vision was,” he did so ruefully. But today, the vision for any software
system must include the Cloud!

For end-user organisations that rely on Infrastructure as a Service (IaaS) clouds, IAM is something
they would need to set up themselves to protect the applications they upload to it30.

Cloud providers who offer a Platform as a Service (PaaS) need to worry about setting up a
supporting set of shared services on top of a basic IaaS for client applications that are deployed on
their platform, and IAM is a classic shared service that they would need to configure31.

Both groups of people need to understand how IAM plays in the cloud.

One may be tempted to ask, “Is CAS or Shibboleth the better product for the Cloud?”

The question, however, is misguided. The important factor to consider is where users are
provisioned relative to where the applications they access are hosted.

• If the user repository is hosted on the same cloud that hosts the applications those users
access, then this is a case of local identity management, and CAS will do nicely.

• If the user repository and the applications that users access are hosted on different clouds,
then this is a case of federated identity management, and Shibboleth is the better fit.

The following diagram illustrates this rule with the help of a mnemonic.

C: Co-located user repository and applications – use CAS

S: Separately located user repository and applications – use Shibboleth

The term “cloud” should not faze us. These are all distributed systems with the same underlying
principles. And as we said before, don't confuse locally-provisioned users with internal (B2E) users.

30 End-users of Platform as a Service (PaaS) clouds don't have to worry about designing IAM configurations. They
would just use the IAM-equivalent services provided by their vendor. The design of IAM is even less relevant for
end-users of Software as a Service (SaaS) platforms.

31 E.g., Amazon Web Services include IAM, which is leveraged in their Beanstalk PaaS offering.

47

What Do We Do with Active Directory?
We've talked about the IAM directory and we'll shortly show how minimal its data structure really
is. However, most organisations with Windows workstations also have Active Directory to provide a
centralised authentication point for LAN logins, as we saw during our SPNEGO discussion.

Can organisations use AD as their IAM directory? This may seem trivial to do, but there are some
organisational reasons why it may not be a good idea. The more elegant solution, we believe, is to
maintain both directories. This may appear logistically more complex, but doesn't have to be.

AD has a fairly complex data structure, and it holds data on many entities (e.g., workstations and
printers) in addition to users. The temptation when using AD as the IAM directory is to go the
whole hog and do away with the IAM database altogether. That would be a bad idea. The
separation of directory and database, loosely coupled by the User UUID, is one of the biggest
effort-saving innovations we have seen. In fact, we would recommend using as many directories as
required to authenticate different groups of users, but to share a single IAM database for their
authorisation32. Directories should hold authentication credentials and nothing else. As always, the
UUID is the link between repositories that reconciles user data between any directory and the
database. (A trivial format conversion may be required between AD's GUID and IAM's UUID33.)

If other (Windows-native) applications require AD to store some user information that they rely on,
then treat AD as an “Associated System” in IAM that holds replicated user data, and implement a
listener on the User Event Bus to update those user attributes when they change within IAM.

The following diagram summarises our recommendation:

32 The UUID's role in decoupling authentication and authorisation realms is illustrated diagrammatically later on.
33 The curly brace-delimited GUID “{0fec5f441dc64b4e8dd0a5404520118d}” favoured by Microsoft corresponds to

the hyphenated UUID format “0fec5f44-1dc6-4b4e-8dd0-a5404520118d” that is more common in the Unix world.

48

Active Directory
IAM Authentication

Directory

IAM User
Database

Standard
CAS

CAS with
SPNEGO

Windows-
Native apps

User
Event

Listener

U
se

r E
ve

nt
 B

us

(Holds user credentials
for non-LAN users)

(Holds all other
user data)

(Holds user credentials and
some replicated user data

about LAN users)

Authentication Authentication

Authorisation

Authorisation

Authentication, and
perhaps Authorisation

U
se

r a
tt

rib
ut

e
up

da
te

s

U
se

r e
ve

nt
s

UUID GUID/UUID

GUID/UUID

Tailoring Coarse-Grained Access Control
As we have seen, CAS can retrieve user attributes from the IAM database right after the very first
authentication in an SSO session and store them in the Ticket Registry along with the Ticket-
Granting Ticket. This provides a performance optimisation because it then doesn't have to go back
to the IAM database to retrieve them every time a new application is accessed during that SSO
session. The Ticket Registry is always accessed for ticket validation in any case, so an extra
database access is avoided through this mechanism.

You may find though, that a generic set of user attributes is not good enough to enforce
application-specific access control. Even if IAM restricts itself to coarse-grained access control, we
may implement it through a mapping from the user to an application role such as “Application X
User”. We may also need to pass other attributes that are specific to each application, such as local
user IDs on associated systems that that particular application may have to access.

At the cost of a slight performance penalty, we can extend CAS's default functionality to make an
extra database retrieval once ticket validation is over, and add an application-specific set of
attributes to the generic ones that are stored with the TGT.

We now have a means of enforcing coarse-grained access control through IAM. If the interceptor
does not find the specific attribute it is looking for, it means the user is not authorised to access
the application. It can then either display a suitable error message, or it can pass the request
through to the application (with the expected attribute missing), so that the application can
perform a similar check and provide a gracefully degraded level of functionality (e.g., “guest”
access).

49

Interceptor

Browser

Application

CAS
SSO Server1. CAS Service

Ticket
validation

request

6. Trusted
access

IAM
Database

3. Retrieval of
application-specific

user attributes
4. CAS Service Ticket
validation response
+ all user attributes

Ticket
Registry

2. Service Ticket
validation, retrieval
of generic user
attributes from TGT

5. Coarse-grained
authorisation check

Using CAS to Centralise Enforcement of Authorisation Rules
One idea that occurred to us was to ask why CAS could not perform a coarse-grained authorisation
check against the IAM database right after the authentication check against the IAM directory.
Wouldn't that be more guaranteeably secure from an auditor's perspective than just passing back
user attributes and leaving enforcement to each application's interceptor?

In other words, how about a process as shown below, where CAS blocks access if step 7 fails?

Well, even though CAS has historically been an authentication mechanism for distributed systems,
and not really an authorisation system, it is after all an Open Source product, so it can be modified
to perform this function with very little effort.

When we explored this design option however, we encountered some usability concerns that
neutralised its minor edge in auditability. These issues could be fairly universal, so you should think
about them too.

What should CAS do if a user is correctly authenticated but doesn't have access rights to the
application they are trying to access? Should it just display an error page?

Application owners typically want control over the look-and-feel of error pages, especially when
delivering sensitive news like a denial of access. They may want to sugarcoat the pill in different
ways. While it is possible to tailor CAS's functionality to show different error screens for different
applications, we are now straying a fair bit away from enterprise functionality and into application
territory. It's better to let application owners themselves design (and re-design!) their error pages.

Also, some applications prefer to degrade the access level to “guest” privileges when authorisation
fails. For these reasons, we decided to stick to the approach of using the interceptor to enforce
tailored access control. You could of course, implement the above logic if it works for you.

50

Interceptor

13. Trusted
access

10. Request
token validation

12. Token valid,
user attributes

Application

IAM
Directory

1.
 A

tt
em

pt
ed

 a
cc

es
s

4. Challenge

5. User credentials

6. Authentication

SSO Server

2.
 R

ed
ire

ct
 to

 S
SO

3. Redirected access

8. Redirect to application
with security token

9.
 R

ed
ire

ct
ed

 a
cc

es
s

w
ith

 se
cu

rit
y

to
ke

n

Browser

Direct access

Redirected access

Shared enterprise utility (IAM components)

IAM
Database

7. Coarse-grained
Authorisation

Token
Registry

11. Validate
token, retrieve
user attributes

Using a Reverse-Proxy Device as a Common Interceptor
Another approach we considered was to centralise the interception function through a reverse-
proxy that is set up to intercept access to all web applications in the network. This has several
architectural advantages, the most important being its guarantee of protection to all applications
in the network at a single stroke. While software-based proxies face concerns of being potential
performance bottlenecks, there is a class of hardware devices that are quite performant and
effective in this role.

The diagram below illustrates how a reverse proxy device could work as a common interceptor.

However, we faced two problems with this design, a minor one and a major one.

The minor problem was that very few of the devices we surveyed had support for the CAS
protocol. A couple had support for Kerberos, which would also have been acceptable. However,
the programming models were quite limited and could have constrained the development of
customised logic, which was a definite requirement.

This constraint could also have been worked around, but in any case, the major problem that
stymied this approach was cost, specifically the initial outlay required.

A reverse-proxy device of the required capability and acceptable quality costs about $100,000 at
the time of writing. We would have had to deploy this in a redundant, load-balanced configuration
for availability if not scalability. That meant a minimum of two devices in the production
environment. But any medium-to-large organisation has a number of environments in which its
applications are deployed, i.e., development, system testing, user acceptance testing (UAT),
production and disaster recovery (DR). We would have needed one device in the development
environment and two each in the others, bringing the total number of devices to 9. A single device
costing $100,000 really meant a cost outlay of almost a million dollars for the overall solution.

So while the architectural model was quite elegant and the purchase was well worth the price
from an enterprise viewpoint, the usual budgetary constraints ensured that this approach never
got off the ground. You should however consider this model if you can manage the initial outlay.

51

Reverse-proxy device
(Common interceptor)

CAS SSO
Server

IAM
Directory

Authentication

IAM
Database

User attribute
retrieval

Business
Application 1

Business
Application 2

Business
Application 3

Access
redirection

Ticket
validation

Trusted access

Internet/Intranet

Attempted access

Access Management for “Portal” Applications
Many organisations have “portals”, which are gateways that aggregate and provide a common
point of access to a group of business applications. IAM is expected to provide security for portals
as well. It's important to realise that there is a portal function that is different from a specialised
model that is portal technology.

The portal function is a simple one of providing some form of aggregation, so that a user sees all
their required functions in the same place and they can follow links from that starting point to do
those specialised tasks. Many so-called “portals” are nothing but menu pages on websites that
provide simple hyperlinks to other full-fledged web applications.

Portal technology, on the other hand, refers to a programming model defined by two Java
standards, – JSR-168 and JSR-286. Business functions cannot be standalone web applications in
this model. To be able to run inside a portal, they must be written as specialised components
called portlets. Among other peculiar requirements, portlets must emit fragments of HTML instead
of complete web pages and conform to a complex, multi-phase event behaviour defined by these
standards. There is also an adjunct standard called WSRP (Web Services for Remote Portlets) that
allows portlets and portals of different technology families (i.e., Java and .NET) to interoperate.

IAM can protect both types of portals under its SSO regime. The main difference is that a true
portal (i.e., the JSR-168/286 and WSRP kind) is seen as a single application. “Menu page” portals
and the applications they aggregate are seen as independent web applications at the same level.
Here, the portal page is just a convenience for novice users. Advanced users can bookmark and
directly access the business applications behind it. With the “true portal” model, access to an
individual portlet is not even possible, because portlets only run within the portal environment.

Here's what it would look like to protect both types of portals through IAM.

52

Interceptor Interceptor

InterceptorInterceptor

True Portal

Portlet Portlet

Portlet Portlet

WSRP
Portlet

Menu “Portal”

Business
Application A

Business
Application B

CAS Single Sign-On regime

Direct access Direct access

Direct access Direct access

Hyperlinked access
Hyperlinked

access

No direct access
to portlets

Identity Management, LIMA-style
We've seen how Access Management works. Identity Management is the other half of IAM. We
can think of Identity Management as the system that provides Access Management with up-to-
date data to work with. It also performs an audit function by keeping track of all significant user
events.

Doing all of this behind-the-scenes stuff is hard work. It's conceptually simple, but operationally
hard – until you get the processes in place. Then it's both simple and easy. But you need to avoid
the expedient shortcuts that can complicate matters over the long run and end up costing you
more. The key principle is loose coupling, as always.

Identity Management Concepts
The key processes in Identity Management are User Provisioning and Audit. In essence, User
Provisioning is keeping user data up-to-date and consistent on a number of different systems, so
that Access Management and Audit can both work correctly. Audit is recording all relevant user
events and activities. This diagram puts all these concepts into context.

We've already covered many techniques of loose coupling early on. Now is the time to drill down
into the details to see what loose coupling really means in the context of Identity Management.

53

Identity ManagementAccess Management

Authentication Authorisation
User

Provisioning Audit

User Data

Update UseUseUse

Separating Church and State – The Roles of Directory and Database
If you follow no other recommendation in this document but this one, you will still save yourself
hundreds of thousands of dollars of unnecessary effort. It is simply this – split your user data into
an LDAP-based directory and a relational database, with only authentication credentials in the
directory and everything else in the database. There were many occasions when we had to
implement a new feature and thought to ourselves, “Thank goodness we chose to split the user
data!” This is such a fundamental design characteristic of a flexible IAM.

A directory server is a strange beast. It evolved at a time when relational databases were being
tuned for mixed read-update loads and were not fast enough for read-mostly use cases. Directories
emerged to cater to this need. Directory servers were very fast on reads but very slow on updates.
This was OK for situations that required lookups much more frequently than updates.

However, in recent times, relational databases have become extremely fast for any kind of load, so
performance is no longer a differentiator. On the contrary, the tree structure of a directory is
needlessly constraining when you have to model all sorts of complex data relationships. Many data
elements in an IAM have a many-to-many relationship34, and directories simply suck at modelling
anything but one-to-one and one-to-many relationships. For example, if you're trying to put user
role information into a directory, be warned that you're stepping into quicksand. You will be
tearing your hair out very soon. Relational databases are a much better fit for all such information.

You may wonder then why we don't put all our data into a relational database. Is a directory useful
at all any more? The short answer is yes. Directories still do certain things extremely well:

• They are good at storing passwords in a secure encrypted form and performing password
validations internally with a single operation. Implementing this functionality in a generic
relational database will require the application to perform encryption and/or decryption in
memory and perform retrievals and comparisons as separate operations. Subsequent
functions like recording the number of failed attempts, or clearing that count on a
subsequent successful login, will also have to be explicitly coded.

• Directories can enforce enterprise password policies based on simple configuration
settings. Aspects of security policy such as password length, password expiry (i.e., how
frequently must passwords be changed?), password history (e.g., users cannot reuse the
last 15 passwords), invalid logins allowed (i.e., how many times can a user enter incorrect
credentials before the account gets locked?), etc., are very easy to specify in a directory35. A
general purpose database needs special application logic to enforce these aspects of
security policy.

34 Association tables are usually employed to split many-to-many relationships into two one-to-many relationships
back-to-back, but they're still hard to fit into a tree-structured datastore.

35 Some aspects of password policy (e.g., a password must contain at least one uppercase letter, one lowercase letter
and a digit) may still require to be specified at the application level, especially since it is considered more user-
friendly for an application to provide a continuous indication of password acceptability as the user is typing.

54

Designing the IAM Directory
Tip 1: As mentioned before, your directory should contain only user IDs and passwords as core
data, with a couple of other attributes we will cover in a moment. You may organise user records
under different organisation units (e.g., “ou=internal, ou=users”), but the user object itself should
have no other attributes, not even the user's name or type (B2B, B2C, etc.) It may seem unnatural
to have such a minimal directory structure, but resist the temptation to put in anything more, and
you will be thankful for this restraint on many future occasions.

This is a minimal structure for the user node of the directory that will serve you well:

Tip 2: The larger structure that caters for internal and external users may look like this:

55

ou=internal,ou=users,dc=myorg,dc=com
cn=joe.bloggs
userPassword={SHA}qUqP5cyxm6YcTAhz05Hph5gvu9M=
uid=1eda39b6-bb60-4be5-87d5-dd23d26d99da
cn=jane.smith
userPassword={SHA}G4xu7k16Pn2tUH98pTM9S7F5twk=
uid=bf01eb9a-a665-4421-9f7f-562c5e521574...

User UUID to map to
user record in database

ou=internal,ou=users,dc=myorg,dc=com

cn=joe.bloggs
userPassword={SHA}qUqP5cyxm6YcTAhz05Hph5gvu9M=
uid=1eda39b6-bb60-4be5-87d5-dd23d26d99da

...

ou=users,dc=myorg,dc=com

ou=external,ou=users,dc=myorg,dc=com

cn=worker.b.smith
userPassword={SHA}pLEBIPx4rW3eebpwACBGAZkNH4C=
uid=a726dad6-9f06-4023-ad72-f31f8b5921d6
pwdPolicySubEntry=cn=b2b,ou=policies,ou=system,dc=myorg,dc=com

...

cn=15689835
userPassword={SHA}gGHAcjSCgE/YLSNEyJBwZ2NEA6A=
uid=aeec1ee3-8242-4048-a9f1-4291f867ee7f
pwdPolicySubEntry=cn=b2c,ou=policies,ou=system,dc=myorg,dc=com

B2B user with explicit
password policy

B2B2C user with same
password policy as B2C

B2E user (employee) with
implied/default password policy

ou=partnercorp,ou=external,ou=users,dc=myorg,dc=com

cn=76876239
userPassword={SHA}qoVWhr3g6s1xYv72ol/pe/Unols=
uid=8d5f5965-07b6-4ec2-9995-8ff0c990f5f3
pwdPolicySubEntry=cn=b2c,ou=policies,ou=system,dc=myorg,dc=comB2C user (customer)

with explicit
password policy

...

Tip 3: Although you may split B2E and B2C users into separate sub-trees, it may not be possible to
do so with B2B and B2B2C users.

This is because B2B2C users are customers of your business partners, and you may have a common
external-facing portal for both these types of users to log into. In these cases, you won't actually
know which kind of user they are at the moment they hit your portal's login page and enter their
credentials, and so binding to the right sub-tree of the directory for authentication will be a
challenge. It's far better to treat all external users the same as far as placing them in the directory
goes. You can of course tell whether they're B2B or B2B2C after authentication, because the “user
type” attribute is in the database.

Tip 4: The last point implies that we need a way to map the user record in the directory to the
corresponding one in the database. The attribute that provides this mapping is what we call a
“User UUID”. This is a random, meaning-free and universally unique identifier that you can
confidently use without fear of conflict with any previously assigned identifier36. This is what you
will use to map a user record in the directory to the corresponding record in the relational
database (see figure below).

UserPK User UUID First name Last name User type DoB ...

1121 1eda39b6-bb60-4be5-87d5-dd23d26d99da Joe Bloggs B2B 01-01-1970

As part of its Access Management function, CAS will authenticate the user's credentials (cn and
userPassword values) against the directory, then use the uid (User UUID) attribute of the directory
user object to retrieve any other required attributes of the user from the relational database37.

36 A UUID is a 128-bit string, and the chances of two randomly generated UUIDs being the same is about 1 in 1033.
These are such stupendous odds that you can blindly insert records in a table without checking for duplicates. If
someone you know insists that you must check for duplicate UUIDs before inserting new records, they probably
don't understand how big a number 1033 really is, and are probably disappointed that the Universe has “only” 1080

atoms! The authors have learnt not to argue in such situations.
37 The query may require a SQL join to map the User UUID to the primary key used within the relational database,

because tables within the database only reference the local primary key.

56

cn=joe.bloggs
userPassword={SHA}qUqP5cyxm6YcTAhz05Hph5gvu9M=
uid=1eda39b6-bb60-4be5-87d5-dd23d26d99da

User Node (LDAP)

User Table (Relational DB)

Primary key used
internally within the
database

Candidate key used to map
to the same user's records in
other datastores

Tip 5: Try and implement password policies at a per-user level

Your organisation's security policy may specify different rules governing passwords for B2E users,
B2B users and B2C/B2B2C users38. Most directories only support password policies at an “ou” node
level (which then affects user nodes below that root node), but as we have seen above, sometimes
we are forced to place B2B and B2B2C users under the same “ou” sub-tree, in which case this
approach to password policies wouldn't work. It has to be more fine-grained. We need a reference
to the applicable password policy to be stored at the level of the user node, not a parent node.
OpenLDAP is one of the few directory servers that implement this feature.

Tip 6: Have a separate sub-tree for “system” objects

The reference to the password policy node in the user nodes above hints at a separate system sub-
tree. Here is where you may want to store password policies as well as “system accounts” (i.e.,
directory administrator accounts as well as user IDs corresponding to applications rather than to
human users). The structure of this part of the tree may look like this:

38 Internal users may need to change their passwords every month, while customers may be allowed to keep theirs
for 3 months. Internal users may not be allowed to reuse the last 10 passwords, while customers may not have
such a restriction, etc.

57

ou=users,ou=system,dc=myorg,dc=com

cn=ldapadmin
userPassword={SHA}NhqoVWhr3g6s1xYv72olpeUnols=
uid=ef62c8ac-7b77-4590-a1cd-9400bc4d043b

...

ou=system,dc=myorg,dc=com

dc=myorg,dc=com

ou=policies,ou=system,dc=myorg,dc=com

cn=default
...
cn=b2b
...
cn=b2c
...

cn=hrsys
userPassword={SHA}eD2cmW192CF5bDufKRpayrW/isg=
uid=514957b5-eebe-4f8e-ad2c-bb1c87a0e501

LDAP directory administrator

Application account

Default password policy,
applies to internal users (say)

User UUID – The One Ring to Rule Them All
The User UUID as the association between user records in the authentication directory and the
user database is a generic pattern you should try to use when associating user records across any
two systems. The User UUID should be a candidate key in every application or system where user
provisioning is in some way to be managed by the IAM (what we call “Associated Systems”), but it
need not be the primary key in any of them. In fact, we recommend that you always use another
local primary key in each system, in the interests of loose coupling. However, many legacy systems
will be unable to support a local mapping to the User UUID. In such cases, the IAM database will
need to hold that mapping for them.

The diagram below shows both mechanisms of mapping user identity across systems. The UUID-
based mapping is preferred, and the Associated System table is the fallback when this is not
feasible.

58

IAM Directory

IAM
Database

Mainframe Unix system

Email system

Product system

cn=jane.smith
uid=1e444fd2-d8b6-4ee3-8906-2cba2862737f

“JSMI23”
“jsmith”

Email=“jane.smith@org2.com”,
UUID=1e444fd2-d8b6-4ee3-8906-2cba2862737f

Local UID=“jane.smith”,
UUID=1e444fd2-d8b6-4ee3-8906-2cba2862737f

JSMI23
jsmith

MF1
UNX

1124
1124

Local UIDAssocSysUID

User table

Associated System table

1e444fd2-d8b6-4ee3-8906-2cba2862737f1124
PK User UUID

...

...

Legacy systems that
cannot hold a reference

to the User UUID

Decoupling Authentication, Coarse-grained and Fine-grained Authorisation Realms
This diagram shows how the consistent use of a User UUID makes it easy to manage the Authentication and Authorisation requirements of different
(even overlapping) groups of users with absolute flexibility in the choice of products at each level. (Of course, if an associated system cannot hold a
UUID reference, then the IAM database must hold the mapping.)

59

Login User ID Database Primary Key Local User ID

Active Directory IAM Directory

Yet Another Directory

IAM Database

Local Databases in Associated Systems

Authentication

Coarse-grained
Authorisation

Fine-grained
Authorisation

GU
ID

GU
ID

GU
ID

GU
ID

G
U

ID

GU
ID

U
U

ID

U
U

ID

U
U

ID

U
U

ID

U
U

ID

U
U

ID

U
U

ID

U
U

ID

U
U

ID

U
U

ID

U
U

ID

U
U

ID

U
U

ID

U
U

ID

U
U

ID

U
U

ID

U
U

ID

U
U

ID

U
U

ID

U
U

ID

U
U

ID

U
U

ID

U
U

ID

U
U

ID

U
U

ID

U
U

ID

Person UUID – The Ultimate Identity Reference
Associating various system accounts through a common identity at the user level (i.e., a User
UUID) is definitely a convenient handle for user administration across applications and systems at a
point in time.

However, another very common requirement is an audit query that seeks to associate the actions
of a person at various points in time, and this may span multiple engagements of the person under
different user identities. What we need is a simple, unobtrusive method that can be applied at any
time to create this extra level of association.

We suggest creating a “Person UUID” that can be used to map to multiple “User UUID” values, as
shown below:

Person UUID User UUID Updated by Timestamp
02a6d45c-a516-42a5-848f-90070b1a5c1b a55ad891-de39-4e1a-9cb1-c898fc9be9e8 1033 ...
02a6d45c-a516-42a5-848f-90070b1a5c1b 1e444fd2-d8b6-4ee3-8906-2cba2862737f 1033 ...

...

This is a one-to-many mapping that sits “outside” of the rest of the IAM database, so to speak. This
mapping can be created whenever a relationship between two users is discovered through some
out-of-band mechanism (say, through a name or address search).

The Person UUID will have no attributes of its own, because attributes are generally captured at
the User level. You may need some conventions to report on Persons, perhaps using the attributes
of the most recent User associated with the Person.

The following diagram illustrates the use of both the Person UUID and the User UUID as handles to
manage user information.

60

61

Mainframe: JDOE56
Unix System: jdoe
Email system: jane.doe@org1.com
Product system: jane.doe

Mainframe: JSMI23
Unix System: jsmith
Email system: jane.smith@org2.com
Product system: jane.smith

2008:

2010:

a55ad891-de39-4e1a-9cb1-c898fc9be9e8

1e444fd2-d8b6-4ee3-8906-2cba2862737f

02a6d45c-a516-42a5-848f-90070b1a5c1b

Person User System Account

(User UUID)

(User UUID)

(Person UUID)

All these system accounts
refer to the same user

A single “handle” like a User UUID makes
it possible to manage them consistently.

Both these users are the same physical
person. This mapping makes it easier to
associate their actions as one user with
their earlier actions as another user.

Jane Smith née Doe
Jane Doe

Jane Smith

Person, User and System Account – A Flexible Mapping Scheme

Scenario: In 2008, Jane Doe was a B2B user (employee of a business partner) who was granted access to several of our company's systems. By 2010,
she had married and changed her name to Jane Smith. She also changed jobs. She was once again granted access to these same systems as a fresh
B2B user through her new employer.

- As of 2008 (or 2010), how can we manage all of Jane's system accesses together in a convenient and consistent way?
- How can we answer an audit query whether something Jane did in 2010 relates to something she did in 2008 as part of her earlier

engagement?

Data Replication and Master Data Management
One of the common mistakes possible when implementing an IAM system is to duplicate
information across more than one repository, with an excessive reliance on product-based
replication mechanisms to keep them in sync. This is highly error-prone in practice and will be a
perennial source of maintenance headaches.

Our recommendation is to stick to well-understood principles of Master Data Management
(MDM):

• Identify the application or system that is the “source of truth” for each data item. This
system should be the only one that creates, updates or deletes this data item.

• Try and store each data item in only one place. The most natural place to store it is local to
the system that is its “source of truth”.

• Try to avoid replicas of any data item. If possible, let other systems that need access to this
data item query it directly from the source of truth.

• If it is too cumbersome or it creates unnecessary dependencies to force such queries back
to the source of truth, then consider storing a read-only replica of the data item locally with
some strict rules around its management.

• Needless to say, read-only copies of data items must never be updated locally. They can
only be periodically refreshed from the source of truth.

In an ideal world, all systems that store user data will maintain a “User UUID” candidate key into
each user record. This will be used as a reference key whenever a source of truth for any user
attribute wants to propagate updates to that attribute to all other systems that may maintain a
copy of it39. When we talk about User Provisioning as part of the Identity Management capability
of IAM, we will describe how this can be made to work elegantly.

A good (if somewhat complex) discussion on Master Data Management can be found here:
http://www.ibm.com/developerworks/data/library/techarticle/dm-0804oberhofer/index.html

39 For systems that cannot hold a UUID reference, the IAM Associated System table will provide the local user ID as
the key to be used by that associated system for performing these updates.

62

http://www.ibm.com/developerworks/data/library/techarticle/dm-0804oberhofer/index.html

Designing the IAM Database
It may seem a daunting task to design a custom database for your organisation's requirements, but
hopefully, the following tips and suggestions will make the job easier.

Tip 1: Keep core tables minimal and store sets of related attributes in other tables

Normally, the tendency is to store all attributes that have a one-to-one relationship with an entity's
primary key together in one table. We have found that it is more flexible to group such attributes
and store them in separate tables.

For example, the user table should have very few attributes in it. The user's name should be stored
in a separate table with the related attributes of title, first name, last name, preferred name, etc.
Sometimes, it may be required to store details of users for whom such information doesn't make
sense, for example system or admin accounts. Decoupling attributes in this way avoids having to
carry null values when they are meaningless.

Another example is the “application” table. Keep this minimal (just code and description), and hold
other attributes like URLs to be protected in another table.

Tip 2: Make the UUID a candidate key of the User table

Design the IAM database as you would any other application, i.e., the primary key of the user table
is a database-internal field, perhaps an automatically-generated sequence number. This value will
hence be the foreign key in other tables that reference the user. The UUID needs to be a candidate
key in the User table, and that should be the logical entry point from other systems. A simple join
spanning the UUID and the User table's primary key will allow you to access any user attribute, so
this is a trivial indirection. It's needlessly cumbersome to make the UUID the primary key.

Tip 3: Consider application-specific roles rather than global roles

We haven't found much value in defining global (i.e., organisation-wide) roles. What we think are
relevant are global role names or role types. These are standard identifiers such as “Administrator”,
“User” and “Read-Only User”. You can have codes and descriptions for each. Where these are
useful is when they are combined with applications. For example, if the IAM protects an ERP
system and an HR system, then we may have 6 “application roles” in all (ERP Administrator, ERP
User, ERP Read-Only User, HR Administrator, HR User and HR Read-Only User). These are the roles
that will be granted access to applications. Two role types that are useful for IAM in particular are
“Requester” and “Authoriser”. Auditors like to ensure that user management functions are
initiated (requested) by one user and authorised by another.

Tip 4: Build support for coarse-grained access control, not fine-grained

When stakeholders hear that you are building an IAM, there will be pressure on you to incorporate
support for everything they can think of, including the proverbial kitchen sink. One of the really
insidious requirements is fine-grained access control. An example of this is the expectation that
IAM will control the specific screens and buttons that a user can access within an application. But,
looking ahead to the day IAM protects a dozen or more applications, each with its specialised roles
and functions, it is clearly a very complex undertaking to try and hold all those various application-
specific roles and functions and map the allowed accesses within tables of the IAM database. It
gets even worse because applications change their local roles and functions fairly frequently, so
IAM will end up having to stay current with the requirements of every application in the
ecosystem. This is a largely infeasible task, and allowing fine-grained access control to be part of

63

IAM is asking for trouble. Resist such pressure strongly. IAM cannot manage fine-grained function
or data access. The most it can do is protect applications themselves as coarse-grained units from
unauthorised access. It can also pass in user attributes to these applications as part of the initial
access, so applications are free to apply more fine-grained access control logic internally.

Getting the granularity of Role-Based Access Control right is one of the crucial decisions in
determining the success of IAM40.

Tip 5: Understand the difference between “protected applications” and “associated systems”

They're both business applications, but “protected applications” in the IAM context are those that
have an exposed URL protected by IAM. “Associated systems” are those that have users
provisioned in them. So “protected application” is an Access Management concept, while
“associated system” is an Identity Management concept. You need separate tables to hold their
attributes and the different relationships they have with users. Needless to say, some systems may
be both protected applications and associated systems .

Tip 6: Consider maintaining a set of “Associated Roles” for a given role, to automatically cascade
role assignment

Sometimes, one application role implies another one. It may be that an Administrator role within a
B2B application implies a Requester role within the IAM user management application, because
such a user tends to request the creation of other users. Holding such associations in another table
can remove the need to remember these role dependencies by automatically cascading them.
When a user is assigned one application role, the system can derive the other application roles
that must also be assigned, and do the assignment transparently. Of course, revocation of roles
must also follow the same logic.

Given a two-step request/authorise workflow, you will need to think about whether to cascade
role assignment requests and show all the resulting role assignments as pending changes to an
authoriser, or whether to create only the main role assignment request at first and create the
other role assignments once this has been approved by the authoriser.

The Associated Roles functionality can be a labour-saving enhancement to the IAM system that is
funded separately when the workload justifies it.

Tip 7: Consider using “Role Profiles” as a shorthand to assign a set of application roles that usually
go together

Here's an alternative approach to associating roles with each other, so you may only need one or
the other scheme.

A corollary of having application-specific coarse-grained roles is that groups of users tend to
require similar sets of roles. For example, every customer service representative may need to be
granted a “User” role on the corporate intranet (like any other employee), the CRM system and
one or more product systems. This set of roles (i.e., “Intranet User”, “CRM System User”, “Product
System X User”, etc.) is used repeatedly for so many people that it may make sense to group them

40 Some companies have a more sophisticated HR practice that defines an enterprise-wide “Job Family Framework” or
JFF. If an organisation has no more than 50-100 generic roles that are mapped to specific job titles in individual
divisions and departments, then it becomes feasible for IAM to manage this reasonable number of generic roles in
its own database. It may be possible to extend the authorisation logic of IAM to include a rules engine that
considers the user's JFF role and their department to arrive at more refined judgements of access rights to business
functions. In the absence of a JFF, we recommend that IAM stick to coarse-grained roles (I.e,. whether allowed to
access an application or not) and leave the individual applications to enforce finer-grained access control logic.

64

into a “Role Profile” as a sort of shorthand and use that in the User Administration screens to
quickly assign a set of roles to each new user. Under the covers, the association of each user is still
to the different individual roles, so exceptions can be catered for quite easily by dropping or
granting additional application roles to individuals.

As before, the association of application-specific roles to “Role Profiles” would be a separate table
in the IAM database and can be a later enhancement when patterns of access begin to be
established.

Tip 8: Have a table of security questions and another table of per-user answers to two or three of
these security questions.

Security questions like “What is your mother's maiden name?” or “What was the name of your
first pet?” are alternate ways to identify a user and therefore very useful for providing self-service
password reset or forgotten password capability. If a user claims to have forgotten their password,
they should enter their user ID. IAM should retrieve their User UUID from the directory using this
User ID, then retrieve and display their security questions from the database using the User UUID.
If the user is able to answer all the required security questions correctly, a new password should be
generated and sent to the user's email address. This password should also be updated in the
directory and simultaneously marked “expired”, so the user will be forced to reset it on first login.

Tip 9: You will almost certainly need a user activity log

From an audit perspective, many user activities like logins, failed logins, password changes,
application accesses, etc., will need to be logged. A separate table will need to record these events.

As this discussion shows, the IAM database can be built up incrementally like all the other
components of IAM, so it doesn't have to be developed in a “Big Bang” fashion with an immediate
price-tag. The design lends itself to incremental enhancement through layering of functionality,
and this is one of its big advantages when project budgets are tight.

The following diagram provides some hints on the types of entities you may need to model, and
their likely relationships. You may need about 20-25 tables, which isn't overly complex.

65

High-Level Entity-Relationship Diagram for IAM

66

User
General

User Details

Organisation
B2E User
Details

User-
Security Question

Security Question

User
Activity Log

User-
Associated System

Associated System

User-
Application Role Application Role

Protected
Application Generic Role

B2B User
Details

B2C User
Details

(Coarse-grained grant of access –
the presence of a record here

implies the user has access to the
application)

(Systems directly protected
by IAM interceptors)

Application
Web Details

(URLs, stylesheet names,
logos, etc.)

(“User”, “Administrator”,
“Requestor”,

“Authoriser”, etc.)

(Other systems on which
users have to be provisioned)

(Holds mapping to user
IDs on other systems)

(Audit log of logins,
failed logins, application

accesses, etc.)

(“What is your mother's
maiden name?”, etc.)

(User-specific answers to 2 or
3 security questions)

(Details common to
all user types)

(Key mappings
only – Database

PK-UUID)

(The employing
organisation gets a

special flag)

(Employees)
(Business

Partner staff)
(Customers – could

include B2B2C users)

(E.g., “Application
X User”)

1

1

1

1

1

1

11
1

1

1 1

1 1

1

1 1

1

1

N

N

N

N

N

NN
NN

User-
Organisation

N

1

1

N

Legend:

Core
Entity

Attribute
Entity

Entity
Association

(Organisation details, including
logos and stylesheet names)

Associated
Application Role

1

1

N

N (E.g., an Administrator
in Application X is also
to be provisioned as a

Requester in IAM)Role Profile

1 1

N N

(Associates a group of
application roles that are
usually assigned together)

Optional
Association

Tip 9: Use database triggers to record changes to sensitive tables

The user activity log table is an important one from an audit perspective. Other tables, e.g., those
that control access to applications, are also sensitive, and auditors also want IAM to record all
changes to sensitive data (users, roles, application-to-role access rights, etc.) Each such table
should have columns to record the user ID of the user who requested the change, the user ID of
the user who authorised the change, as well as timestamps for each of those actions. Since the
columns holding these request/authorise fields only pertain to the latest change to a record, we
need a way to store the entire history of changes to a table in a reliable way.

Here's a simple mechanism: For every table that needs its change history recorded, create 3
database triggers, one each on the INSERT, UPDATE and DELETE actions. For each table, also create
a history table that has all the same fields as the original, but whose primary key is a meaning-free
sequence number. This table also needs another special field that says what action resulted in a
record being logged. The values of this column would be INS (for inserted record), UPO (for
updated old record), UPN (for updated new record) and DEL (for deleted record).

The advantage of database triggers is that changes to tables are logged even if a user bypasses the
IAM application and directly updates a table.

The following diagram illustrates how a table's change history can be automatically maintained.

67

Automated tracking of changes to tables for audit purposes using history tables and database triggers41

41 Strictly speaking, user records are not usually deleted when a user leaves the organisation, but merely marked deleted (i.e., an update). The example above illustrates the
generic mechanism which may be useful for other tables.

68

02/07/2010: Jane marries, changes her name to Jane Smith, recorded by user 1154

PK UUID Name Updated by Timestamp

1124 … Jane Smith 1154 02/07/10 ...

SeqNo Type Name Updated by Timestamp

287 UPO Jane Doe 1154 02/07/10 ...

288 UPN Jane Smith 1154 02/07/10 ...

UUID

…

PK

1124

…1124

The record in the user table is updated Two records are inserted in the user history table

UPDATE Trigger

08/10/2011: Jane Smith leaves the organisation, recorded by user 1035

PK UUID Name Updated by Timestamp SeqNo Type Name Updated by Timestamp

435 DEL Jane Smith 1035 08/10/11 ...

UUID

…

PK

1124

The record in the user table is deleted A record is inserted in the user history table

DELETE Trigger

10/06/2009: Jane Doe joins the organisation, recorded by user 1022

PK UUID Name Updated by Timestamp

1124 … Jane Doe 1022 10/06/09 ...

SeqNo Type Name Updated by Timestamp

102 INS Jane Doe 1022 10/06/09 ...

UUID

…

PK

1124

A new record is inserted in the user table A record is inserted in the user history table

INSERT Trigger

Same fields as in the original table

Rest Easy with REST Services
For a variety of reasons, it's good to maintain a service interface to the functions of IAM. Services
are the way to hide the gory details of the implementation from client applications. The traditional
approach to building services involves the use of SOAP-based web services. Without getting into
the larger SOAP-versus-REST debate, we find that IAM's user management functionality is
extremely intuitive and easy to build using REST-based services.

For those unfamiliar with REST, think of it as a way to interact with a web application, with just a
few special features. One, although the interaction is over HTTP, the content need not be HTML
rendered by a browser. It could be any data structure sent from one application to another. Two,
the interaction can be defined quite rigorously, so that the “service contract” so beloved of SOA
practitioners is exposed in a recognisable way. Three, although the HTTP protocol appears to be
synchronous and also an “unreliable” protocol , it is possible to model asynchronous and reliable
behaviour using some standard techniques.

The REST style consists of modelling the various aspects of an application domain as “resources”,
and dealing with other systems in terms of “representations” of those resources. Representations
are somewhat akin to the immutable Data Transfer Objects used in distributed computing.

What makes REST simple is the standardisation of its service interface. There are standard verbs
for operations and standard status codes that they return. The resources managed by a server are
also exposed in a fairly standard way, i.e., as URIs. In true service-oriented fashion, the actual
implementation is completely opaque to the outside world. Only the URIs representing resources,
the standard verbs and the standard status codes are ever known by external systems. REST is
another great decoupling technique, effectively minimising and formalising the dependencies
between service consumers and service providers.

The following diagram helps to understand the REST idiom at a glance.

The design of REST-based services is generally a subtle art, because resources need to be
conceptualised in such a way that standard verbs will operate on them in a polymorphic way.
Fortunately, IAM functionality is quite intuitive to start with, so the REST service interfaces for IAM
pretty much design themselves! A low-ceremony documentation will therefore suffice, and there is
no need for the elaborate WSDL and WS-Policy files that are required with SOAP-based services.

The table on the following page illustrates what an IAM REST service interface could look like.

69

GET
/resources

POST

/resources/resource-id
GET

PUT

DELETE

(Resource
collection)

(Individual
resource)

Retrieve list
Append to
collection

Retrieve details

Update
Delete

IAM REST Service Interface at a Glance
This is an indicative example. You can design your interface differently, or with more specialised services.

Function Internal (B2E) Users B2B Users B2C Users42 Response codes

Create a new user, letting IAM generate the User UUID43

(User data in request body)
POST
/b2eusers/

POST
/b2busers/

POST
/b2cusers/

201 Created
202 Accepted44

400 Bad request

Create a new user using User UUID provided by service consumer
(User data in request body)

PUT
/b2eusers/{UUID}

PUT
/b2busers/{UUID}

PUT
/b2cusers/{UUID}

201 Created
202 Accepted,
400 Bad request

Retrieve a user's details GET
/b2eusers/{UUID}

GET
/b2busers/{UUID}

GET
/b2cusers/{UUID}

200 OK
404 Not found

Retrieve a list or subset of users, with an optional qualifier GET
/b2eusers/
?qualification=...

GET
/b2busers/
?qualification=...

GET
/b2cusers/
?qualification=...

200 OK
404 Not found

Update a user's attributes
(Changed attributes in request body)

PUT
(ideally PATCH)
/b2eusers/{UUID}

PUT
(ideally PATCH)
/b2eusers/{UUID}

PUT
(ideally PATCH)
/b2eusers/{UUID}

200 OK
404 Not found
409 Conflict45

Delete, deactivate or mark a user record for archival DELETE
/b2eusers/{UUID}

DELETE
/b2busers/{UUID}

DELETE
/b2cusers/{UUID}

200 OK
404 Not found
410 Gone46

42 B2B2C users may be supported either through separate URIs, or by reusing the B2C URIs if their treatment is likely to be the same.
43 On success, the response includes the HTTP header “Location: /{usertype}/{UUID}”
44 “201 Created” is a synchronous response. “202 Accepted” is an asynchronous acknowledgement, i.e., the request has been successfully received but will be acted on later.
45 A “409 Conflict” response is used when an attempted update would put the resource into an inconsistent state. “500 Internal service error” is also a possibility in all cases.
46 “410 Gone” would specifically signify that the record has already been deleted, and is used instead of “404 Not found” as a confirmation of idempotent behaviour.

70

Automated User Provisioning – Invocation of REST Services
We visualise two groups of “upstream” applications that will invoke the REST services exposed by
IAM, in addition to any business applications that may need direct access to user data.

The first is an HR type system, which is the authoritative source for employee onboarding and
offboarding. User creation and deletion within IAM may need to be triggered by the corresponding
events in this system.

The second is a resource management system that is used to grant and revoke user access to
various business applications. User role assignments in IAM may need to be triggered when the
corresponding access rights are assigned or deassigned in this system.

An important consideration is the two-phase request/authorise model that follows from the
Segregation of Duties principle. You will need to decide whether the request/authorise phases
occur in the upstream system (in which case the invocation to IAM is simply to action the decision),
or whether both the request and the authorisation need to be communicated to IAM and recorded
as two separate events. This has implications on where logging is done, for example.

Model 1 (Request/Authorise steps are performed outside of IAM)

Model 2 (Request/Authorise steps are performed through IAM)

71

Upstream
system

IAM

Log Log

Requestor

Authoriser

1. Request

3. Authorise

5. Action
authorised request

2. Log
request

4. Log
authorisation

6. Log
action

Upstream
system

IAM

Log

Requestor

Authoriser

1. Request

4. Authorise

2. Request

3. Log
request

5. Log authorised
event

5. Authorise
(triggers the

actual operation)

Example – Invocation of REST Services
Here 's an indicative overview of how the IAM REST services may be invoked by other systems. GET interfaces are not shown but implied everywhere.

72

IAM User Administration
Service Implementation

HR
System

POST
/b2eusers/

DELETE
/b2eusers/{UUID}

IAM Delegated User
Administration Module

POST
/b2busers/

PUT
/b2busers/
{UUID}

DELETE
/b2busers/
{UUID}

Resource
Management

SystemPUT
/b2eusers/{UUID}

Customer-facing
Business Application

POST
/b2cusers/

POST
/{usertype}/

PUT
/{usertype}/
{UUID}

DELETE
/{usertype}/
{UUID}

IAM User
Administration Module

Grant and
revocation of roles

Customer self-provisioning

User administration by
your organisation's

administrators

 Delegated user
administration by
business partner
administrators

Employee onboarding
and offboarding

User Administration
It may seem like wheel reinvention to build an application for user administration when so many
vendor IAM products exist to provide this capability out of the box.

Although we started off with similar misgivings, we quickly realised a few things. As we said before,
most vendor products are over-designed and tend to cover a much larger set of functionality than
your organisation is likely to need. They're complex enough to require specialised training, and
may continue to mystify newbies to the system. And ironically, they will invariably miss some
specialised functionality that you do need.

We also found that a user administration module built using standard web technology is an
application of only moderate complexity that is well within the capabilities of an in-house
development team to put together fairly quickly. When you use an agile framework like Grails or
Roo, you simply define domain objects (based on the data model we presented), and the
framework generates the persistence layer and the web interface for you. Customisations to this,
such as the two-phase request/authorise process, will be the only real development required.

All this makes IAM User Administration a good candidate for a bespoke application.

If you set out to build a User Administration module, these are the core functions you will need:

User creation:

You'll need to identify the organisations a user belongs to, the user type (B2E, B2B, B2C, etc.), and
a few other attributes.

Design this for delegated user administration, so it can be used by your own organisation's
administrators as well as by administrators of business partners to manage their own B2B and
B2B2C users. Your own administrators get an organisation dropdown to let them choose the set of
users they want to look at. Your business partners' administrators only get to see data pertaining to
their own organisations. This is easy to implement because IAM protects this application just as it
does other business apps, and the logged-in user's organisation should be one of the user
attributes passed in.

Design user creation as a two-step process. The user who enters all the details of the user is the
“requester”. You'll need another screen for an “authoriser” to see all pending user creation
requests. It's only after the authoriser authorises a user creation request does the user actually get
created and activated. You could create the user record in the IAM database on the creation
request but mark it inactive. When authorised, you make it active and also insert the
corresponding record in the directory. Needless to say, both steps of the user creation process
need to be audit-logged.

Once the user has been created (i.e., on authorisation), send off two separate emails to the user
containing their user ID and their password47. The password should be pre-expired so that the user
has to change it on first login48.

47 Security folk don't like to see both user ID and password in the same email.
48 They may also be encouraged or forced to set two or three security questions (E.g., “What is your mother's maiden

name?”) on their first login to assist with password self-service afterwards. This is an extension to the CAS login
screen.

73

Other user functions:

User search, View/Edit Selected User and Delete/Deactivate User would be other standard user
management functions you will need. Again, design these functions to work in the delegated
administration context as well. Deletion should also follow the two-step request/authorise process
and be audit-logged at each step.

Protected Applications and Associated Systems:

You will need to define a set of protected applications and associated systems, and provide
maintenance screens for these. Protected applications are web applications that need to be
hooked into the Access Management side of IAM through interceptors. Associated systems are
applications that maintain user data and need to be hooked into the Identity Management side of
IAM through user event listeners. A business application could be both a Protected Application and
an Associated System, so you may need to provision it as both.

Self-service screens:

Rather than provide these as part of the User Administration module, provide links to “Forgotten
ID”, “Forgotten Password” and “Reset Security Questions” as part of the CAS login screen.

When clicked, the “Forgotten ID” button takes the user to a screen that captures the user's email
address. Check the email address against the IAM database but provide no indication as to
whether it was found or not, because this could be an important clue to hackers. Respond with a
standard message that the user ID has been sent to the appropriate email address in either case. If
the email address is valid, retrieve the corresponding user ID (the ID used to log into the SSO
environment) and mail it to that address. Log all these events.

When clicked, the “Forgotten Password” button takes the user to a screen that captures their User
ID. It then retrieves their security questions and prompts the user for the answers. If the user
answers correctly, a new password is generated, stored in the directory as a pre-expired password,
then the password is mailed to the user's email address retrieved from the database. The user will
not only have to change their password on first login, they could even be forced to set answers to
new security questions. To prevent hackers from distinguishing valid User IDs from invalid ones,
prompt the user for answers to two random security questions even when the User ID entered is
invalid. Provide a standard error message afterwards, so that invalid User IDs and invalid answers
to security questions are treated the same way.

“Reset Security Questions” can only be clicked if the user has entered both User ID and password.
Authentication proceeds as before, but they are taken to the Security Questions screen where they
may select two or more questions and enter their answers. The Security Questions screen can also
be set up to appear on a user's first login. The entry of this data can be made mandatory or
optional depending on your organisation's security policy. Once they enter this data, they should
be redirected back to the original application they were trying to access.

All of these are important security events, so they must be logged as well.

74

Reset Password and Unlock Account:

While self-service features exist to help users regain access to the system when they forget their
User ID or password, you will also need to provide your administrators the ability to force-reset a
user's password and mail them a new one. The administrators are also the only ones who can
unlock a user's account after it has been locked out because of a number of incorrect login
attempts. It's assumed that they will have already verified the user's bona fides out of band before
unlocking the account.

Fine-grained authorisation:

In the LIMA model, we delegate fine-grained authorisation to the respective business applications
themselves because these rules are best defined close to where they are used. The rate of change
of such detailed information also militates against their management at an enterprise level.

However, we do have some options to make an administrator's life easier.

We can loosely couple the administration screens of IAM and the business applications, so that
when the administrator is finished creating a user on IAM, they can follow a hyperlink to the
business application's own user administration screen and continue the fine-grained provisioning
from there. Since the business application is protected by IAM's SSO regime, and since the
administrator has a suitable role within the application that gives them access to this screen, the
navigation will be seamless, uninterrupted by any login screen or other access challenge. There
may be a change in the look-and-feel of the two applications, but this is cosmetic rather than
functional.

To be truly loosely-coupled, each user must store their own browser bookmarks to the different
user provisioning screens, but to sweeten the pill of having to cross application boundaries to
perform this function, it may be desired to provide hyperlinks to the business applications' user
admin screens from within the IAM user admin screen. Since it's not expected that the URIs of
these admin screens will change frequently, it may not be a bad compromise.

Role Type, Application-Role and User-Application-Role associations:

Arguably the most important part of user administration is the grant and revocation of access
rights to applications. Keeping in mind that IAM only manages coarse-grained authorisation, you
will need screens to define generic enterprise roles, associations between generic roles and
applications to create application-specific roles (coarse-grained, of course), and finally the mapping
of users to these application-specific roles.

All grants and revocations should be two-phase (request/authorise), and they must be logged.

Reports:

Every organisation needs a unique and different set of user reports, so it would be pointless to try
and list them out. We can talk about categories of reports to consider, though.

Some of these would be audit reports, and they could be exception-based. Other reports could be
daily and periodic statistics (e.g., number of new users provisioned, etc.) Yet other reports could be
reconciliation reports, to ensure that user data on various different systems are consistent.

For Java-based web applications, BIRT is an excellent report-generation tool.

75

IAM, Protect Thyself
One of the interesting side-effects of building an IAM system using web technology (especially the
user administration screens and REST services) is that it can be elegantly secured using its own
authentication and authorisation mechanism. No special measures are necessary.

Tip 1: Define a role called “Administrator” under an application called “IAM” in the database, and
associate specific users with this application role

With this, an interceptor sitting in front of the IAM Administration module will work exactly the
same way as interceptors that sit in front of business applications (i.e., by restricting access to this
application to only authorised administrators).

Tip 2: Build security for REST services in the same manner as for a web app

The same principle holds true for the REST services. Since these are HTTP calls, they can also be
intercepted in exactly the same way as requests for web pages. Applications that invoke REST
services will need to use HTTP Basic Authentication and send their system account names and
passwords as part of the service call (over SSL, of course). IAM will authenticate these credentials
against its directory just as it does for human users. There are standard ways to encrypt and store
system account passwords on the respective application servers such that they are not accessible
or usable by developers or other staff who happen to have access to the servers. Consult your
system administrators to implement these measures.

Tip 3: Build support for delegated user administration using exactly the same code base as for
regular user administration

CAS can retrieve any required user attributes from the database and pass them into an application.
The organisation that a user belongs to can be one of these attributes. The IAM administration
module can implement a level of fine-grained access control by modifying the content of user
management screens based on the organisation that the logged-in user belongs to.

If the logged-in user belongs to your own organisation, you can assume that they are your own
administrators and are to be given access to user management functions across your organisation
as well as those of business partners. User management screens can have dropdowns allowing the
user to select an organisation before performing user administration functions. This is standard
user administration.

If the logged-in user belongs to a partner organisation, they should only get to see information
pertaining to their own organisation. They cannot select an organisation from a dropdown because
they are sandboxed within their own organisational context. This is delegated user administration.

Tip 4: Tailor the appearance of the delegated administration module to the partner organisation

The look-and-feel of the administration module can be tailored to conform to the style of the
partner organisation's website, because the logged-in user's organisation is one of the attributes
that is passed into the application. You only need to hold stylesheets on your website with
appropriate naming conventions, and use codes for partner organisations that can be substituted
into a template to get the appropriate stylesheet name.

Using some very simple techniques, you can produce a fairly sophisticated and flexible user
administration module for both internal and external administrators, and also secure it effectively.

76

Provisioning Users to Downstream Systems
The standards body OASIS has a comprehensive model for user provisioning that is shown in
Appendix B. They also specify a markup language to be used for user provisioning, called SPML
(Service Provisioning Markup Language). Although SPML seems very rigorous and promising, the
entire SPML standard is just a shell that defines the schema of the XML message envelope. The
actual message body is left to the discretion of the implementing organisation.

SPML also assumes a request/response model that may be too constraining. We have found value
in treating the semantics of user provisioning as a simple event broadcast rather than as a
request/response interaction between systems. IAM should not have to know what downstream
systems exist. The list of such systems should be maintained in a flexible and dynamic way, because
IAM is rolled out to application after application over a period of time, and this needs to be done
without much incremental effort. A loosely-coupled interaction model would therefore be more
robust and operationally cost-effective in a real-world organisational environment.

Therefore, after a lot of deliberation, we concluded that standards-compliance for its own sake
wasn't worth the cost in complexity and that a simpler scheme would suffice.

Tip 1: Use a Publish/Subscribe model to propagate user events to systems “downstream” of IAM

Multiple systems that maintain local copies of user data need to be notified when there are
changes to user data (adds, updates and deletes). They only need to register with IAM to receive
such notifications. Such a publish/subscribe model is easily implemented through a “bus”
mechanism. IAM publishes user events on this bus and systems subscribing to these events receive
such messages and make updates to their local data accordingly. This is the “User Event Bus”.

Tip 2: The User Event Bus must deliver messages to listeners in a secure and reliable way

The User Event Bus has certain required characteristics:

• Secure subscription model: A system may register an interest in user events by subscribing
to them. Systems must be validated at the time they subscribe using an authentication
scheme that is supported by the queue or broker product used. This prevents unauthorised
systems and applications from tapping into the bus to listen on user provisioning messages.
The bus may additionally encrypt messages to prevent eavesdropping by third parties.

• Persistent messages: User provisioning messages are crucial for downstream systems and
cannot afford to be lost, otherwise the loss of synchronisation will lead to many application
errors or even security breaches. Hence messages must be persisted so that they can be
recovered even if the bus crashes.

• Durable subscriptions: Given a large enough ecosystem, some system or the other is bound
to be offline at any given time. User provisioning messages must eventually be delivered to
all of them even if they were offline at the time the event occurred. The bus must therefore
store messages that should be delivered to a system until it comes back online.

• Guarantee of delivery: When an administrator makes a change to user data, or when an
upstream system makes a REST service call into IAM making such a change, they need an
immediate acknowledgement that the message will eventually be delivered. It is not
feasible to provide a real-time acknowledgement that the message has been acted upon by
all downstream systems because this is not a synchronous process.

77

Tip 3: Manage by exception, and avoid notification of the status of processing if at all possible

Given the guarantee of eventual delivery, it is sufficient for a downstream system to quietly
process the event. Silence signifies successful processing, just like in the Unix environment.

Tip 4: Where notification is unavoidable, use a simple acknowledgement event on the same bus

In rare cases, a user event may require a response. An example is when a new user is to be
provisioned on a mainframe, but IAM cannot authoritatively generate the user ID on the
mainframe. The mainframe has to generate an appropriate user ID, then notify IAM of this user ID
so that IAM can update its “User-Associated System” table. In such cases, the downstream
system's event listener must place an acknowledgement message on the bus, which IAM
subscribes to.

This model is illustrated below:

Tip 5: Separate error-handling out into a different mechanism and don't overload the User Event
Bus with error messages

We have noticed that in most cases, errors in processing user events are because of (transient)
problems in the local system and not because of errors in the actual message. In rare cases, they
may be because of errors in systems upstream of IAM, such as the HR system. It is simplest for
such processing errors to be recorded and reported on locally. The administrators of downstream
systems are usually best placed to understand why processing failed and to fix it.

Handle these errors using a separate mechanism altogether rather than clutter the User Event Bus
with error messages. Define a suitable error message format (Error UUID, User Event UUID, Status
Code, Description, Timestamp, Original Message, etc.)

All listeners should log errors to a separate error queue. An administration interface to this queue
should be able to provide alerts and reports as well as a query view into the contents of the queue.
Sending such error messages back to IAM is usually not of much use, although in practice, the
same users who administer the IAM module may also monitor the error queue. In any case, it's not
a good idea to tightly couple these two roles through the design. Better keep error-handling
logically separate from the user administration function, and grant a user access to both functions
if required.

Tip 6: Don't design the user provisioning model as a distributed transaction

The failure of any one downstream system to process a user event does not mean that the change
must be rolled back on all other systems. Such a requirement not only makes this system overly
complex and tightly-coupled, it is also not warranted.

78

User Event Bus

IAM

Typical
Downstream

System

Exception
Downstream

System

User event User event User eventAck AckNo ack
needed

Designing User Provisioning Messages
The basic idea is to keep things simple. Provisioning-related messages are of the following types:

1. User events (that IAM publishes to associated systems)

2. User event acknowledgements (used only when some data has to be returned from
associated systems to IAM)

3. User event processing errors (to be handled separately)

The actual format of data is up to the preference of an individual organisation. Some prefer XML,
while others may choose JSON. We're agnostic about this level of design detail, because it's more
important to get the higher level right. At this higher level, there are perhaps two major message
data models that can be used to transport user events.

1. Ideal Model (exploiting the User UUID and the property of idempotence):

In the ideal case, all downstream systems understand the User UUID as a candidate key for a user
within their own datastores. This facilitates a very simple model of user event propagation.

On any user event that occurs within IAM (i.e., user creation, user deletion, change of user
attributes, provisioning or de-provisioning on an associated system), a simple snapshot of the
user's profile is all that needs to be broadcast on the User Event Bus. Here's what this looks like:

There are only three top-level elements of this message – the User UUID, a composite “User
Attributes” element comprised of individual elements (e.g., first name, last name), and an optional
repeating element called “Associated System”, which contains the ID of each associated system
where that user's data is to be held, along with the local User ID of the user within that system.

The semantics of such a message are simple.

If an associated system is referenced in the message through its ID, then the requirement is for
that system to “create or update” the user and to record whichever user attributes are required by
that system. This message can even be used to modify the Local User ID on a system.

79

User UUID

User Attributes

First Name

Last Name

Telephone No

Email Address

Associated System*

Associated System ID

Local User ID

Zero or more occurrences

...

If an associated system is not referenced anywhere in the message, then the requirement is for
that system to “delete or ignore” the user. If the user is currently held in the system, the record is
to be deleted (or marked deleted). If the user is not currently held in the system, the message is to
be ignored.

The idempotence property ensures that repeated receipt of a message by a system will have no
additional effect after the first one.

This is therefore the simplest user provisioning model, and the one we recommend.

The only complication here is with systems that need to generate their own Local User ID and
cannot accept one supplied by IAM. In such cases, IAM would simply leave the Local User ID field
blank. The associated system will generate this ID, then send back a User Event Acknowledgement
message with the mapping of this ID to the User UUID, so that IAM can update its “User-
Associated System” table.

The User Event Acknowledgement message may look like this:

Needless to say, if there is even one system that has to generate its own Local User IDs, IAM would
have to be configured to listen on User Event Acknowledgement messages. As always, messages
are assumed to be persistent and IAM's subscription to these messages is assumed to be durable,
so no messages will be lost even in the event of a bus crash or IAM being temporarily offline.

80

User UUID

Associated System ID

Local User ID

2. Fallback Model (when the User UUID is not universally supported):

If the User UUID cannot be relied upon to be a candidate key across systems, then the user
provisioning data design expectedly becomes less elegant and more complex. The Local User ID
now has to be relied on as the only identifying “key” on systems that do not support the User
UUID.

We find that instead of sending out a single, standard representation of current user state, we will
need to send four different messages based on the nature of the user event. These are:

1. Create User

2. Delete User

3. Update User Attributes

4. Change Local User ID

The “Create User” message would look like this:

This looks just like the standard snapshot message of the ideal model, but with the “Create User”
verb explicitly specified. The implicit “create or update” and “delete or ignore” semantics are no
longer possible to assume, because the Local User ID is now the only key for some systems, and it
may not be possible for IAM to specify it in case it has to be locally generated.

– When the user already exists and is to be provisioned on an additional associated system, only
that associated system's data need be included in the “Associated System” attribute. Existing
systems need not be referenced in the message. Only that system will then create the user record,
and other systems will ignore it.

– When the associated system needs to generate the Local User ID, the Local User ID field may
need to carry a special value such as “LOCALLY_GENERATED”.

81

User UUID

User Attributes

First Name

Last Name

Telephone No

Email Address

Associated System*

Associated System ID

Local User ID

Zero or more occurrences

...

“Create User”

The “Delete User” message would look like this:

– The Local User ID attribute need only be provided for those systems that don't support the User
UUID. Those that do can delete (or mark deleted) a user based on the User UUID.

– When using this message to revoke user provisioning from just a few associated systems, the
Associated System section should only contain their IDs. Other associated systems that are not
referenced will ignore this message.

The “Update User Attributes” message would resemble the “Create User” message but with the
verb “Update User Attributes” instead. Only those systems that don't support the User UUID need
to be referenced in the Associated Systems section. Every associated system would be able to
update user attributes based on the candidate key it understands (User UUID or Local User ID).

A special “Change Local User ID” message is now required because for some systems, there is only
one candidate key, so updating the value of that key is no longer straightforward. This is what this
message would look like:

As you can see, life gets more complicated when the User UUID is not universally supported. It may
be worth maintaining a “User UUID-to-Local User ID” mapping behind an associated system's User
Event Listener, so that it appears as if the associated system itself understands the User UUID.

82

User UUID

Associated System*

Associated System ID

Local User ID

Zero or more occurrences
“Delete User”

User UUID

Associated System*

Associated System ID

Old Local User ID

Zero or more occurrences

New Local User ID

“Change Local User ID”

IAM User Event Bus
User Event

Listener
Associated

System

User UUID -to-
Local User ID

Only
Local User ID

UUID references only

Implementing LIMA
The previous sections have given you an idea of what the design of a loosely-coupled IAM system
could look like. However, there are also many logistical aspects to consider when rolling out such a
system, because implementation comes with its own pitfalls. Finally, even when the IAM system is
in “steady state” with no new functionality enhancements required, there are still some standard
tasks to be performed every time a new application is to be brought within its ambit. This section
looks at all these aspects.

Transitioning to the Target State
You need to plan the development of IAM functionality based on the requirements of business
projects, and take advantage of project budgets to fund their development. Appendix E shows how
you could align the IAM roadmap to the requirements of business projects to achieve viability
through incremental funding.

There are some specific items you need to pay attention to during this process.

Harmonising data

You will start with data held redundantly in multiple systems, with inconsistencies and errors
galore. You plan to end with a reasonably consistent set of user data, with one or more directories
holding authentication credentials, and a user database holding other user attributes. Upstream
sources of truth will populate and refresh these repositories. Downstream replicas of data will be
refreshed through IAM-generated user events.

Partway along this journey, you will have problems harmonising the data you have painstakingly
marshalled into the IAM repositories with data that is outside its ambit. There will be people and
systems furiously updating what should rightly be read-only replicas. Upstream sources of truth
will have no way to communicate changes reliably and consistently to the IAM system. You will
need to create mitigating controls, manual processes and temporary applications and scripts to
maintain a semblance of sanity.

As you progress towards the IAM vision, remember that the UUID is your friend. If you can push
the UUID vision and gain buy-in from owners of systems, you can start seeding those independent
repositories with the data hooks that you can later use to “reel in” those disparate user records.
The good news is that lots of people can appreciate the value of the UUID when it is explained to
them, and many systems, databases and directories can support a UUID field.

Managing SSO realms

It may happen that you have rolled IAM out to an intranet application but have not exploited
SPNEGO or Active Directory integration, perhaps because there were too many changes being
introduced and you didn't want to overly complicate things at that stage. The user provisioning is
therefore applied to the IAM directory (not Active Directory) and database. Next, you plan to roll
out IAM to another intranet application, this time exploiting SPNEGO and Active Directory. Let's
say there's an overlap between the two sets of users, so there are some users who will need to
access both these applications. Let's also say that the LAN user ID for these users is different from
their SSO user ID as stored in the IAM directory49. How will you proceed?

49 E.g., LAN user IDs could be 6-character strings, while SSO User IDs could have a “firstname.lastname” scheme.

83

Well, it depends on whether you want these users to have Single Sign-On across these two
applications right away, or whether you would like to keep the logins separate for a while and
provide Single Sign-On only after you “harmonise” the User ID scheme.

If you want these users to get Single Sign-On rightaway, then you must ensure that this intersecting
group of users has the same UUID within AD and in the IAM directory. Since both applications use
CAS, the first application they hit will result in a Ticket-Granting Ticket being generated and stored
in a browser cookie against the CAS server's domain name. The TGT will also be stored in the ticket
registry with that user's UUID in the BLOB attribute. When the user then tries to access the second
application (no matter in which order the two are accessed), the browser will present the TGT to
CAS and CAS will dutifully refrain from challenging them afresh for their authentication credentials.
But here's the rub. The information about the user that's associated with the TGT in the Service
Registry has been retrieved from the database based on the UUID stored in the directory. Unless
the UUIDs of the user in the two directories are the same, the user information could be different
depending on the order in which the applications are accessed. This is why users who need to
access multiple applications need to have a consistent UUID across the user repositories they span.

If, on the other hand, you're content to delay Single Sign-On until all user authentication data is
consistently and non-redundantly stored in one or the other directory, you will need to maintain
two CAS domain names, because CAS will need to create two TGT cookies, and the only way to do
that without conflict is to store them under two different domain names. You may use domain
names like “sso.myorg.com” and “sso-spnego.myorg.com”, for example. That way, when the user
tries to access the second application, there will be no TGT cookie corresponding to that CAS
domain, so CAS will challenge the user or browser for their credentials afresh. This is acceptable as
long as the users understand that they will enter their IAM SSO credentials when trying to access
the first application. The second application will silently use their LAN credentials.

Manual provisioning

User provisioning is a function that is typically carried out by a back-end Security Operations
department. The demand for automation of user provisioning typically comes from those
managing this function as a cost centre. Business projects and business units typically don't care
about this because the effort is transparent to them. So automated user provisioning is one of
those IAM features that you may find hard to get funded through project budgets, and the
development here may only inch forward unless you secure some enterprise funding to help out.

The moral of the story is that while new applications will keep coming under the IAM umbrella
from an Access Management perspective (the most visible and sensitive aspect for auditors), the
back-end Identity Management side will usually lag behind quite badly. You may go for long
periods with an increased manual provisioning load while you cope with the larger number of
users being managed by IAM.

Keep the user provisioning screens as easy to use as possible, so the burden on the administrators
is lessened. And keep lobbying with the powers-that-be for increased funding for automated user
provisioning. Fortunately, the headcount savings through automation are tangible, so a business
case for this can eventually be made.

84

The BAU of IAM – A “Cookie-Cutter” Implementation
You've almost arrived. You have implemented every feature of IAM your organisation needs, but
there are still some applications out there that need to be brought under the umbrella of IAM.
How easily can you mop them up? Well, while IAM integration at this stage is still not a no-cost
operation, it's almost certainly a “known cost” one.

Here are some of the things you typically need to do:

Development tasks:

1. Implement a CAS interceptor for the application using an appropriate technology50. Disable
the application's native authentication mechanism. Modify it to operate in a trusted mode
and accept user attributes passed into it by the interceptor instead.

2. Disable local user management functions (the parts dealing with user creation, deletion
and the update of common user attributes) and only retain the fine-grained role mapping
and access control rules specific to the application.

3. Implement a listener to provision and de-provision users, and to update common user
attributes in an automated fashion based on user events received over the User Event Bus.

4. If required, create a hyperlink on the IAM administration module to enable an
administrator to jump to this application's fine-grained role mapping screen as soon as a
user is provisioned through IAM51.

Provisioning tasks:

1. Prepare a mail in advance of the actual roll-out informing users of the cutover date and
their new user IDs (if required) after that date.

2. Based on the list of current application users drawn from its user database, run batch
scripts to do the following:

a) Assign UUIDs to these users

b) If login user IDs need to change to conform to an enterprise standard or convention,
apply these new user IDs.

c) Either batch-load the UUIDs into the application (if it can hold such references) or
batch-load the UUID-application user ID mapping into IAM's Associated System table.

d) On the cutover day (or night), run a batch script to insert user records into the IAM
directory and database. The batch script will generate random passwords and create
them in the directory as expired passwords. This will force the user to change their
password on first login.

e) Send out two emails to each user, one with the application's URL and the new user ID,

50 Some examples of interceptors for CAS are a CAS servlet filter, a container mechanism like WebSphere's Trust
Association Interceptor, the Apache web server's mod_auth_cas module, Spring security or a global authenticating
reverse proxy.

51 Although the user event from IAM is propagated to the application's event listener through a store-and-forward
mechanism (i.e., the User Event Bus), in practice, this happens extremely fast and the user would most probably
have been created within the application by the time the administrator clicks on the link and opens the
application's fine-grained role assignment screen. IAM's SSO ensures that the hyperlink navigation will be seamless
and the administrator will not have to log into the application.

85

and a separate one with their password. Inform them that they will need to set their
password on first login, and it will need to conform to the organisation's password
policy.

These are the same operations you would perform each time a new application is to be
“onboarded” to the IAM ecosystem. They are fairly standard (although each application will
require special tweaks) and are consequently easy to estimate. The costs are likely to be low
enough to justify funding from a project bucket rather than require enterprise intervention.

With each such roll-out, you would be taking your organisation a step closer to its IAM nirvana.

86

Conclusion
We have covered the design of an Identity and Access Management system in fairly great detail in
this paper.

The core philosophy of the LIMA approach is loose coupling between the various functional
components of IAM. In most cases, the loose coupling is from the use of appropriate data design,
specifically a meaning-free identifier. Other elements of loose coupling are replicated data using
master data management principles, event notification and idempotent messages.

We have also provided tips to aid the design of the user datastores, user administration functions
and a simple service interface.

The LIMA approach obviates the need for expensive and complex commercial IAM products, yet
avoids reinventing the wheel (especially for security-sensitive processes) by leveraging commodity
components like CAS and Shibboleth for access management. It also allows you to design the
bespoke parts of an IAM system based on some simple foundations and extend it as required using
technologies and tools familiar to your organisation.

In spite of its simplicity, the LIMA approach adheres to security principles (as enunciated in an
early section), so it is not a naïve oversimplification of IAM.

We have not spelt out the many wrong turns we took in our own implementation, but rest assured
there were many. We have told you only the successful design decisions we finally arrived at, and
also the decisions that we know we should have made, even if we didn't. So this document
contains many hundreds of thousands of dollars worth of hard experience, corresponding to the
amount of money you will save compared to either a proprietary commercial IAM product roll-out
or a completely independent in-house development with its inevitable missteps and suboptimal
choices. Of course, you may also discover some simplifications and optimisations of your own, so
this document is by no means the last word on IAM. In any case, we hope our experience as
documented here will illuminate your path and make your IAM implementation even more
successful than ours. (Don't forget to have an independent security audit done of your system
before you go live!)

Good luck, and good hunting!

87

Appendix A – Typical Security Requirements from an IAM System
Security/audit staff tend to expect certain core features in an IAM system, as listed below. While
the LIMA approach supports them, you must ensure that your design actually meets them.

Access Management
Requirement How the LIMA design supports it

1 Each user of the system must have a unique ID.
This cannot be shared between users. A user
must be defined only once on a system.

The design features unique login IDs for
users as well as unique IDs (UUIDs) for users
across systems.

2 Except for systems allowing anonymous access,
any access to a system must only be granted
when a user supplies their ID and a password.
For some systems, an additional token (two-
factor authentication) may be required.

Authentication is mandatory with
interceptors that force the validation of user
credentials. Different types of identity
assertions are supported. Two-factor
authentication is a simple extension.

3 User IDs used for logging into applications must
have expiry dates and an active/disabled flag.

User records in the IAM database have a
creation date, an effective (start) date and an
expiry date. The LDAP directory supports an
active/inactive user attribute.

4 Passwords must be stored securely using one-
way encryption (i.e., passwords cannot be
reverse-engineered).

The LDAP directory supports standard
hashing and encryption algorithms.

5 Passwords must not be displayed in cleartext
when entered on a screen.

Special password fields should be used to
hide the actual characters being entered.

6 Passwords must have certain characteristics52. The LDAP directory supports the
specification of password characteristics
through policy settings.

7 A User ID and password must never be sent
together in the same email or document.

The design of the provisioning system
envisages sending user IDs and passwords in
separate emails.

8 Role-based access control must be applied
when users access business functions and data.

Coarse-grained role-based access control is
supported. Fine-grained access control is
assumed to be applied by the business
application based on user attributes supplied
by IAM.

9 Accounts must be locked out after a defined
number of failed login attempts.

This is supported by LDAP as a password
policy configuration setting.

10 Locked-out accounts are not automatically
reactivated and can only be reset by an
administrator.

This is supported by LDAP as a password
policy configuration setting.

52 E.g., mimimum length, combinations of alphanumeric, numeric and special characters, expiry period, uniqueness
history, change on first login or reset, etc.

88

Identity Management
Requirement How the LIMA design supports it

1 Information held about a user should include
the following attributes (as specified)

The IAM database can be designed to hold
whatever attributes are deemed necessary.

2 The user administration function should be
logically separate from any business
application.

The IAM design envisages a separate user
administration web application and an
independent set of services.

3 Administrators should have the ability to create
or delete users and maintain their access
privileges to various systems.

The IAM user administration module would
have these features.

4 Access rights must be granted on a least
privilege basis. No user must have more access
than their job requires.

Control over the scope of access rights is
outside the purview of IAM but IAM will not
impede the implementation of such policies.

5 There must be segregation of duties relating to
user provisioning – an administrator cannot
authorise the creation of a user that they have
themselves entered.

Two-step processes for all sensitive
operations can be supported by the database
as well as the user administration
application.

6 The system must provide audit and logging
capability.

Audit tables can be set up to log all relevant
user activity and changes to sensitive tables.

7 Only the system should be able to write to log
files/tables.

Database accesses can be set up to ensure
this.

8 Log files/tables should only be readable after
login or an approved access process.

Database accesses can be set up to ensure
this.

9 Audit logs must be retained for a defined
period of time and only appended to, never
overwritten.

A separate database area for audit makes it
possible to manage growth and archival.

89

Appendix B – Mapping the LIMA Design to the OASIS Model of IAM
OASIS defines Access Management and Identity Management functions using abstract terminology for various components. This is how the OASIS
model maps to the LIMA design.

90

OASIS Term
(Physical

Component)

IAM Components
in light blue Flow defined by OASIS Flow not defined by OASIS but

part of the LIMA design
Legend

Requesting
Authority

(Browser or Client
App)

Policy Enforcement
Point

(IAM Application
Interceptor)

Service
(Application or

Resource)

Policy Decision
Point

(IAM SSO Ticketing
Server)

Policy Information
Point

(IAM Directory &
Database)

Policy Access Point
(IAM User

Administration)

Provisioning Service
Target

(IAM Directory &
Database)

Provisioning Service
Point

(IAM REST Services)

Requesting
Authority
(Upstream

Provisioning System)

Provisioning Service
Target

(Associated Systems)

User
Event

Bus

User ProvisioningAttempted
access

Redirection

AuthN/
AuthZ

Tickets

Challenge/
Assertion
protocols

Allowed
access

Admin
Screens

and
Reports

LDAP, SQL

Access
Management

Identity
Management

Appendix C – Special Case Example 1 (Multiplexing User IDs)
Here is a problem that not every organisation would face, hence it is unlikely to be addressed out-
of-the-box by any commercial IAM product. The bespoke solution (multiplexing) is interesting and
may be more widely applicable.

Let's say your organisation has a product system running on an old mainframe. You are now
required to open up the functionality of this system to the web, to be accessed by B2C users
(customers) through a pass-through web application. (Notice that in LIMA terminology, the pass-
through web application is your protected application, while your mainframe is your associated
system. The mainframe is not directly exposed.)

Your auditors demand that the activities of each individual customer be tracked as they transact on
this sensitive product system. However, the mainframe-based system was never designed to deal
with the hundreds of thousands of online customers that are expected. It has severe restrictions
on the number of User IDs it can support, perhaps because the User ID field only supports 4
numeric digits. It would cost too much to re-engineer this legacy system to support a much larger
number of users. What do you do?

One approach is to think about the number of concurrent users that are expected to access the
system. Perhaps this would be in the range of a few thousand, compared to the hundreds of
thousands of customers overall. The solution then is to just provision this smaller number of users
on the mainframe, and record these as “temporary User IDs” within IAM, to be treated as “access
tokens” to the mainframe, handed out to B2C users as they pass through the IAM gauntlet. When
users complete their session or log out (however you may define “logout” in a Single Sign-On
environment), you release these temporary User IDs back into the “pool” to be reissued to other
B2C users. Keep track of which user was granted which access token, and the timestamps between
when they held the token, by recording these in a User ID allocation log table. The mainframe only
logs the activities of the “temporary User IDs” that it sees. You need to reconcile these IDs with the
actual User IDs (UUIDs) that identify physical users, by consulting the User ID allocation log table.

There's a complication, though. Timestamps on IAM and the mainframe may differ, so you may fail
to authoritatively establish that it was User A who executed a certain transaction and not the next
user, User B. You can sidestep it by passing both the UUID and the temporary User ID to the
mainframe through an intermediary integration component, which can log each business
transaction request into a transaction log table. This would be a more authoritative way to
establish the identity of the physical user who performed a particular transaction on the
mainframe.

The following diagram illustrates different ways to map user identity, to enable the tracking of user
activity to the satisfaction of your auditors.

91

IAM
Interceptor/
SSO server

Web
Application Mainframe

URL
Internet/
Intranet

B2C
User

Protected
Application

Associated
System

User ID Mapping Techniques for Activity Tracking

92

IAM
Interceptor/
SSO server

Protected
Application

Associated
System 1

Associated
System 2

Associated
System 3

 IAM Database

Associated System
Table

URL

Internet/
Intranet

Temp User ID
Allocation Table

IAM SSO User ID/
Password

IAM Authentication
Directory

IA
M

 S
SO

 U
se

r I
D/

Pa

ss
w

or
d

U
U

ID

UUID Local
User ID
(App 2)

UUID Temp
User ID
(App 3)

Temp User ID
Allocation History

Log allocation
and release

User Attributes:
UUID
Local User ID
Temp User ID
Etc.

Can store UUID
mapping

Cannot store
UUID mapping

Limited Local
User ID range

UUID

Local
User ID

Temp
User ID

User

Associated systems' audit logs
with UUIDs, Local User IDs and

Temp User IDs, respectively

IAM Audit Report with
User ID reconciliation

Appendix D – Special Case Example 2 (Resetting LAN Passwords)
We talked about your organisation's Active Directory setup and the desirability of letting it coexist
with the minimalist IAM directory, with neither replacing the other. That approach solves the
access management and provisioning problems, but a requirement to support self-service
password resets in the Windows LAN environment could also arise. Self-service is important for
password resets because the predominant SOS call that hits a corporate helpdesk is a password
reset request, and helpdesks are expensive to run.

There are several native Windows products available in the market to do this, but they aren't
universally applicable. Remote users who log in through a mechanism like Citrix, for example, may
be unable to use such products. The simplest solution would be a web-based application that
challenges the user with an alternate set of credentials (e.g., the personal security questions they
have previously specified), then sets them up with a one-time password on Active Directory and
displays it to them on the screen. They would be forced to change this on their next LAN login.
There are many advantages to a web-based application, mainly that the user can use any computer
or device to access it and reset their password, most often a neighbouring colleague's workstation.
Clearly, there are IAM components that can be reused to provide this functionality, and Active
Directory only needs to hold a UUID (GUID) that corresponds to the user in the IAM database.

The solution could look like this.

Of course, all password reset requests are sensitive from an audit/security perspective, so they
should be logged and monitored.

This is another example of how decoupling user identity with a UUID/GUID makes it really simple
to integrate components and develop inexpensive solutions to potentially tricky problems.
Commercial off-the-shelf solutions tend to be more expensive and yet have limitations that a
bespoke solution based on a loosely-coupled architecture does not suffer from.

93

Active Directory

IAM Database

LAN Password
Reset Application

LAN user

1. LAN User ID
(“Forgotten password”)

2. Get GUID given LAN
User ID (record lookup,

not authentication)

3. Retrieve security
questions and required

answers using GUID (UUID)

4. Security question
challenge

5. Challenge response

6. If answers match,
set up one-time

password for user
with this GUID

7. Display one-time
password

Appendix E – A Sample Phased Roll-out Plan
Here's a sample plan for rolling out IAM piecemeal using multiple business projects as funding
vehicles:

Timeframe Project/phase New assets created Prior assets leveraged

Q1Y1 B2C application Local interceptor
Authentication directory
User database
External-facing CAS servers
REST services (B2C)
User self-service screens

N/A

Q3Y1 Partner application 1 Local interceptor and listener
User admin screens
(including delegated admin)
REST services (B2B)
User Event Bus

Authentication
directory
User database
External-facing CAS
servers

Q1Y2 Intranet application Local interceptor and listener
Internal-facing CAS servers
SPNEGO enhancement to
CAS
REST services (Internal)

Authentication
directory
User database
User Event Bus

Q3Y2 Partner application 2
(employing federated
identity)

Local interceptor
SAML2 enhancement to CAS

External-facing CAS
servers

Q1Y3 New HR system roll-out REST service calls from HR REST services (Internal)

...

Any subsequent system Local interceptor and listener All of the above

94

About the Authors
Ganesh Prasad (g.c.prasad@gmail.com) has been an architect in the Shared Services space for
many years and has convinced himself that his brand of pedantry is in fact a long-term and
enterprise-wide perspective. He provides nuisance value to project teams that just want to get the
job done.

Umesh Rajbhandari (u.rajbhandari@gmail.com) is a Java / Web developer who likes to keep
abreast of the latest technologies. He has worked in Singapore and Nepal, and is currently based in
Sydney.

95

mailto:u.rajbhandari@gmail.com
mailto:g.c.prasad@gmail.com

(We came across so many lame zebra barcode gags when designing the front cover that we
decided they should at least make the back cover)

Identity Management on a Shoestring – Ganesh Prasad and Umesh Rajbhandari (2011)

It's a menagerie out there!

	Introduction
	The Modern Enterprise – A Reality Check
	So You Think You're Going to Change the World
	Who's Your Sugar Daddy? Funding Models That Work
	First Things First – Objectives of Identity and Access Management
	The Trouble with Brand-Name Products
	Misconceptions about Security
	Auditors, Security and Words of Wisdom

	Introducing LIMA11 – A Different Architecture for IAM
	Loose Coupling – A Firm Foundation for IAM
	Sneak Preview – What a LIMA Implementation Looks Like

	Access Management, LIMA-style
	Access Management Concepts
	How Single Sign-On Works
	The Best Things in Life (and in IAM) are Free
	Central Authentication Service and the CAS Protocol
	Shibboleth's Federated Identity Model
	CAS Server Configuration and the “Two-Layer Protocol Architecture”
	Enhancing Access Management Functionality Incrementally
	Extension Case Study 1: LAN SSO Integration with SPNEGO
	Extension Case Study 2: Two-Factor Authentication with SMS One-Time Tokens
	Extension Case Study 3: Federated Identity with SAML Tokens

	Limits to the Two-Layer Protocol Architecture
	Miscellaneous Topics in Access Management
	Protecting Non-Web Applications
	IAM and Cloud Computing
	What Do We Do with Active Directory?
	Tailoring Coarse-Grained Access Control
	Using CAS to Centralise Enforcement of Authorisation Rules
	Using a Reverse-Proxy Device as a Common Interceptor
	Access Management for “Portal” Applications

	Identity Management, LIMA-style
	Identity Management Concepts
	Separating Church and State – The Roles of Directory and Database
	Designing the IAM Directory
	User UUID – The One Ring to Rule Them All
	Decoupling Authentication, Coarse-grained and Fine-grained Authorisation Realms
	Person UUID – The Ultimate Identity Reference
	Data Replication and Master Data Management
	Designing the IAM Database
	Rest Easy with REST Services
	Automated User Provisioning – Invocation of REST Services
	User Administration
	IAM, Protect Thyself
	Provisioning Users to Downstream Systems
	Designing User Provisioning Messages

	Implementing LIMA
	Transitioning to the Target State
	The BAU of IAM – A “Cookie-Cutter” Implementation

	Conclusion
	Appendix A – Typical Security Requirements from an IAM System
	Appendix B – Mapping the LIMA Design to the OASIS Model of IAM
	Appendix C – Special Case Example 1 (Multiplexing User IDs)
	Appendix D – Special Case Example 2 (Resetting LAN Passwords)
	Appendix E – A Sample Phased Roll-out Plan
	About the Authors

