
Big Ten Academic Alliance Provisioning 1

Cookbook 2

• 1. Introduction 3

• 2. Problem Statement 4

• 3. Basic Concepts 5

• 4. Identity Provisioning 6

• 5. Identity Lifecycle 7

• 6. Passwords, Multi-Factor Authentication, and Provisioning 8

• 7. Service Provisioning 9

• 8. Target Directory Provisioning 10

• 9. Authorization 11

• 10. Assuring Provisioned Authorization Is Correct 12

• 11. Product Lifecycle 13

1. Introduction 14

Provisioning is a core function of any identity and access management system. Whether you're 15

provisioning identities for new students, MFA devices for staff members, e-mail boxes for 16

faculty, or secure cloud storage for a research group, there's lots to think about. Each kind of 17

item that you provision has its own set of considerations and pitfalls. It's important to have 18

standard practices and policies around your provisioning logic so that things flow smoothly and 19

everyone knows what to expect. 20

Some provisioning practices, like deciding at what point your users have their e-mail accounts 21

created, is easy to adjust as you go along. Other things like defining a useful and extensible set of 22

roles to determine what users can access is much harder to adjust once in place. Regardless of 23

what part of your identity infrastructure you're laying out, careful thought and planning up front 24

can save a lot of headaches later. 25

Another aspect that goes hand-in-hand with provisioning is auditing. Now more than any time in 26

the past, auditing of systems for compliance with legal regulations is a huge priority. Sometimes, 27

however, it’s just as important to audit systems to make sure that local institution policies are 28

being properly enforced. Doing this manually, though, is next to impossible. Things work best 29

when your auditing and reporting mechanisms are built into and work alongside your 30

provisioning systems. 31

This cookbook seeks to jumpstart your planning with easy-to-follow advice and trusted practices 32

that others have found work well. It's written from the perspective of provisioning in a higher-ed 33

environment, but the advice applies in other settings, too. 34

We've created this cookbook with a simple, straightforward format. The first section defines 35

concepts and terminology that's helpful to understand before diving into the specific recipes. The 36

sections that follow each cover a specific area of provisioning and deprovisioning. Each section 37

starts out with an overview of that concept, followed by the specific guidance. 38

We offer our guidance in “DO”/”DON'T” form: each item starts with “DO” or “DON'T”. Items 39

that aren't necessarily a definite DO or DON'T but that are worth keeping in mind start with 40

CONSIDER. 41

There's no such thing as one size fits all in provisioning. Much of the architecture depends on 42

your organization's needs, culture, and size. Institutional policy will be required (and, perhaps, 43

evolved) to shape IAM business processes and system architecture. While this cookbook can't 44

tell you exactly how to architect everything, it explains best practices and the concepts needed to 45

get the job done. Our goal is to help you understand what you need to know so that you can 46

make your own informed decisions appropriate for your organization. 47

2. Problem Statement 48

When it comes to identity management, higher-ed institutions are complicated places. A single 49

person can have multiple roles all at once: student, alumnus, staff member, and parent of a 50

student, for example. That same person can disappear from any active affiliations with the 51

institution, only to reappear several years later with a whole new set of roles. Managing the 52

digital identity, credentials, services, and roles of that individual is no small task. 53

Consider further that higher-ed institutions on-board hundreds or thousands of new users each 54

year as new students enroll. This means that, not only do the policies and practices that a school 55

has in place need to be well-defined, but the systems that enforce them need to be scalable. 56

Institutional roles need to be able to express affiliations concisely and accurately so that systems 57

can easily perform the work to create all of the resources that those students will need to learn 58

and participate. 59

Then, every spring, hundreds or thousands of students will graduate. Those same systems will 60

need to deprovision resources. Sometimes, some of the resources will be maintained if the school 61

offers continued services to alumni. Other pieces of information will be maintained to create an 62

auditing trail or to allow easier on-boarding if one of those students comes back later for another 63

degree or a job. 64

In addition to the usual identity lifecycle of students, faculty, and staff, most institutions see a 65

large number of guest or sponsored accounts. Visiting scholars, contractors, K-12 students 66

attending summer camps – they all need a digital identity while they’re interacting with the 67

institution. Unlike longer-term engagements like that of a faculty member or student, though, 68

knowing when to provision and deprovision these users can be very challenging. Regardless of 69

the user population, how do you know when specific users need to have access and what services 70

they need to access? 71

With so much data flowing, being able to audit the full system and make sure that nobody 72

is being incorrectly given access is crucial. A good provisioning system also has good auditing 73

capabilities and good reporting functionality. 74

Once all that's done, you shouldn't overlook deprovisioning. Especially in these days of cloud-75

based services and per-user licensing, failure to deprovision a set of users who no longer need 76

service can become costly over time. When you deprovision and what you do with the data in 77

identities and services before they're provisioned depends on your exact situation. For some 78

cloud-based services, you might even choose to let your users convert their accounts to personal 79

accounts that they can continue to own but that are no longer affiliated with your institution. The 80

important thing is that these decisions are made up front. 81

Obviously, the big picture can quickly become overwhelming. There are lots of things to 82

consider and lots of decisions to make, each one that will significantly impact your users 83

directly. We'll tackle this challenge one piece at a time. 84

2.1. The IAM Business Function and the IAM System 85

Addressing these issues is generally addressed by an organizational unit within the institution, 86

usually central IT. In partnership with other units, such as Payroll, Registrar, Library, research 87

projects, student organizations, etc., the IAM unit is responsible for the business functions that 88

maintain the institution's unified repository of its community: students, staff, faculty, library 89

patrons, researchers, members of the chess club, etc. The IAM unit is also responsible for the 90

controlled dissemination of selected information from that repository to online resources to 91

facilitate access control and personalization. 92

In order to accomplish this for the constantly changing hundreds of thousand members of the 93

community, IAM Systems are used to automate the lion's share of these processes. The following 94

diagram shows the interrelationships among affected organizational units and components within 95

the IAM: 96

 97

 98

 99

This document concerns itself primarily with the provisioning of data out of the IAM system, but 100

also with flows from Institutional Systems of Record, as highlighted in the following diagram: 101

 102

 103

 104

Provisioning flows out of the IAM system to service providers facilitate access control decisions 105

and personalization by online resources, providing those resources have the information they 106

require to make those decisions. 107

The provisioning flows out of the IAM System can be classified as: 108

• "Just in Case" (JIC), flows that occur in case one of the recipient services needs the 109

information at some time in the future, or 110

• "Just in Time" (JIT), flows that occur at the moment the information is needed by the 111

recipient service, generally as part of an authentication event. 112

For example, when identity information is transferred at the start of a session with a Service 113

Provider, it is JIT provisioning, generally accomplished by the authentication system (e.g., as a 114

SAML assertion or a collection of OIDC claims). When identity information is transferred as the 115

result of some other event (e.g., a change generated by a System of Record), it is JIC 116

provisioning. 117

Audit systems also receive provisioned information from the IAM System to assure that access 118

control policies are consistent with reality, Note that audit systems may also retrieve information 119

from the service providers to enable comparisons between the service provider and the IAM 120

System to find discrepancies. 121

While only secondarily within the scope of this document, information flows between Systems 122

of Record and the IAM System may be JIT or JIC flows, driven by changes in state within the 123

systems of record, to keep the IAM System's Person Repository and Grouping Systems current 124

with data about community members from the Systems of Record operated by partner 125

organizational units, such as Registrar and Human Resources. Note that these flows may be bi-126

directional, when the IAM System holds information of use to a System of Record. In this case, 127

such flows are driven by changes in state within the IAM System. Examples of such information 128

include user names and directory information. 129

3. Basic Concepts 130

3.1. Identity and Subject 131

In the context of the field of Identity and Access Management (IAM), identity refers to the set of 132

information that pertains to a subject. A subject is typically a person but may be an institution, a 133

well-known service, etc.; it is the thing with which the identity is associated. The information 134

that comprises an identity may include identifiers, group memberships, entitlements, roles, 135

names, and other characteristics. 136

3.2. Identifiers 137

Identifiers uniquely distinguish an identity within a given domain. Typical domains might be a 138

university or other organization, or a federation of universities and other organizations. Examples 139

of university identifiers might be called netID, login name, principle, or username and have 140

values like susan.smith, jrrtolkien, or a983k50299. Electronic mail addresses may also be 141

used as identifiers, although the practice is discouraged, as electronic mail addresses may 142

change, may be reassigned to other people, may be used by more than one person, etc. In 143

summary, it is usually undesirable to manage electronic mail addresses in a manner 144

commensurate with their use as user identifiers. 145

Federated identifiers, such as the SAML General Purpose Subject Identifier (subject-id) or the 146

eduPerson Principle Name (ePPN), are unique within their federation and are typically structured 147

by appending a unique institution identifier to a person identifier that is unique within the 148

institution. For example, if John Doe's identifier within the University of Illinois is jdoe, then his 149

federated identifier might be jdoe@illinois.edu. 150

(See Understanding Federated User Identifiers for more information.) 151

3.2.1. Uses for Identifiers 152

Identifiers are used in multiple ways: 153

• Internally to link identities among multiple services and directories 154

• Externally with federated vendors 155

• By the user as part of an authentication event 156

• To retrieve attributes or other information associated with an identity 157

3.2.2. Types of Identifiers 158

Identifiers have multiple characteristics. 159

• They may be usable by any service provider, or they may be pair-wise, generated 160

uniquely by the identity provider to be usable by only a single service provider. 161

• They may be human-readable to be easily recognized when read, or they may be opaque. 162

• They may be short-term, for example for the lifetime of a session, or they may remain 163

valid for longer than a single session, always unique to the same identity. How long an 164

identifier remains valid is also an important characteristic. Identifiers are considered to be 165

stable or immutable if they remain valid over a very long period of time (e.g., longer than 166

the existence of the identity within its domain). 167

• An identifier may be re-assignable to a different identity, or it may not. 168

It should be noted that identifiers that are used to control secure access to resources or services 169

should be stable and not re-assignable to mitigate unintended loss of access by an otherwise 170

authorized subject, as well as unauthorized access by a subject who receives a re-assigned 171

identifier. Also, unless there is a need for multiple services to coordinate (i.e., track) their 172

offerings for the same subject, pair-wise, opaque identifiers are generally preferred to enhance 173

privacy. 174

https://docs.oasis-open.org/security/saml-subject-id-attr/v1.0/cs01/saml-subject-id-attr-v1.0-cs01.html#_Toc536097226
https://spaces.at.internet2.edu/display/federation/understanding-federated-user-identifiers

More information regarding federated identifiers can be found in Understanding Federated User 175

Identifiers and Choosing the Right Federated User Identifier. 176

3.3. Affiliations, Roles, Groups, and Other Attributes 177

There is a rich set of information that can be used to determine a person's permissions to use 178

services and resources. 179

• Affiliation identifies how or why a person is a member of the institution's community. 180

Examples might be student, staff, or faculty. A person can have multiple affiliations 181

simultaneously. 182

• Role identifies what a person does for or with the institution. Examples might be 183

instructor, principle investigator, or IAM administrator. 184

• Group is a collection of people that share a common characteristic. Examples might be 185

people with the instructor role, members of the chess club, or Physics 101 students. 186

• Attribute is a broad term for just about any information associated with a person. 187

Examples are telephone number, electronic mail address, or job title. Not all attributes are 188

useful for assignment of permissions, but some are. 189

3.4. Provisioning Models 190

There are two types of provisioning, Just in Time and Just in Case. 191

• Just in Time (JIT) provisioning occurs when identity information is provisioned at the 192

time it is required. Just in Time provisioning is usually implemented as part of (or 193

immediately after) authentication for a session. 194

• Just in Case (JIC) must occur before the identity information is required. Just in Case 195

provisioning occurs as the result of some external event, such as enrollment of a student 196

or assignment of a new role to an employee, or as regularly scheduled processing, such as 197

overnight reconciliation between the IAM and a service. 198

4. Identity Provisioning 199

At universities, it is typical for Admissions and Registrar to determine whether an individual's 200

affiliation with the institution is as a student, Human Resources determines whether that 201

individual's affiliation is an employee, and other organizational units to determine other 202

affiliations. It is also possible for an individual to have multiple affiliations. For this reason the 203

IAM function needs to form partnerships with those other organizational units to obtain the data 204

of who, currently, are students, employees, etc. Operationally, this is implemented by identity 205

provisioning interfaces between each of your partners' Systems of Record and the identity 206

registry. An identity matching algorithm is then used to determine when an individual having 207

multiple affiliations receives records from multiple sources. 208

4.1. Identity Matching 209

https://spaces.at.internet2.edu/display/federation/understanding-federated-user-identifiers
https://spaces.at.internet2.edu/display/federation/understanding-federated-user-identifiers
https://spaces.at.internet2.edu/display/federation/choosing+the+right+federated+user+identifier

Many organizations, particularly universities, have multiple source systems representing multiple 210

segments of the population. These include staff, faculty, students, parents, physicians, friends of 211

the library, etc., to name but a few. These segments, however, are not mutually exclusive. A 212

student can be a staff member, for example. For this reason, records retrieved from identity 213

source systems must pass through an Identity Matching algorithm to ensure that a) one person 214

does not appear to be two people in your IAM system, and b) two people do not appear to be one 215

person. 216

4.1.1. Do: Use a scoring system that separates new identities into positive 217

matches, unmatched, and potential matches. 218

When creating a new electronic identity, it’s important to see if the individual for whom 219

you’re creating already has an electronic identity at your organization. Not checking 220

carefully can lead to someone getting two identities or, worse yet, incorrectly assuming 221

that two people are the same person. A scoring system works well to solve this challenge. 222

Compare common elements of the new identity with those already in the system such as 223

date of birth, gender, name components, and whatever else you have available. An exact 224

match might get a high score unless it’s a common name: there could be two individuals 225

named Elizabeth Jones both born on March 1, 1980. So, common names might score 226

lower. Use all of the information you have, score each comparison intelligently, and decide 227

how high of a score counts as a match. Where practical, engage directly with the person 228

being processed through self-service processes to verify knowledge of data you already 229

have, such as student ID, course information and grades, employee ID, etc. 230

 231

You may want to consider categorizing certain data elements used in the matching as High 232

Assurance, Medium Assurance and Low Assurance. For example : 233

• 234

o High Assurance: IDs from systems of record, the registry's unique ID, SSN, 235

driver's license, state ID, passport, NetID 236

o Medium Assurance: name, date of birth 237

o Low Assurance: email, address, phone 238

 239

These are, of course, only examples; you will need to determine each of your data 240

elements' contribution to the matching algorithm, based on the characteristics of your 241

population and the quality of the data you receive from the various sources. 242

4.1.2. Do: Establish a process for putting potential matches in a suspense 243

group for manual review and reconciliation. 244

It can be easy, using the above system, to know what to do if you definitely have a match 245

or if you definitely don’t have a match: high and low scores can be handled automatically. 246

But what about scores in the middle? This is where a good workflow process comes into 247

play. Create a queue for the “maybe” cases, and assign staff to review it manually to 248

research if a new identity is the same as an existing one or really a different individual. 249

4.1.3. Do: Establish a process to correct mistakes made either in the 250

automated or manual identity matching processes. 251

Mistakes are unavoidable. You may not detect them until long after identity assignments 252

have been made. 253

4.1.4. Consider: Products and processes that facilitate matching such as 254

phonic and fuzzy name matching, and address standardization. 255

Non-exact names might still be a match: a new identity for Beth Jones might be for the 256

same individual as the existing identity belonging to Elizabeth Jones. Also consider that 257

data entry can contain typos and a name could have an error in it because someone entered 258

it wrong. Using software that can do non-exact comparisons of names or look at phonic 259

comparisons will help immensely in identity comparisons. Similarly, changing addresses 260

to a standardized format where geographically available can give another clue if someone 261

is a match. 262

If you can engage the actual person whose new data is being processed to participate in a 263

self-service to match with the existing data you already have on the existing record such as 264

Student Id, Course Information and grade , Employee Id. Something similar to credit card 265

report validation. 266

4.2. Institutional Username Assignment 267

Your users' institutional usernames (also known as netid, login id, or userid) are the unique 268

identifiers they use for your single sign-on system, facilitating access for many resources. It may 269

also be used for institutional electronic mail addresses, although many institutions do not do this, 270

as it reveals part of what is needed to authenticate. It is also the case that service providers may 271

or may not use the institutional username 1) because the institutional username is not in a format 272

that the service provider can use, or 2) as with electronic mail addresses, it may reveal 273

information that is better kept secret. 274

4.2.1. Consider: Self selection vs. assigned usernames. 275

There are good reasons to automatically generate usernames for your users. There are just 276

as many good reasons for letting them choose their own usernames. It’s up to each 277

institution to do what’s best for them, but consider the pros and cons carefully. Letting 278

users pick their own username generally leads to nicer looking and easier to remember 279

usernames than an algorithm can select, but there’s always the risk that a freshman might 280

pick a questionable username. When that freshman later discovers that “it seemed like a 281

good idea at the time”, you’re opening yourself up to more username changes later. Some 282

institutions have had no problems with students choosing their own usernames. Others 283

choose to generate usernames for students while letting faculty and staff choose their 284

usernames. Regardless, if you’re going to assign usernames automatically, think carefully 285

about your algorithm for username generation to try and maximize the use of your 286

username namespace with reasonable looking usernames. Nobody wants a username that’s 287

an unpronounceable string of consonants followed by a random-looking string of numbers, 288

especially if it’s also part of their institutional email address. It’s also possible that a 289

generated username could have cultural sensitivities or be otherwise offensive to an 290

individual. So, if you do choose to use assigned usernames, consider having a documented 291

exception request process and using a vanity/alias for the email address. 292

4.2.2. Do: Allow changes for good reason. 293

Though generally painful finding all of the provisioning and authorization implications in 294

downstream systems, username changes are inevitable. Marriages, adoptions, and other 295

life events that result in name changes are often good reasons to change a person's 296

username. Ensure you have a process that preserves the previous username so it cannot be 297

reused by another user, and keep as much information as is practical on downstream 298

systems that may have a copy of that username provisioned to them. 299

4.2.3. Don’t: Reassign a username to a different person. 300

While it may seem tempting, especially in a space where all the good usernames are 301

already taken, to give the username of a long-graduated or long-retired user to a new 302

student, there are very good reasons not to do that. There’s the obvious possibility that the 303

original owner of that username might return. There are also resources and permissions 304

that might still belong to that username which you wouldn’t want to transfer inadvertently 305

to a new person. Non-reassigned usernames are of particular importance when dealing 306

with cloud services that might still have data belonging to the existing username. In 307

general, assign a new username instead of reusing a dormant one. 308

4.2.4. Do: Make sure the namespace is large enough to not run out for many 309

years. 310

This is common sense, especially given the practice of not reassigning usernames. The 311

question is how large is large enough? That depends on the size of your institution and the 312

number of users you’re on-boarding. There’s no magic formula for how many characters 313

long you should allow for the shortest and longest usernames and what characters (letters, 314

numbers, certain symbols) you should include. You just need to find the right balance for 315

your population. Naturally, usernames that are too long become unwieldy. Usernames that 316

are too short lead to indecipherable strings. The right length and, if appropriate, the right 317

username generation algorithm can go a long way, and your future self will thank you. 318

Potential strategies that can help include: 319

• 320

o including middle initials 321

o appending sequence numbers when there are conflicts (Beware, though, that some 322

numbers have potentially negative cultural significance.) 323

o enabling self selection of usernames 324

4.2.5. Do: Check for a user’s existing identity at the institution before 325

assigning a new username. 326

There’s no better way to burn through your username namespace too fast than to use it up 327

assigning multiple usernames to the same individual. With institutions assigning 328

usernames for guests, summer program participants, faculty, staff, students and many other 329

populations, it’s extremely common for a given user to pass through multiple affiliations, 330

perhaps leaving and returning between each one. It’s not only kinder to your username 331

namespace to check for existing usernames before assigning a new one, but it’s also kind 332

to the user to give them back the username that they had last time they were part of the 333

institution. See the information on identity matching for advice on how to best detect when 334

a new user is the same person as an already existing identity. 335

4.2.6. Do: Have a list of usernames that should not be used. 336

Reasons for inclusion on the list include being misleading (e.g., a username of 337

"President"), being culturally inappropriate, or violating a trademark. The list would apply 338

to both usernames that are assigned or selected by users. 339

4.3. Identifiers for Services and Target Directories 340

Some of your service providers will require you to provision a username to meet their specific 341

requirements. Here is some advice. 342

4.3.1. Do: Maintain an opaque identifier that won’t change over an entity's 343

life cycle. 344

Users will want or need to change their usernames, and for many good, and some not-so-345

good, reasons. It doesn’t take long to discover that a username as a stable identifier is 346

anything but stable. If a user’s identity is going to stay tied together across multiple 347

directories and services, you’ll need something better than a username to associate 348

between those directories and services. The days of social security numbers for this 349

purpose are long gone. Some institutions are comfortable using a university ID number for 350

this purpose. Others choose to generate a random, reasonably long, unique string for this 351

purpose when the user’s electronic identity is created. Such an identifier doesn’t need to be 352

human readable or ever displayed to the user. The user doesn’t even need to know that the 353

identifier exists. It’s purely for linking between systems. 354

4.3.2. Do: Consider an external identifier different than the internal 355

identifier used by in-house applications. 356

There are good reasons to have multiple user identifiers for a given user, each one with its 357

own purpose. While it’s important to not create too many as that becomes challenging to 358

manage, there are good reasons to create new ones. One such case is for external services 359

and systems. Especially since these types of systems are more out of the institution’s 360

control, there’s always the possibility that a bad actor could get your users’ data. With the 361

same stable identifier used everywhere, activities and data could easily be correlated 362

between multiple systems. The best way to avoid this is to have a different identifier for a 363

user for each service that they access. Rather than creating a new identifier for each service 364

when the user is provisioned into it, consider an algorithm that could encrypt a string 365

containing the user’s internal stable identifier and the name of the service they’re 366

accessing. The external identifier could then be built on-the-fly each time it’s needed. This 367

type of identifier is called a pair-wise identifier. 368

4.4. Social IDs 369

Most people already have IDs from one or more social media platforms. These can often be 370

linked with institutional usernames in your IAM System to provide an alternative login method. 371

4.4.1. Do: Consider where account linking of social IDs to institutional 372

accounts might be appropriate and where it might not. 373

Social credentials such as those issued by Google or Facebook can be a great choice for 374

users who interact with non-regulated data. For example alumni returning after a long 375

period to request a transcript, are much more likely to remember their Facebook login that 376

they linked to their institutional identity, than to remember a username and password 377

issued by your institution. Users are also quite likely to notice if their Facebook or Google 378

credential has been compromised, which they won’t for an infrequently used institutional 379

credential. Common social identity vendors such as Google are very good at notifying 380

users about changes to their accounts and credentials. Be careful though when using social 381

credentials for regulated data as you lose control of credential quality, and social providers 382

generally won’t tell you if multi-factor authentication was performed, so you may not be 383

able to guarantee some of the controls that are required by regulations. 384

4.4.2. Do: Consider whether social ID can be a step in 385

onboarding/offboarding. 386

Social identities can be a great way to begin interacting in an authenticated session with 387

users while you build up enough information to do identity proofing and other identity 388

onboarding steps. Consider, for example, an applicant for a position in your HR system, it 389

could make sense to use a social identity to allow the applicant to upload information 390

during the application process, and even during background checks and other steps 391

required before they are considered an employee in your HR system. 392

4.4.3. Do: Consider Level of Assurance LOA when using social IDs. 393

Understand the identification, registration, authentication, and related processes employed 394

by the social providers whose IDs you use. 395

4.4.4. Don’t: Assume all services do proper authorization and make them 396

aware of the LOA concept. 397

Work with your service managers to assure they understand the risks and benefits of using 398

social IDs for their service. 399

4.4.5. Do: Identity matching, even with social IDs. 400

It is fine for a user to have multiple social ID’s, such as one with Facebook and one with 401

Google. When registering those social ID’s for use as a credential in your systems, keep 402

track of the tie to a single institutional identifier. You don’t want users trying to remember 403

which social ID they used for which of your services. 404

5. Identity Lifecycle 405

Lifecycles of users in higher education environments are complicated. A given individual can 406

appear as a high school summer camp attendee, an applicant, a student, an employee, a retiree, or 407

any of a number of other roles. Further, that individual can have more than one affiliation at the 408

same time. Keeping track of those affiliations and when they start and end is essential for 409

providing and revoking access to services. The recipes in this section will help to define the 410

parameters and processes needed to manage identity lifecycle. 411

5.1. State and Affiliation Changes 412

Many events, both large and small, affect identities and the access permissions associated with 413

them. For example, a graduating student who is hired as an employee will gain permissions as 414

appropriate to their new position and job responsibilities. That person will also lose permissions 415

granted only to students. All of this is driven by information obtained from the source systems. 416

5.1.1. Do: Capture changes in affiliations/roles that matter for service 417

entitlements. 418

The most important thing to do with user affiliations is to track when they change and to 419

communicate those changes to downstream services in a timely fashion. Whether a user is 420

being on-boarded, off-boarded, or just gaining or losing one of multiple affiliations, track 421

this information. 422

5.1.2. Do: Work with service providers to ensure service entitlements are 423

being handled correctly. 424

Once you're tracking affiliations, you need to help service owners to map those affiliations 425

to specific service access. A service owner, for instance, might say that they want their 426

service to be available to all students. But what does student mean? Full-time as well as 427

part-time? On-campus as well as remote? Should they gain access to the service at the start 428

of their first semester, or should it happen when they've registered for classes? Help 429

service owners to understand all of the different transitions and options for understanding a 430

given affiliation so that they aren't giving too much or too little access to their service. 431

5.1.3. Don’t: Overdo state changes. 432

If a state change doesn’t change an entitlement, it may not be necessary to distinguish it. A 433

student, for example, who has registered but not yet started classes might need to be 434

distinguished as some services might want to grant access before classes start. There are 435

other cases, though, where state changes might not change any access such as a staff 436

member changing positions within a given team. As mentioned above, carefully consider 437

what you consider an affiliation so that you don't end up with thousands. There's a balance 438

between future proofing your affiliations and information overload. 439

5.1.4. Do: Account for users with multiple overlapping affiliations. 440

This scenario is very common in higher ed, but it also happens in other organizations. 441

Someone can be a staff member taking classes or a student with part-time employment. A 442

retiree can come back as a student. There are lots of possibilities. Ensure that your system 443

can assign multiple affiliations to an individual that can be separately assigned or removed. 444

5.1.5. Do: Designate a "primary" affiliation for each user. 445

Most services will care only if a person does or does not have a specific affiliation. Some 446

services, however, need to know a person's primary affiliation with the institution. For 447

example, a staff member taking classes might have a primary affiliation of "staff," but a 448

student employee's primary affiliation might be "student." Also, 449

eduPersonPrimaryAffiliation is useful in some federation scenarios. Institutional policy 450

will be required to determine which of a person's affiliations is primary. 451

5.2. Grace Periods 452

Revoking access permissions adversely affect your users, even when it is warranted. Grace 453

periods can give people time to prepare. 454

5.2.1. Do: Make grace periods. 455

In most cases, you won't want an affiliation change to remove a user's access immediately 456

so that access isn’t prematurely terminated. For instance, staff might need access to some 457

services for a couple of weeks after leaving the university, and students might need to 458

retain access for the summer after graduation. Building a grace period into the transition 459

between affiliations can make for a better off-boarding experience. 460

5.2.2. Do: Work with stakeholders to determine how long a grace period 461

should last. 462

https://wiki.refeds.org/display/STAN/eduPerson+2021-11#eduPerson202111-eduPersonPrimaryAffiliation

How long a grace period for a certain state transition should be varies depending on your 463

organization, the state change, and the services that it impacts. In some cases, immediate 464

loss of access won't be a problem. In others, it could lead to lots of confusion, extra work 465

for service owners, and help desk calls. Consider each state transition and work with 466

service owners to choose timing appropriately. 467

5.2.3. Don’t: Overextend a grace period if it compromises security. 468

It's easy to go too far on how long you leave things active. The longer an account stays 469

active, especially if it's unused, the more likely that a compromise to that account will go 470

largely undetected. Weigh this against user convenience when selecting how long access 471

should be retained. 472

5.2.4. DO: Allow for immediate deactivation when necessary. 473

There will, of course, be cases where a grace period is not only unnecessary, but it's 474

dangerous. The immediate termination of an employee or the departure of a high profile 475

individual from the organization are often reasons to immediately remove access. Include 476

a mechanism for bypassing the grace period when needed to immediately remove access. 477

5.3. Deactivation 478

Here is some guidance for when the grace period is past, and it's time to deactivate. 479

5.3.1. Do: Retain minimal data when deactivating an identity. 480

Just because someone's leaving your organization doesn't mean they're gone for good. 481

Consider a situation like a student graduating, going elsewhere for grad school, then 482

returning to take a job. For the purposes of identity matching to assign the same username 483

or university ID number if available, or at least for building a complete history of a given 484

user, it can be helpful to at least keep a stub entry with information about the previously 485

active identity. What data is contained in that stub entry depends on your organization's 486

environment and what you might want to track or reinstate. 487

5.3.2. Do: Establish policies and processes to reinstate disabled identities. 488

Just because you keep a stub entry for a disabled or departed user doesn't mean that re-489

activating the entry upon the user's return will be straightforward. Carefully consider how 490

to most easily and efficiently turn the stub entry back into an active entry, confirm the 491

user's identity, and possibly make sure that there are no lingering permissions granting 492

them access to resources from their previous affiliation. 493

5.3.3. Do: Communicate with service providers to inform them of timelines 494

for deactivating identities. 495

When a user is scheduled for deactivation, the results of that can be far reaching. Not only 496

might they lose access, but accounts will be deprovisioned from services, data deleted, and 497

group memberships terminated. Whether you're doing this for a one-off staff member who 498

has left or the entire graduating class of last semester, service owners should be informed 499

ahead of time. In general, it's enough to make sure that service owners know your 500

schedule: staff are deactivated after this many days, students after this many, etc. 501

However, in cases where you're going to deactivate a large batch such as the example of 502

the graduating class, an extra communication to service providers to remind them of the 503

specific upcoming event can help prevent a lot of potential problems. 504

5.3.4. Don’t: Deactivate or delete identities without communicating. 505

It may seem obvious, but it gets overlooked far too often. Before you terminate a user's 506

access because of an affiliation state change, let them know. Provide information on things 507

they might want to do such as graduated students setting up email forwarding or staff 508

members downloading any relevant content that they're allowed to take with them upon 509

their departure from the organization. Communicating ahead of time can also help to 510

prevent mistaken deactivation such as a student who you believe has left but was just late 511

registering for classes. 512

6. Passwords, Multi-Factor Authentication, 513

and Provisioning 514

Login credentials, such as passwords, "passwordless" hardware tokens, cell phone "second 515

factor" apps, and combinations of the preceding (i.e., multi-factor authorization), when coupled 516

with a user's identifier, are the security mechanisms protecting that user from the risk of being 517

impersonated by someone else. Here is some advice to help you deliver secure authentication, 518

appropriately balanced against end-user pain and frustration. 519

6.1. Password Rules and Policies 520

6.1.1. Do: Limit the number of different passwords that users need to 521

remember. 522

It’s hard enough these days to keep track of the many passwords we have in our personal 523

lives. Adding multiple passwords for work or school will inevitably lead to forgotten 524

passwords, user frustration, and help desk tickets. Use a central password store that all 525

services can authenticate. Have a single password that grants access to everything that a 526

user accesses. Where that’s not possible, consider synchronizing passwords between 527

password stores. 528

6.1.2. Do: Encourage single signon. 529

The only thing better than a single password is single signon. Rather than having to log 530

into each service using the same password, architect your services such that a user only 531

needs to sign in once in a given session. In a browser, things like SAML-based 532

authentication against an identity provider that supports a persistent session can make this 533

easy to set up and add security to your environment. On the desktop, setting up things to 534

leverage and trust the user’s desktop authentication can accomplish the same result. In 535

addition to user convenience, this adds security as you won’t have to type your password 536

into lots of different sites and services. 537

6.1.3. Do: Consider the password policy advice from NIST (currently 538

Special Publication 800-63B). 539

NIST has done extensive research and engaged numerous experts in developing these 540

materials. There is good advice here. 541

6.1.4. Don’t: Require frequent password changes. 542

It used to be a good, security-conscious idea to require users to change their passwords on 543

a regular basis. With the rise of multi-factor authentication, this has become much less 544

important. With multiple factors required to access a resource, a hacker can’t do much of 545

anything if they crack or steal the password. Furthermore, not requiring users to change 546

their passwords on a regular basis avoids forgotten passwords which generate help desk 547

calls and doesn’t encourage a user to write down their password on that sticky note stuck 548

to their monitor. 549

6.1.5. Consider: Passwordless authentication. 550

"Passwordless" authentication tokens, usually based on FIDO2 protocols, may be a good 551

fit in environments where having possession of a physical token may be more appropriate 552

for authentication than knowledge of a secret password. (See also "Assignment of 553

additional authentication factors" below.) 554

6.2. Initial Password Setting 555

6.2.1. Do: Transmit account claiming information securely using activation 556

codes or short-lived links. 557

Care should be taken the first time a user sets a password. The best approach is to provide 558

some temporary, one-time-use item to the user to grant them access when initially setting 559

the password. This can be a link that expires after a short amount of time or a random 560

string of characters making up an activation code that’s sent to them through some secure 561

out-of-band means. 562

6.2.2. Do: Perform additional identity proofing during the account claiming 563

process. 564

While a secure link or access code is a good start toward secure setting of initial 565

credentials, it’s only the first step. Just like multi-factor authentication uses items of 566

different types such as something you have and something you know, first-time setup of 567

credentials should do the same. In addition to secure link, ask the user to answer questions 568

that a hacker wouldn’t know the answers to. 569

6.3. Assignment of Additional Authentication Factors 570

6.3.1. Do: Use multiple factors for authentication when possible. 571

Multi-factor authentication is becoming commonplace. It can certainly make things more 572

secure when you require a user to present more than a secret string in the form of a 573

password to gain access. It also alleviates the need for highly-complex passwords, a 574

benefit for end-users. There are many technologies built to open standards for multi-factor 575

authentication, including FIDO2, as well as older standards, such as HOTP and TOTP. 576

There are also commercial authenticator apps, such as Google Authenticator and Duo. 577

Shop around, and choose the ones right for your institution in consideration of 578

accessibility, the availability of software support in browsers and online services, 579

avoidance of vendor lock-in, and support for service providers that require specific MFA 580

technologies. 581

6.3.2. Do: Use additional validation to password for adding or modifying 582

MFA. 583

If a user only needs a password to gain access to the MFA configuration, then you might 584

as well not have multi-factor authentication at all. A hacker who got a user’s password 585

could log into the user’s MFA settings and change those settings to something the hacker 586

could leverage instead. Make sure that, to change MFA settings, a user must perform an 587

MFA authentication or some other backup method to verify that it’s really them. 588

6.4. Provisioning and Deprovisioning of Credentials 589

Provisioning credentials into a service provider may be the only way to provide at least an 590

approximation of a single sign-on experience for your users when the service provider cannot be 591

federated (i.e., must do its own authentication). This is, however, a security risk. It increases your 592

risk of unauthorized exposure of the credentials, perhaps outside the scope of your direct control, 593

if the service provider is not operated by you. 594

6.4.1. Don’t (if possible): Provision credentials when a federation option is 595

available. 596

Syncing passwords with service providers increases the complexity of password changes 597

and resets, and increases risk associated with password exfiltration. Protocols such as 598

SAML and OIDC are widely supported and give service operators no access to 599

institutional credentials. Integrations with LDAP, AD, or Kerberos allow you to 600

avoid syncing passwords, but may give service operators access to password cleartext, so 601

SAML and OIDC should always be the preferred path. 602

6.4.2. Do: Avoid service-specific passwords or any password on the service 603

side whenever possible. 604

Service specific passwords are confusing to users, and increase the complexity of 605

password changes and resets. When using the SAML or OIDC protocols, ideally no 606

password needs to be provisioned to the service. If the service requires a password, even 607

though it won’t be used because of a SAML or OIDC (Google and others) then setting a 608

random complex password that is unknown to anyone can safely meet the requirement to 609

assert an abandoned password value. 610

6.4.3. Do: Use federated authentication with a unique (pair-wise) identifier 611

for each service provider. 612

Whenever possible use federated authentication to avoid the issues of password sharing. 613

Unless multiple SPs need to share a common identifier (and policy allows such sharing), 614

assign pair-wise identifiers to enhance privacy and to simplify transitions when identifiers 615

must be changed. 616

6.4.4. Do: Establish criteria to assure that the service provider's security 617

measures for protecting credentials are comparable with yours. 618

Document these criteria and hold the service provider accountable. Remember that a 619

breach of their system will be a breach of your IAM System and, potentially, all other 620

service providers that rely on it. Your security people will be a good resource for 621

developing the criteria. 622

6.4.5. Consider: Periodic audits of the service provider's compliance with 623

your criteria. 624

The need for this will depend on a number of factors. Consult with your security people 625

for what is appropriate. 626

6.4.6. Consider: Deactivating provisioned accounts, rather than deleting. 627

You may need to reactivate quickly, preserving the user's resources and state. On the other 628

hand, there may be licensing fees that must be paid, even when an account has been 629

deactivated. (See, also, the Deprovisioning section below.) 630

6.4.7. Do: Keep enough information around to, at the minimum, prevent 631

reissuing a username. 632

In addition to preventing reuse of a username, there may be files and other resources that 633

may be needed in the future. 634

6.4.8. Consider: In addition to the first factor, deactivate second-factor 635

tokens if the account no longer has access to anything. 636

Multi-factor authentication is great until a user returns to your institution several years 637

later with a new phone number, email address, or whatever external entity you were using 638

for the second factor. Suddenly, the user can’t get in to set up their account because a one-639

time password or similar code is being sent to a phone number that they haven’t had in 640

years. There’s little to no point to leaving multi-factor methods active once a user no 641

longer has access to anything of use. It only leads to challenges when they return, and has 642

the additional possible side effect of increasing licensing costs if the user is occupying a 643

license slot with an MFA vendor. As soon as the user has been deactivated and no longer 644

has access to anything of use, deprovision second factors. 645

Also consider the issues in the Deprovisioning section, below. 646

7. Service Provisioning 647

Many services require "out of band" provisioning, as opposed to "just in time" identity 648

assertions. There may be solid business reasons why a service needs to know about a user before 649

that user logs in (e.g., to tell the user how to log in), identity assertions received at the start of a 650

session being unable to enable this. It's also possible that a service is simply not technically 651

capable of receiving new identity information at the start of a session. This section discusses the 652

issues associated with service provisioning. 653

7.1. Reconciliation 654

7.1.1. Do: Ensure that source and destination are in sync. 655

Deploy processes that ensure that synchronization errors, such as missed transactions, are 656

corrected promptly. 657

7.1.2. Do: Have both targeted and full reconciliation (fully match accounts). 658

Periodic full reconciliation for all information associated with all accounts is important to 659

repair errors due to lost transactions. The need for targeted reconciliation (e.g., for a 660

particular user) can be used to repair errors or to enable (or disable) authorizations for a 661

user, before the next full reconciliation is run. 662

7.2. State Changes and Fine-Grained Authorization 663

(Continuous Access Evaluation Protocol) 664

7.2.1. Do: Look at more than institutional data for fine-grained state 665

changes. 666

Session data such as a mobile user’s location also needs to be communicated (geofencing) 667

7.2.2. Do: Keep up-to-date on emerging technologies in this area. 668

Fine-grained authorization is a developing field. 669

7.3. Communicating Updates to Service Providers 670

7.3.1. Do: Have a reconciliation process to correct missed messages or 671

reconcile out-of-sync changes in the case that the service provider did not 672

respond to the change. 673

Incremental updates can, at times fail. A periodic reconciliation process will heal any 674

damage. 675

7.3.2. Do: Have a process to handle failed updates, connections errors, etc. 676

Have a monitor to detect failures in connecting and processing updates both from your 677

registry and source systems and provisioned service providers. Test transactions with 678

expected results testing are a great way to catch non-retryable errors that effectively mean 679

your data provisioning is offline. Also include monitors for retryable errors, many times 680

sources are targets are temporarily unavailable, and detecting a transaction fail and then 681

replying the transaction when the system becomes available can prevent silent drift of 682

targets from the source of truth. Detecting a service has become available can be done by 683

polling to retry the translation, or by using a test translation to make the target as available. 684

7.3.3. Do: Have both incremental and full reconciliation. 685

Having near real time integration typically means detecting incremental changes in your 686

identity registry or source system and pushing just the changed entries to your directory. 687

Occasionally an incremental change may fail or be incomplete, or despite trying to prevent 688

it, data might get updated in a service provider. Maintain a process that is capable of 689

reconciling all of the entries in a service provider and verifying that the data matches your 690

“source of truth” identity registry and source systems. 691

7.3.4. Do: Make sure to delete service provider entries before deleting in the 692

person registry. 693

If entries are ever removed from your identity registry, ensure you have a process that 694

removes accounts in any service providers first, and the process assures the transaction 695

succeeded. Orphan service provider entries are not only difficult to clean up, but can leave 696

open application access that should have been removed. 697

7.3.5. Don’t: Permit updates from other sources to overwrite updates from 698

the person registry. 699

It is important that account and authorization data carried by registries reflects the source 700

of truth that is your identity registry and other authoritative data sources. Attributes should 701

not be changed by other systems, or be updated directly in the service provider. In cases 702

where the target directory must allow direct updates for business reasons, such as is 703

frequently the case with Active Directory, isolate via OU structures the accounts that are 704

managed by your identity system and prevent any other updates in those OUs. 705

7.4. Deprovisioning 706

Deprovisioning is the removal of access to provisioned services and plays an important role in 707

maintaining the security of electronic systems. A review of an individual’s access should occur 708

anytime that individual’s affiliation with the institution changes. Common review times are 709

when an employee terminates and when a student graduates but can also include times when an 710

individual’s role within the institution changes, such as an employee moving to a new 711

department or a student switching majors. A best practice with respect to deprovisioning is to 712

remove the entitlements and authorizations to services rather than just disabling the 713

authentication credential. This decreases the potential for someone to inherit inappropriate access 714

as would be the case if an institution recycles usernames and the new “johndoe” user 715

automatically has access to all the services that the old “johndoe” had because the entitlements 716

were never removed. It’s important to have clearly documented and published rules and time 717

frames regarding deprovisioning. Under what circumstances will I lose eligibility to Service X? 718

How long will it be after I graduate or leave employment before Service X goes away? A best 719

practice would be to send “pending service expiration” notifications or reminders to an 720

individual during that grace period time frame. Not only will your users thank you but it could 721

prevent the extra work of reinstating access if a mistake was made regarding eligibility or the 722

user’s eligibility changes during the grace period time frame. 723

Sometimes deprovisioning can also involve removal/disabling the accounts on the 724

downstream/target service . For example, terminating an employee can result in removing their 725

Box account (provided you have a policy for this). 726

You should consider the flexibility of supporting both deprovisioning via removal of access and 727

also removal of accounts for the target services. Make sure the business rules and account 728

mapping support both configurations. 729

7.4.1. Do: Gather all data you need for reporting, auditing, reactivating, etc. 730

before deprovisioning. 731

There are many reasons why you may need to access information about deprovisioned 732

access to services. The information may also be useful when it's necessary to verify a 733

user's past ownership of the identity, as well as for forensic investigation. Make sure you 734

have everything you may need before deleting. 735

7.4.2. Don’t: Forget deprovisioning, even when using just-in-time 736

provisioning. 737

Login events are typically used for just-in-time provisioning, but they cannot be used for 738

deprovisioning, since you cannot expect a login event. Some other method, probably 739

driven by periodic reconciliation processes will be needed when it's necessary to purge 740

information stored by the service or, for example, to reclaim the service provider's end-741

user licenses or other resources. 742

7.4.3. Do: Deprovision authorizations. 743

It is sometimes the case that some, but not all, permissions must be removed for an 744

individual's use of a service, based on changes received from identity sources or manual 745

changes to group membership, etc. Full deletion is not always the correct action, 746

particularly if other information is stored within the service, such as conversation 747

transcripts, videos, files, etc. 748

7.4.4. Do: Give user an opportunity to migrate data, tools, instructions, etc. 749

before they lose access (depatriation). 750

When appropriate, be sure end-users are given sufficient warning to allow them to obtain a 751

copy of their data from a service for which deprovisioning is pending. 752

7.4.5. Consider: Whether you need a process for transferring ownership of 753

the user’s data to their unit/manager/etc. 754

The "user's" data is often really the institution's. When this is the case, you will need a 755

process for transferring that data to a successor. 756

7.4.6. Do: Plan for potential repatriation (in or out: claiming accounts 757

created before provisioning, or extracting data at 758

departure/deprovisioning). 759

Deprovisioning is often followed in short order with a request for reprovisioning. Be 760

prepared for this.. 761

7.4.7. Do: Set up processes ahead of time and provide users with an 762

opportunity to preserve data (tools, instructions, etc) before deprovisioning 763

occurs. 764

7.4.8. Do: Consider that accounts may exist before provisioning occurs and 765

plan for dealing with it. 766

This may or may not include permissions from previous eligibility that should have been 767

cleaned up at deprovisioning. 768

7.4.9. Don't: Accidentally restore old permissions that should have been 769

cleaned . 770

Repatriation may not include all of the old permissions. Restore only what is needed at the 771

current time. 772

7.5. Considerations for Cloud Services 773

Cloud services, particularly commercial cloud services, present unique issues for provisioning 774

and deprovisioning, due to likely use of proprietary technical solutions and difficulties with 775

navigating corporate structures to find the "right" people. For more information see the 776

Provisioning and De-provisioning section of the Cloud Services Cookbook. 777

8. Target Directory Provisioning 778

Directories are an interesting form of service provider, in that they typically are used as identity 779

sources for other service providers. This has implications for how you provision those 780

directories. 781

8.1. Linking Identities between Directories 782

8.1.1. Do: Have one or more attributes that are unique and immutable to 783

link identities between source and target. 784

It is important to be able to resolve accounts in various systems that belong to the same 785

identity. Having one or more attributes that are in your identity registry, and in each of the 786

target directories will allow you to quickly identify accounts as changes in role, activation, 787

attributes, and entitlements change. 788

8.1.2. Do: Create an opaque institutional identifier used solely for linking. 789

Maintain an identifier to facilitate linking your directories and identity registry that doesn’t 790

contain strings that are meaningful to other aspects of the users identity. Strings like name 791

based usernames, role based account naming conventions will change over time. The more 792

opaque and limited the scope of linking identifier is, the less likely it is to change and 793

break the association of a person across directories and registries. 794

8.1.3. Don’t: Use things like NetID that may seem immutable now. 795

NetIDs are tempting identifiers since they are often recognizable, published, and known by 796

the user, however they are generally not a good choice for linking. Often NetIDs are name 797

https://wiki.refeds.org/display/FBP/Cloud+Services+Cookbook#CloudServicesCookbook-ProvisioningandDe-provisioning
https://wiki.refeds.org/display/FBP/Cloud+Services+Cookbook

based or user chosen, and as with any non-opaque identifier are subject to change. Also, 798

certain targets will have requirements that add scoping strings to the NetID for use as an 799

authenticator, for example User Principal Name in Azure or Primary Email in Google. Not 800

having a simple identifying attribute that is exactly the same in your target directories and 801

you registry my hamper identity resolution. 802

8.1.4. Do: Have a unique identifier for each of the target directories and 803

make this mapping available to the provisioning process. 804

This will be useful to differentiate between target directories that may share, for example, 805

the same Relative Distinguished Name (RDN), such as LDAP and AD. 806

8.2. Communicating Updates to Target Directories 807

8.2.1. Do: Use a reliable process or frequent deltas to push changes in as 808

close to real-time as possible in the intended manner. 809

Target directories are frequently the primary source for applications to learn about new 810

identities and retrieve needed attributes and role information about the identity holder. 811

Keeping the data in target directories as close to real time as possible means users gain, 812

and just as importantly lose, access to applications that use directories for authentication 813

and/or authorization. 814

9. Authorization 815

Authorization is an extension of institutions' processes for delegation of authority into digital 816

services and resources. Institutional policies determine which people are allowed to access a 817

service or resource, and what those people are allowed to do. Those policies may grant access 818

entirely on the basis of institutional person data already known to your IAM system, such as 819

affiliation, major, department, etc. (often referred to as "business" or "functional" 820

roles). Alternatively, the policies might require an explicit decision by someone responsible for 821

the service or resource. 822

A fundamental principle in IAM practice is "AuthN ≠ AuthZ". In other words, a user's ability to 823

authenticate (AuthN) should not imply authorization (AuthZ). Authentication only identifies who 824

the current user is, not what that user is allowed to do (authorization). Authorization is 825

determined based on information about the current user that is contained in the IAM system. 826

That said, it should be noted that protocols such as SAML and OIDC appear to combine both 827

authentication and authorization into a single step by identifying the current user and 828

transmitting information about that user in a single transaction. Logically, though, the SAML IdP 829

must perform authorization before gathering information to support an authorization decision, 830

then transmit the results of both operations in the same transaction. 831

9.1. Types of Roles 832

Business Roles are generally used to describe high level affiliations or duties/functions within an 833

organization. Examples are : Employee, Staff, Faculty, Staff, Student, Alumni, Admit Coming, 834

Guest, Contractor, etc. These can be considered high-level or “course grained” roles, as they may 835

only tell part of the story of an entity, and may be used for basic entitlements like software 836

licensing or building access. Business Roles are usually determined by institutional person data 837

obtained from the authoritative source systems. 838

IT Roles are generally used to assign access rights and entitlements for specific services and, 839

therefore, are more fine grained. IT Roles can be further categorized as follows: 840

• Application Roles describe end users' functions and entitlements, and can be further 841

divided into: 842

o Admin Roles, such as “IdM admin tool” or ”Box Admin User” 843

o End-User Roles, such as ,”Office 365 User” or "Box User” 844

• Asset Roles: This describes assets and devices that can be provided to end-users, such as 845

hardware tokens, PC, Laptop , ID badge, mobile, etc. 846

Oracle's Using Role Types to Design Flexible Roles provides more advice for the structuring of 847

roles. 848

In practice, roles are often implemented as Groups (collections of users), combined with any 849

additional information needed to describe the associated access rights and entitlements. 850

9.2. Methods of Authorization 851

The most used methods for determining access rights are Role Based Access Control (RBAC) 852

and Attribute Based Access Control (ABAC). There is a growing body of literature in this area. 853

Wikipedia provides good starting points: 854

• Role-based access control 855

• Attribute-based access control 856

(When reading these references, note that the authors often assume a person has one role. In 857

academia people often have multiple roles, such as multiple job appointments, or being both 858

student and employee.) 859

You build a collection of roles (what a person does for or with the institution), possibly add more 860

personal or environmental data (attributes), and authorize accordingly. For example, a student 861

(role) in engineering (detail), currently on campus (environmental) is authorized to access the 862

School of Engineering's student portal. 863

Whenever possible, authorization should be determined by Business Roles and identity 864

Attributes that are determined through automated processes. This allows authorization and de-865

authorization to be automated, making sure that exactly the right people have access. If "every 866

Registrar's office employee should have access to student records", or "every engineering student 867

should have access to this file share", authorization can be granted and revoked as a person's job 868

https://docs.oracle.com/cd/E19225-01/820-5822/byafw/index.html
https://en.wikipedia.org/wiki/Role-based_access_control
https://en.wikipedia.org/wiki/Attribute-based_access_control

or study field changes. When authorization is determined manually, de-authorization tends to lag 869

behind, leaving people with access they should not have. 870

All authorization processes should have periodic re-examination, often called "attestation" or 871

certification. If you have an automated process for "every Registrar's office employee should 872

have access to student records", verify that the rule is still correct, as well as the logic for 873

determining a Registrar's office employee. If authorization is manual, then each person who has 874

access should be manually verified. (See Assuring Provisioned Authorization Is Correct, below, 875

for more information.) 876

Automated creation of roles from institutional data is good, but you will need to create roles that 877

cannot be determined in this fashion. Not every access can be determined from institutional data. 878

Also, the effort to automate may be greater than the benefits. Start automating where you can get 879

the most benefit and reduce risk. 880

Authorization is usually implemented in two ways. Authorization decisions can be made in 881

advance and stored within the application (periodic updating as changes needed) that will 882

execute them, or the application can call an "AuthZ service" to request an authorization decision 883

at the time of need. The former is the traditional and still most common method, but the latter has 884

advantages and is growing in use. You will want to support both methods. 885

Commercial systems are available for implementing authorization. When investigating 886

commercial systems, make sure that they can handle the complexity of your affiliations -- people 887

who are both employee and student, multiple job appointments, etc. There is also a community-888

supported system, InCommon Grouper. 889

9.3. Designing Roles, Attributes, and Groups for 890

Authorization 891

Authorization decisions can be made on the basis of users' roles, i.e., what they do for or with the 892

institution; this is called Roll Based Access Control (RBAC). What a user does for/with the 893

institution implies a set of responsibilities and authorities, and those authorities imply access to 894

services and what those services will do for the user. Groups, lists of users, are used to represent 895

the users that fill each role. As such, RBAC authorization decisions are relatively stable over 896

time. 897

Other attributes can also be used to make authorization decisions; this is called Attribute Based 898

Access Control (ABAC). Examples of such attributes include identity information, such academic 899

department, but may also include attributes such as time of day, that are difficult to express with 900

roles when criteria are relatively dynamic over time. Judicious use of RBAC and ABAC will 901

result in a simple, yet robust design. 902

It should be noted that the distinction between the terms "role" and "group" can be fuzzy. Many 903

computer systems provide access to a resource by making everyone who is authorized member 904

of what they call a "group" or "security group". Some systems provide access similarly with 905

"security roles". This is so common that the terms "groups", "roles" and also "membership" may 906

be used to describe authorization processes, regardless of the mechanisms actually used in a 907

target system. In this document, we will try to be consistent with the definitions provided above. 908

Whenever possible, business roles and groups should be composed automatically from 909

institutional data. Think of a person’s data as determining group membership, and then granting 910

access to “all members of this group”. 911

At the highest (coarsest) level, roles describe a basic function in the institution-- faculty, student, 912

guest, contractor, employee. Depending on your needs, you may want to split employee into 913

regular and temporary, or add a campus for a large system (e.g., FacultyMadison). At a 914

university, it is common for people to have more than one affiliation. You can use these roles to 915

drive eduPersonEntitlement, and to determine access to campus level services (e.g., all students 916

get Google mail). 917

The next finer level will be determined by the access needs of organization. If you need to grant 918

access based on school or college, then define groups such as ‘student in engineering’ or ‘faculty 919

in public health’. Here too, people may be in multiple groups. 920

At successively finer levels, you may need to define groups such ‘student in English 123’ or 921

‘senior accountant in engineering’. These groups would enable you to automate access grants to 922

course materials or the financial system. 923

The following are considerations for the design of your roles, groups, and attributes. 924

9.3.1. Do: Start simple. 925

The highest level roles and groups will allow you to determine access to campus-wide 926

services. Their large size will help you work out mechanisms for computing, storing, and 927

delivering authorizations. 928

9.3.2. Do: Have a clear naming convention. 929

This includes components to identify who owns the group, who or what the group 930

represents, what resource the group has access to, and how that group has an effect on that 931

resource. Naming varies based on the type of registry that is storing the data. For example, 932

Grouper uses its folder (stem) path as part of the group name: “app:splunk:index:firewall2-933

read” shows the group “firewall2-read” as part of the stem “index”, beneath the “splunk” 934

stem, and thus under “app”. This clearly indicates the ownership (Splunk service), the 935

resource (some index named firewall2) and the effect or action (read). 936

9.3.3. Do: Express RBAC for Business roles. 937

These permissions usually map to specific operations on one or more resources. The idea 938

of RBAC is that you map the role once to the specific set of permissions. The on-going 939

maintenance is simply the membership of those entities in that RBAC role. 940

9.3.4. Do: Express ABAC for your IT roles. 941

Attribute Based Access Control can give you more flexibility to add additional information 942

to the role. For example, A Business role “Staff” can be assigned multiple IT roles as 943

attributes such as “Box Admin” “Office 365 User”. Similarly, a person with a location of 944

"Communicable Diseases Lab" might be granted access to an application that admits 945

guests to the facility. This will help you avoid role explosion. Reference NIST 800-162 946

for more details. https://csrc.nist.gov/publications/detail/sp/800-162/final 947

 948

ABAC can facilitate complex rule sets from multiple identity attributes and allow for the 949

creation of automatic groups based on those attribute values. For example, any student 950

with two attributes “HomeCollege=Engineering” and “CurrentTermRegistered=true” 951

could be the supporting details going into an ABAC group of all currently-enrolled 952

engineering students. 953

9.3.5. Do: Consider the tradeoff of adding, for example, location or 954

department as roles, as opposed to attributes. 955

Since a role maps to permissions, generally an organizational component (academic unit or 956

building) does not map to a permission. For example, “The Math Building” doesn’t 957

convey a permission, but rather a resource. You can create cohorts or groups based on a 958

person’s location or department, which can be used in ABAC policies. 959

9.3.6. Do: Follow common concepts provided in documentation such as 960

InCommon’s Grouper Deployment Guide. 961

The Grouper Deployment Guide's advice is largely independent of your particular 962

group/role management platform. 963

9.3.7. Do: Have clear and complete documentation of the design of your 964

authorization architecture. 965

Your clients, co-workers, successors (and auditors) will love you for this. 966

 967

9.4. Implementing Roles, Attributes, and Groups for 968

Authorization 969

The following are considerations for the implementation of your roles, groups, and attributes. 970

9.4.1. Do: Consider how you will handle authorizations that change en 971

masse with academic term/sessions. 972

https://csrc.nist.gov/publications/detail/sp/800-162/final
https://spaces.at.internet2.edu/display/Grouper/Grouper+Deployment+Guide

This is especially true if you authorize access based on enrollment in a class. 973

9.4.2. Do Consider allowing grace periods for de-authorization. 974

Consider grace periods to ensure continuity of service (and to reduce the disruption of 975

large volumes of changes smoothly) when de-authorization is likely to be followed by re-976

authorization in a short period of time. For example, authorizations granted to all students 977

are probably best continued between the end of one term and the start of the next, unless it 978

is know that a student is not returning. Also, consider how you will inform people that they 979

have entered a grace period. 980

9.4.3. Consider: How to to grant access to someone who does not meet the 981

automatic criteria, or deny access to some who does meet them. 982

Consider how can you do that in such a way that the exception will have time limits, or 983

trigger periodically reevaluations. 984

9.4.4. Do: Consult with your institution’s auditors on any requirements for 985

maintaining a history of access decisions. 986

You will likely find your internal auditors to be strong partners as you build your IAM 987

service. 988

9.4.5. Do: Keep authentication systems separate from enforcing 989

authorization decisions, where possible. 990

Attributes and entitlements should be handed off to the service for it to handle its own 991

authorization enforcement. For Services that lack proper authorization mechanisms, use a 992

groups registry (e.g., Grouper or groups in Active directory) to set an access policy where 993

the IdP becomes the policy enforcement point by allowing/denying access at the IdP. 994

9.4.6. Do: Adopt product-specific best practices where applicable. 995

A good example is the Grouper Deployment Guide for Grouper. We emphasize this 996

model, as Grouper has grown to become a popular open-source solution to group and role 997

management among higher-ed institutions. As always, avoid adopting practices that create 998

heavy dependencies on your current platform. 999

9.5. Computing, Storing, and Delivering Authorization 1000

Decisions 1001

Authorization decisions may be pre-computed and stored as roles, groups, and/or attributes, or 1002

they can be computed "just in time," when a service or resource requests it. The choice depends 1003

on a number of factors, most importantly whether the decision includes consideration of 1004

https://spaces.at.internet2.edu/display/Grouper/Grouper+Deployment+Guide

information that changes over time, like time of day or location, or if the decision includes only 1005

information that is updated at known times by the IAM system. Other factors, such as storage vs. 1006

compute cost and complexity may also be relevant. 1007

9.5.1. Do: Reconcile and re-compute the decisions periodically when 1008

authorization decisions are pre-computed. 1009

Consider the acceptable lag time between when a person's information is updated and 1010

when an authorization decision is computed and stored. This is often very short (e.g., sub-1011

second), requiring event-driven computation, but even when it is not, regularly-scheduled 1012

reconciliations should be established to meet institutional and end-user expectations, as 1013

well as to recover from missed event-driven transactions. 1014

9.5.2. Do: Implement "just in time" computation of authorization decisions 1015

when policy dictates consideration of factors that change over time. 1016

This is information, usually associated with the current session, such as time of day, 1017

location, authentication method (e.g., password, X.509 certificate, biometrics, MFA 1018

token) or behavior patterns. 1019

9.5.3. Do: Make sure the service provider is authorized to inquire about the 1020

particular authorization. 1021

Ensure that your attribute release policies support service providers' need to query for roles 1022

and attributes that have been determined to be required for authorization decisions. 1023

9.5.4. Do: Communicate fine-grained institutional changes to services when 1024

appropriate. 1025

Ensure that service providers have the information that it's been determined they need. 1026

10. Assuring Provisioned Authorization Is 1027

Correct 1028

Your IAM system likely interfaces with multiple sources of thousands to hundreds of thousands 1029

of identities to support tens to hundreds of services and resources. The advice in this cookbook 1030

will help you deal with this large scale, but errors will, undoubtedly occur. This section discusses 1031

attestation and audit, two IT governance processes designed to catch those errors and correct 1032

them. 1033

10.1. Attestation to Review Access Decisions 1034

Attestation is a process whereby the people who are responsible for services are asked to verify 1035

that the IAM system is correctly configured to support authorization decisions by their service. 1036

This includes both how users are selected to be provisioned, as well as any entitlements that are 1037

associated with those users. The attestation process should be designed to verify entitlements, 1038

roles, and other attributes that are used to provision and deprovision service-specific permissions, 1039

as described in the Service Provisioning section. 1040

10.1.1. Do: Focus on what really needs a human to consider. 1041

If access is granted by rule based on institutional data, only the rule needs periodic 1042

attestation -- not the individual grants. 1043

10.1.2. Do: Make attestations understandable, so it is clear what is being 1044

attested to. 1045

Make sure this is well documented. If possible create the documentation in partnership 1046

with the person responsible for the service at the time the service is integrated with your 1047

IAM system. 1048

10.1.3. Consider: Attestations' effect on resulting deprovisioing processes. 1049

Changes to a person's entitlements, roles, etc., due to attestation, may initiate provisioning 1050

and/or deprovisioning. This should be considered when establishing grace periods, etc. 1051

10.1.4. Consider: Attestations that are not completed should result in access 1052

suspension until completed. 1053

If the party responsible for the attestation has not responded to the attestation review on 1054

time, before the system can take action to remove access, it should first send escalation a 1055

few times before access deprovisioning happens. The escalation should support multiple 1056

levels, both horizontal (peers) and vertical (management). 1057

10.2. Audit 1058

Periodic audits of IAM processes is a more holistic review of your IAM system and its 1059

relationships with the rest of your institution's IT ecosystem. It may include, for examples, 1060

service managers' policies for the assignment of roles and entitlements, as well as the operation 1061

of your IAM system, in light of institutional policy, regulatory requirements, and industry best 1062

practice. 1063

10.2.1. Do: Involve your institution’s auditors early and often. 1064

They can be a great help in designing your system and processes to facilitate regular 1065

reviews to minimize the time incorrect information remains in your system. 1066

10.2.2. Do: Schedule regular “full review” processes starting from 1067

destination content and working backwards. 1068

Audits require a reasonable amount of effort, easily postponed. Establishing a a regular 1069

schedule for this work will help ensure that it is not forgotten. 1070

10.2.3. Do: Schedule regular review of authorization processes. 1071

Because auditing data can add up so quickly, consider adding/exporting data to an 1072

external database on a schedule compatible with the regular "full" and authorization 1073

reviews. This will help performance significantly . 1074

11. Product Lifecycle 1075

Over time, an increasing number of services will rely on the provisioning functions of your IAM 1076

System. When selecting provisioning products (software or service, open source or commercial, 1077

on-premise or off-premise, SaaS or IaaS) for use in your IAM System, as well as the services 1078

you are provisioning, it is important to consider the eventual end of life of that product, as well 1079

as how you will integrate that product initially. 1080

11.1. Product Onboarding 1081

There are many issues you must address in the selection and deployment of a new product. The 1082

following are specific to provisioning. 1083

11.1.1. Do: Have a plan for loading your data into the product. 1084

This is likely to be a combination of migrating existing provisioning-related data, as well 1085

as new data that may be required by the new product. Services you provision may also 1086

store user-owned data that must be loaded, particularly when migrating from a competing 1087

product. 1088

11.1.2. Do: Understand (and mitigate) the risks for sensitive data. 1089

This is particularly true of cloud-based products. 1090

11.1.3. Do: Understand the provisioning "hooks" in the product. 1091

Understand what out-of-the-box connectors included in the products. Can the product be 1092

customized to add or extend new connectors? This includes triggers to initiate provisioning 1093

actions, service provider integrations, etc. 1094

11.1.4. Do: Understand how you will map roles and attributes to 1095

provisioned service provider permissions. 1096

Maintain interface mapping documentation while onboarding service providers, keeping 1097

tabs on the attributes, default values, transformations, schema validations (field type, 1098

character lengths, nullable, etc). Also consider how attributes affect provisioned 1099

permissions. Can the mapping be configured (e.g., via a GUI or by editing files) without 1100

developing software code? 1101

11.1.5. Consider: How the product's license terms may affect cost as your 1102

institution's use of the product grows. 1103

Is it a flat fee? Does it increase with population growth, number of "seats," storage 1104

requirements, etc.? Does it consider alumni, or other internal or external users? Does it 1105

use a standard size-ranking structure, such as IPEDS? Will the cost structure require you 1106

to restrict usage or to offboard no-longer-eligible users with shortened grace periods? 1107

11.1.6. Consider: Whether and how the product can be customized, and 1108

who can do the customization. 1109

IAM system requirements are often very unique to each institution, requiring unique 1110

customization. This issue is particularly important for SaaS IAM services, where the 1111

vendor has control over the deployment, as well as the software implementation. 1112

11.1.7. Do: Consider all other technology acquisition issues that are not 1113

specifically related to IAM. 1114

This includes ongoing maintenance, vendor stability, ease of deployment, etc. 1115

11.2. Product Offboarding 1116

When selecting and onboarding a new product, consider your eventual exit strategy. 1117

11.2.1. Do: Know how you will retrieve your data, workflows, 1118

procedures, etc. from the old product. 1119

Avoid products that do not have clear ways to do this. 1120

11.2.2. Do: Know how sensitive data will be destroyed. 1121

This is particularly important for cloud-based provisioning services. 1122

 1123

 1124

	Big Ten Academic Alliance Provisioning Cookbook
	1. Introduction
	2. Problem Statement
	2.1. The IAM Business Function and the IAM System

	3. Basic Concepts
	3.1. Identity and Subject
	3.2. Identifiers
	3.2.1. Uses for Identifiers
	3.2.2. Types of Identifiers

	3.3. Affiliations, Roles, Groups, and Other Attributes
	3.4. Provisioning Models

	4. Identity Provisioning
	4.1. Identity Matching
	4.1.1. Do: Use a scoring system that separates new identities into positive matches, unmatched, and potential matches.
	4.1.2. Do: Establish a process for putting potential matches in a suspense group for manual review and reconciliation.
	4.1.3. Do: Establish a process to correct mistakes made either in the automated or manual identity matching processes.
	4.1.4. Consider: Products and processes that facilitate matching such as phonic and fuzzy name matching, and address standardization.

	4.2. Institutional Username Assignment
	4.2.1. Consider: Self selection vs. assigned usernames.
	4.2.2. Do: Allow changes for good reason.
	4.2.3. Don’t: Reassign a username to a different person.
	4.2.4. Do: Make sure the namespace is large enough to not run out for many years.
	4.2.5. Do: Check for a user’s existing identity at the institution before assigning a new username.
	4.2.6. Do: Have a list of usernames that should not be used.

	4.3. Identifiers for Services and Target Directories
	4.3.1. Do: Maintain an opaque identifier that won’t change over an entity's life cycle.
	4.3.2. Do: Consider an external identifier different than the internal identifier used by in-house applications.

	4.4. Social IDs
	4.4.1. Do: Consider where account linking of social IDs to institutional accounts might be appropriate and where it might not.
	4.4.2. Do: Consider whether social ID can be a step in onboarding/offboarding.
	4.4.3. Do: Consider Level of Assurance LOA when using social IDs.
	4.4.4. Don’t: Assume all services do proper authorization and make them aware of the LOA concept.
	4.4.5. Do: Identity matching, even with social IDs.

	5. Identity Lifecycle
	5.1. State and Affiliation Changes
	5.1.1. Do: Capture changes in affiliations/roles that matter for service entitlements.
	5.1.2. Do: Work with service providers to ensure service entitlements are being handled correctly.
	5.1.3. Don’t: Overdo state changes.
	5.1.4. Do: Account for users with multiple overlapping affiliations.
	5.1.5. Do: Designate a "primary" affiliation for each user.

	5.2. Grace Periods
	5.2.1. Do: Make grace periods.
	5.2.2. Do: Work with stakeholders to determine how long a grace period should last.
	5.2.3. Don’t: Overextend a grace period if it compromises security.
	5.2.4. DO: Allow for immediate deactivation when necessary.

	5.3. Deactivation
	5.3.1. Do: Retain minimal data when deactivating an identity.
	5.3.2. Do: Establish policies and processes to reinstate disabled identities.
	5.3.3. Do: Communicate with service providers to inform them of timelines for deactivating identities.
	5.3.4. Don’t: Deactivate or delete identities without communicating.

	6. Passwords, Multi-Factor Authentication, and Provisioning
	6.1. Password Rules and Policies
	6.1.1. Do: Limit the number of different passwords that users need to remember.
	6.1.2. Do: Encourage single signon.
	6.1.3. Do: Consider the password policy advice from NIST (currently Special Publication 800-63B).
	6.1.4. Don’t: Require frequent password changes.
	6.1.5. Consider: Passwordless authentication.

	6.2. Initial Password Setting
	6.2.1. Do: Transmit account claiming information securely using activation codes or short-lived links.
	6.2.2. Do: Perform additional identity proofing during the account claiming process.

	6.3. Assignment of Additional Authentication Factors
	6.3.1. Do: Use multiple factors for authentication when possible.
	6.3.2. Do: Use additional validation to password for adding or modifying MFA.

	6.4. Provisioning and Deprovisioning of Credentials
	6.4.1. Don’t (if possible): Provision credentials when a federation option is available.
	6.4.2. Do: Avoid service-specific passwords or any password on the service side whenever possible.
	6.4.3. Do: Use federated authentication with a unique (pair-wise) identifier for each service provider.
	6.4.4. Do: Establish criteria to assure that the service provider's security measures for protecting credentials are comparable with yours.
	6.4.5. Consider: Periodic audits of the service provider's compliance with your criteria.
	6.4.6. Consider: Deactivating provisioned accounts, rather than deleting.
	6.4.7. Do: Keep enough information around to, at the minimum, prevent reissuing a username.
	6.4.8. Consider: In addition to the first factor, deactivate second-factor tokens if the account no longer has access to anything.

	7. Service Provisioning
	7.1. Reconciliation
	7.1.1. Do: Ensure that source and destination are in sync.
	7.1.2. Do: Have both targeted and full reconciliation (fully match accounts).

	7.2. State Changes and Fine-Grained Authorization (Continuous Access Evaluation Protocol)
	7.2.1. Do: Look at more than institutional data for fine-grained state changes.
	7.2.2. Do: Keep up-to-date on emerging technologies in this area.

	7.3. Communicating Updates to Service Providers
	7.3.1. Do: Have a reconciliation process to correct missed messages or reconcile out-of-sync changes in the case that the service provider did not respond to the change.
	7.3.2. Do: Have a process to handle failed updates, connections errors, etc.
	7.3.3. Do: Have both incremental and full reconciliation.
	7.3.4. Do: Make sure to delete service provider entries before deleting in the person registry.
	7.3.5. Don’t: Permit updates from other sources to overwrite updates from the person registry.

	7.4. Deprovisioning
	7.4.1. Do: Gather all data you need for reporting, auditing, reactivating, etc. before deprovisioning.
	7.4.2. Don’t: Forget deprovisioning, even when using just-in-time provisioning.
	7.4.3. Do: Deprovision authorizations.
	7.4.4. Do: Give user an opportunity to migrate data, tools, instructions, etc. before they lose access (depatriation).
	7.4.5. Consider: Whether you need a process for transferring ownership of the user’s data to their unit/manager/etc.
	7.4.6. Do: Plan for potential repatriation (in or out: claiming accounts created before provisioning, or extracting data at departure/deprovisioning).
	7.4.7. Do: Set up processes ahead of time and provide users with an opportunity to preserve data (tools, instructions, etc) before deprovisioning occurs.
	7.4.8. Do: Consider that accounts may exist before provisioning occurs and plan for dealing with it.
	7.4.9. Don't: Accidentally restore old permissions that should have been cleaned .

	7.5. Considerations for Cloud Services

	8. Target Directory Provisioning
	8.1. Linking Identities between Directories
	8.1.1. Do: Have one or more attributes that are unique and immutable to link identities between source and target.
	8.1.2. Do: Create an opaque institutional identifier used solely for linking.
	8.1.3. Don’t: Use things like NetID that may seem immutable now.
	8.1.4. Do: Have a unique identifier for each of the target directories and make this mapping available to the provisioning process.

	8.2. Communicating Updates to Target Directories
	8.2.1. Do: Use a reliable process or frequent deltas to push changes in as close to real-time as possible in the intended manner.

	9. Authorization
	9.1. Types of Roles
	9.2. Methods of Authorization
	9.3. Designing Roles, Attributes, and Groups for Authorization
	9.3.1. Do: Start simple.
	9.3.2. Do: Have a clear naming convention.
	9.3.3. Do: Express RBAC for Business roles.
	9.3.4. Do: Express ABAC for your IT roles.
	9.3.5. Do: Consider the tradeoff of adding, for example, location or department as roles, as opposed to attributes.
	9.3.6. Do: Follow common concepts provided in documentation such as InCommon’s Grouper Deployment Guide.
	9.3.7. Do: Have clear and complete documentation of the design of your authorization architecture.

	9.4. Implementing Roles, Attributes, and Groups for Authorization
	9.4.1. Do: Consider how you will handle authorizations that change en masse with academic term/sessions.
	9.4.2. Do Consider allowing grace periods for de-authorization.
	9.4.3. Consider: How to to grant access to someone who does not meet the automatic criteria, or deny access to some who does meet them.
	9.4.4. Do: Consult with your institution’s auditors on any requirements for maintaining a history of access decisions.
	9.4.5. Do: Keep authentication systems separate from enforcing authorization decisions, where possible.
	9.4.6. Do: Adopt product-specific best practices where applicable.

	9.5. Computing, Storing, and Delivering Authorization Decisions
	9.5.1. Do: Reconcile and re-compute the decisions periodically when authorization decisions are pre-computed.
	9.5.2. Do: Implement "just in time" computation of authorization decisions when policy dictates consideration of factors that change over time.
	9.5.3. Do: Make sure the service provider is authorized to inquire about the particular authorization.
	9.5.4. Do: Communicate fine-grained institutional changes to services when appropriate.

	10. Assuring Provisioned Authorization Is Correct
	10.1. Attestation to Review Access Decisions
	10.1.1. Do: Focus on what really needs a human to consider.
	10.1.2. Do: Make attestations understandable, so it is clear what is being attested to.
	10.1.3. Consider: Attestations' effect on resulting deprovisioing processes.
	10.1.4. Consider: Attestations that are not completed should result in access suspension until completed.

	10.2. Audit
	10.2.1. Do: Involve your institution’s auditors early and often.
	10.2.2. Do: Schedule regular “full review” processes starting from destination content and working backwards.
	10.2.3. Do: Schedule regular review of authorization processes.

	11. Product Lifecycle
	11.1. Product Onboarding
	11.1.1. Do: Have a plan for loading your data into the product.
	11.1.2. Do: Understand (and mitigate) the risks for sensitive data.
	11.1.3. Do: Understand the provisioning "hooks" in the product.
	11.1.4. Do: Understand how you will map roles and attributes to provisioned service provider permissions.
	11.1.5. Consider: How the product's license terms may affect cost as your institution's use of the product grows.
	11.1.6. Consider: Whether and how the product can be customized, and who can do the customization.
	11.1.7. Do: Consider all other technology acquisition issues that are not specifically related to IAM.

	11.2. Product Offboarding
	11.2.1. Do: Know how you will retrieve your data, workflows, procedures, etc. from the old product.
	11.2.2. Do: Know how sensitive data will be destroyed.

