
Running the InCommon Trusted Access Platform in the Cloud 
“Look Ma, No Servers!”

PRESENTER NAME:
Keith Wessel University of Illinois - Urbana-Champaign
Ethan Kromhout University of North Carolina - Chapel Hill
Erik Coleman University of Illinois - Urbana-Champaign
William Thompson Lafayette College
Chris Hyzer University of Pennsylvania
Christopher Hubing Internet2

https://meetings.internet2.edu/2019-technology-exchange/speakers/5698/
https://meetings.internet2.edu/2019-technology-exchange/speakers/6448/
https://meetings.internet2.edu/2019-technology-exchange/speakers/6451/
https://meetings.internet2.edu/2019-technology-exchange/speakers/5940/
https://meetings.internet2.edu/2019-technology-exchange/speakers/5480/
https://meetings.internet2.edu/2019-technology-exchange/speakers/6400/


[ 2 ][ 2 ]

Trusted Access Platform on 
GKE

Migrating a docker-compose 
built demonstration 

environment into Google 
Kubernetes

Ethan Kromhout



The “Complex Demo”

● Created by Pavol Mederly of Evolveum, 
building on the Grouper test 
docker-compose.

● Includes midPoint, Grouper, Shibboleth 
IdP,  LDAP directory, and sample source 
of record.

● Builds a nice demonstration and testing 
environment with several Trusted 
Access Platform components and 
sample data



Kubernetes in GCP 
New to GCP and Kubernetes, embarked on a learning exercise.
Lesson 1: GCP makes building Kubernetes clusters trivial (GKE).
In about 3 minutes, you have a 3 node cluster with one button access.



Migration to Kubernetes 
Lesson 2: Scripts like Kompose are a start, but …

• No support for converting secrets.
• The complex demo builds needed data into volumes.
• Images need to be available in a repository open to GCP

SECRETS

Secrets can be easily copied to GCP Kubernetes via kubectl
kubectl create secret generic grouper.hibernate.properties --from-file 
configs-and-secrets/grouper/application/grouper.hibernate.properties



Migration to Kubernetes 
VOLUMES

The docker client can be used to dump out volumes into tar files by running temporary 
containers.
docker run --rm --volumes-from complex_grouper_data_1 -v $(pwd):/tmp busybox tar cvf 
/tmp/complex_grouper_data.tar /var/lib/mysql

Kompose takes care of generating YAML files for persistent volume claims to be volumes in 
kubernetes.

Temporary pods can be used as bridge points to get config files and  tar files up into GCP 
Kubernetes and to untar the files.



Migration to Kubernetes 
VOLUMES Continued

kubectl cp configs-and-secrets/grouper/shibboleth/shibboleth2.xml  
grouper-ws-load-data:/etc/shibboleth

kubectl cp complex_grouper_data.tar grouper-data-load-data:/tmp

kubectl exec grouper-data-load-data  mv /tmp/complex_grouper_data.tar /

kubectl exec grouper-data-load-data  tar xf complex_grouper_data.tar



Migration to Kubernetes 
IMAGES

GCP provides an easy to use image repository with every project. We just need to tag and 
push the existing local images.

docker tag complex_grouper_data gcr.io/rcgrant-kromhout-test/complex_grouper_data

docker push gcr.io/rcgrant-kromhout-test/complex_grouper_data



Wrapping up 
The completed set of YAML, kubectl, and docker commands with a wrapper build script is 
available on GIT
https://github.com/ekromhout/midPointComplexDemoKubernetes.git

Thank you Google for the easy implementation and great documentation.

Also thank you mrbobbytables and recommend this excellent tutorial 
https://github.com/mrbobbytables/k8s-intro-tutorials

Lastly thank you Sara Jeans for the original title of this presentation: 
“Takeout containers for your K8s Lo Mein: Hosting the Trusted Access Platform on Google 
Cloud Platform Kubernetes GKE”

https://github.com/ekromhout/midPointComplexDemoKubernetes.git
https://github.com/mrbobbytables/k8s-intro-tutorials


[ 10 ][ 10 ]

Bill Thompson



[ 11 ][ 11 ]



[ 12 ][ 12 ]



[ 13 ][ 13 ]



[ 14 ][ 14 ]

Grouper (and more)
Running in AWS

Eric Coleman
Keith Wessel



[ 15 ]

Illinois’ Cloud-First Strategy

• Organization-wide effort to move to cloud-hosted services
• AWS adopted first, Azure and GCP added later
• Organization-wide "DevOps" model for all central application services
• Preference for AWS EC2 (standalone instances) or AWS ECS Fargate 

(Docker containers)
• Terraform: cloud infrastructure as code
• Drone: container orchestration
• Github: the repositories



[ 16 ]

Our CI/CD Process

Github 
Version 
Control

Continuous 
Integration 

(Drone)

AWS 
Fargate

(Staging)

AWS 
Fargate
(PROD)

Quality Assurance 
and Testing

Feature Request
Patching
Upgrade

Amazon 
S3

Amazon 
ECR



[ 17 ]

Grouper’s AWS Infrastructure at Illinois

Grouper 
Daemon

Grouper 
UI

Grouper 
Webservice

Grouper 
Database 
(MariaDB)

Grouper 
GSH

(Admin)

EC2 ECS 
Fargate RDS Cloud9

ALB

via
HTTPS 

Endpoints



[ 18 ]

Things We Learned - Secret Storage

• Bad idea: Store passwords in Github
• Good idea: Store passwords in S3
• Great idea: Use AWS SSM Parameter Store
• Secrets can also be stored in your CI/CD and built into the image



[ 19 ]

Things We Learned - Secret Storage

grouper-loader.properties

containers.json



[ 20 ]

Things we learned - Logging

• Ship logs out of container (Cloudwatch)
• Lambda function to pull Cloudwatch into Splunk
• Container-agnostic -- instance handles all Cloudwatch logs
• One HTTP Event Collector per Splunk index



[ 21 ]

Things we learned - Admin Console

● SSH into containers is tricky
● Chose AWS Cloud9 IDE
● Inbound access by AWS Role
● Outbound access by Security Groups
● Built-in Linux Shell

○ AWS CLI
○ Docker build
○ Git push
○ Launch Grouper Shell
○ Run MySQL CLI



[ 22 ][ 22 ]

Penn 
Grouper to AWS

Chris Hyzer
Migrated October 26, 2019



[ 23 ]

Legacy architecture
On prem architecture

• Oracle shared DB with home grown IDM
• Tomcat not running in container
• Running like other Penn Java webapps
• Need performance improvements (shared Oracle RAC DB)
• Cloud as strategic direction
• Better availability not on prem
• Executive goal
• Did not autoscale

– 5 daemon
– 5 UI
– 5 WS
– Overkill when non peak



[ 24 ]

New design



[ 25 ]

New 
design



[ 26 ]

AWS components

• Gitlab - Private repo for each env. Webhooks for auto-deploy
• Jenkins - Deployment automation.  Gitlab tools for integrated automations.  
• Slack - Output Jenkins job logs to channel
• AppELB - End user application endpoint. HTTPS end to end
• ECR - Docker container registry
• Fargate - Application container hosting
• Secrets Manager - Store db and morph passwords
• Cloudwatch - Send all AWS service related and application logs to log groups
• RDS for Postgres- Encrypted data at transit and rest.  Multi AZ for prod. 
• Route 53 - Create cname entry for RDS endpoints.



[ 27 ]

Envs

• Prod
– UI: min 1 container
– WS: min 3 containers
– Daemon: 2 containers (8 gig memory)
– GSH: 1 container

• Non-prod
– UI: min 1 container
– WS: min 1 container
– Daemon: 1 container
– GSH: 1 container

• Started with 3 envs, we could spin up another if needed



[ 28 ]

Configuration in DB

• If configuration in DB that is migrated with DB migration
– Compare config files and import into UI

• Need to make sure firewalls are open to / from all endpoints
• Most passwords encrypted in database

– Except DB and morph
– Passwords from password manager in env variables



[ 29 ]

Data migrations

• Migrated from Oracle to postgres
• Needed some Grouper database back on site
• Needed subject source kept in sync from on-site to AWS
• Need Grouper memberships for shib copied to shib database
• Generally using “Grouper SQL database provisioning”

– Need to use this more and make it incremental as well as full sync

https://spaces.at.internet2.edu/display/Grouper/Grouper+SQL+database+provisioning


[ 30 ]

Performance

• Our Oracle on-prem had performance issues
• Aurora postgres is peppier
• Latencies can be a problem (e.g. provisioning to LDAP)
• WS are faster though extra latency



[ 31 ]

WS migration experience

• Smooth
• Some performance issues that were resolved
• Timeout of large queries had to be adjusted in some places (e.g. ELB)
• Did not have memory set correctly



[ 32 ]

UI migration experience

• Smooth
• Did not have memory set correctly
• Missing some files that were on server and not in container overlay
• Some links to old URLs did not migrate correctly

– Bookmarks



[ 33 ]

Daemon migration experience

• Bumpy
• Did not have memory set correctly
• Needed a lot more memory (went from 5 servers down to 2)
• Data migrations needed to be dealt with
• Change “grouper” database connection to point to old database
• PSPNG slower in cloud (due to latency?) 

– We also coincided with more usage
• Wackamole of issues



[ 34 ]

Post migration

• Made some fixes
• Like the git -> deploy model

– Approval request sent via slack
• Some changes made quickly and easily
• Going well



[ 35 ][ 35 ]

Internet2 
Collaboration 

Platform

Chris Hubing
Running in AWS



[ 36 ]

Internet2 Collaboration Platform
• Using InCommon Trusted Access Platform containers

– COmanage (container) as registry

– Grouper (containers UI, WS, Loader) for Access Management

– SATOSA (container) as an IDP proxy

– RabbitMQ (container) as message queue

– Midpoint (container) for provisioning (not in prod yet)



[ 37 ]

Internet2 Collaboration Platform
• Confluence, JIRA, Sympa, AWS, GitHub, Jenkins are SAML 

domesticated

• Running in AWS Elastic Container Service (ECS) 

• Github Enterprise for repositories (github.internet2.edu)

• Jenkins automated builds 

• Cloudformation (JSON template) for infrastructure as code



[ 38 ]



[ 39 ]

Container Update Process - Midday Deployment



[ 40 ]



[ 41 ]



[ 42 ]

     12 "AWS::EFS::MountTarget" 
      9 "AWS::Route53::RecordSet"
      7 "AWS::ECS::TaskDefinition"
      7 "AWS::ECS::Service"
      6 "AWS::ElasticLoadBalancingV2::TargetGroup"
      4 "AWS::ElasticLoadBalancingV2::LoadBalancer"
      4 "AWS::ElasticLoadBalancingV2::Listener"
      4 "AWS::EC2::SecurityGroup"
      2 "AWS::RDS::DBSubnetGroup"
      2 "AWS::RDS::DBInstance"
      

Cloudformation Resources Utilized
      2 "AWS::Logs::LogGroup"
      2 "AWS::ElasticLoadBalancingV2::ListenerRule"
      2 "AWS::EFS::FileSystem"
      1 "AWS::S3::BucketPolicy"
      1 "AWS::S3::Bucket"
      1 "AWS::ECS::Cluster"
      1 "AWS::EC2::SecurityGroupIngress"
      1 "AWS::CloudTrail::Trail"
      1 "AWS::AutoScaling::LaunchConfiguration"
      1 "AWS::AutoScaling::AutoScalingGroup"



[ 43 ]

Internet2 Collaboration Platform - Lessons and Future
• Have a VM in the VPC you can spin up containers for 

debugging/testing
• Velocity and Quality of deployments has increased
• Secrets Manager - currently secrets are stored in encrypted S3 

bucket (but be careful switching RDS to it)
• Fargate EKS (just announced at AWS re:Invent last week)
• Move Github and Jenkins into Prod

• Go grab our/your code (github.internet2.edu)



[ 44 ]

Questions?

Keith Wessel University of Illinois - Urbana-Champaign
Ethan Kromhout University of North Carolina - Chapel Hill
Erik Coleman University of Illinois - Urbana-Champaign
William Thompson Lafayette College
Chris Hyzer University of Pennsylvania
Christopher Hubing Internet2

https://meetings.internet2.edu/2019-technology-exchange/speakers/5698/
https://meetings.internet2.edu/2019-technology-exchange/speakers/6448/
https://meetings.internet2.edu/2019-technology-exchange/speakers/6451/
https://meetings.internet2.edu/2019-technology-exchange/speakers/5940/
https://meetings.internet2.edu/2019-technology-exchange/speakers/5480/
https://meetings.internet2.edu/2019-technology-exchange/speakers/6400/

