A Modular, User-Centric Security Analysis of OpenStack

Ran Canetti[†], Marten van Dijk[‡], Jason Hennessey[†], Kyle Hogan[†],

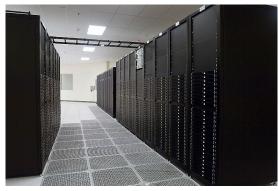
Hoda Maleki‡, Mayank Varia†, Reza Rahaeimehr and Haibin Zhang‡

†Boston University ,‡University of Connecticut

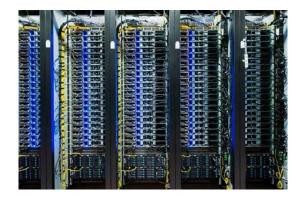
6

Outlines

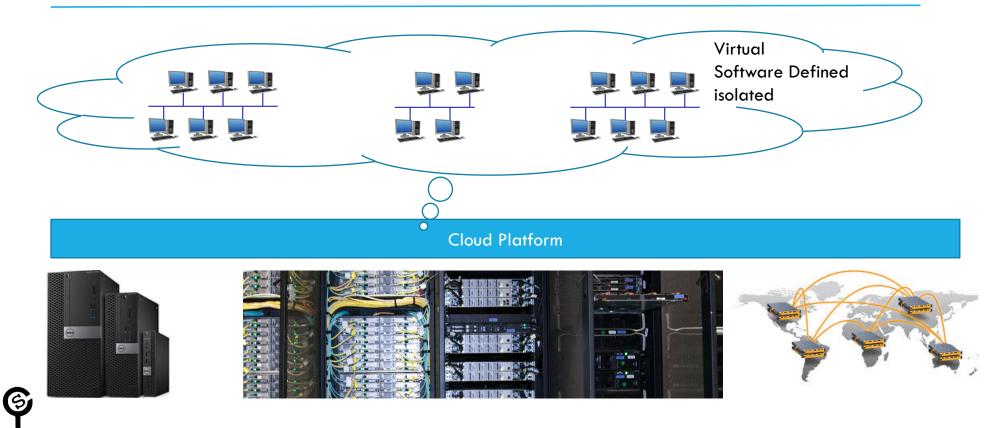
- Introduction
 - Cloud Computing
 - OpenStack
 - Universal Composability
- Universal Composability
- Analysis Approach
- Conclusion


Infrastructure

Challenges


- Deploying new applications
- Running multiple applications
- Scaling up/down the share of each application
- Different security requirements
- Protecting against the vulnerabilities of the other applications
- ...

G



Cloud Computing

4

Ģ

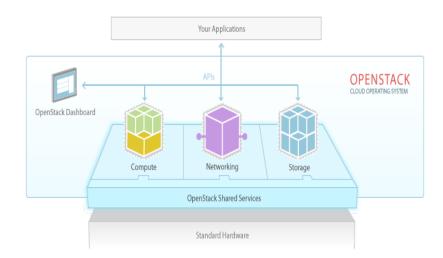
Cloud Security Issues

- Cloud Platform
 - Huge software
 - Many bugs
- Cloud serves several different applications
 - Isolation
 - Shared underling hardware; Side channel attacks
 - Buggy code
- Cloud serves many people
 - Attackers, Hackers
 - Privacy, Confidentiality

\$

OpenStack

•Reliable Open Source Cloud Platform


- •Widely Used
 - 71% of clouds in production or full operational use
- •Infrastructure as a Service (laaS)

•Highly Modular

- 23 main modules
- Many plug-ins
- •Community based development Model
 - More than 6500 contributors

Rapidly growing

• 6-month cycles

Ş

Main Services

Optional Services

\$

OpenStack Security Issues

- Cloud issues
- Difficulty of security analysis
 - More than 3.5 million lines of code
 - More than 6,500 contributors
- Lack of clear security model
- Not well defined APIs
- Lots of plug ins
 - VMM: KVM, XEN, Hyper-V, VMware

G

Solution?

Universal Composability

Universal Composability

- General-purpose model for security analysis of protocols
- Perfect for modular systems
- Common understanding and common language
- Introduced by Ran Canetti in 2000

UCONN Universal Composability-Overview

- Secure protocols remain secure
- Security proof based on emulation
- A protocol emulates another one,
 - if no environment (observer) can distinguish the executions
 - P1 ≈ P2

Ģ

Universal Composability Analysis of OpenStack

Goals

- Better understanding of OpenStack's security guarantees (for OpenStack Users/Customers)
- Assist in identifying highest-impact security improvements (for OpenStack Developers)
- Formal definition of OpenStack security-related functionality (for Cryptographers)
- Study the security interfaces between components which has not been studied well

Steps

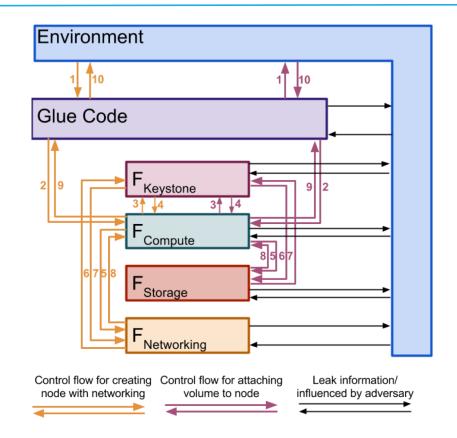
- Define Functionality of Ideal Cloud
- Define Functionality of Ideal Components
- Show that Components realize the Ideal Cloud Functionality
- Propose OpenStack Modifications to realize the Functionalities
- Propose Component Implementations that realize the Functionalities

Ideal World

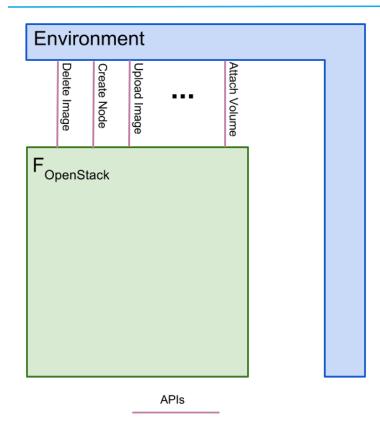
Ideal OpenStack

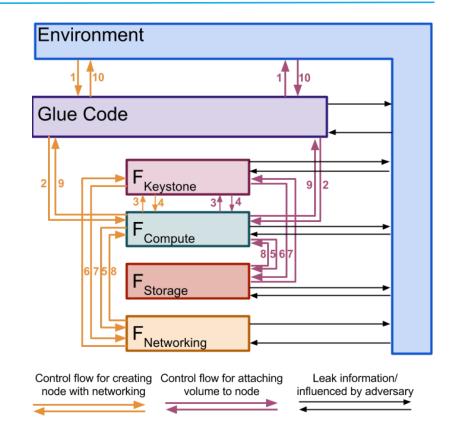
- Accurate
- No time

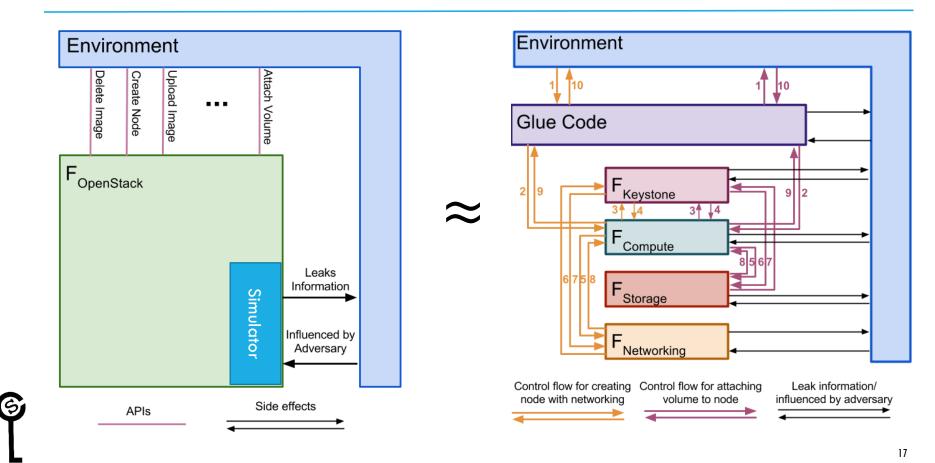
Ideal Functionalities:


- Create Node
- Delete Node
- Upload Image
- Delete Image
- Create Volume
- • •

G


Ģ

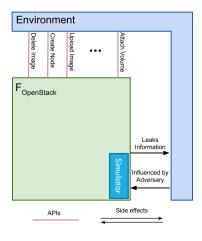

Hybrid World

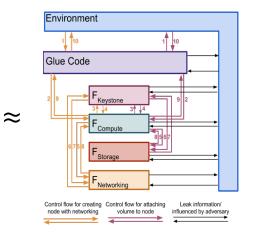

G

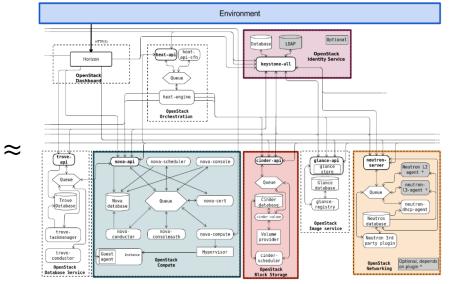
Security Analysis

Security Analysis

Ģ


Next Steps




18

Ġ

Security Analysis

19

Conclusion

- OpenStack security must be analyzed
 - The security model depends on the plug-in set
- UC
 - Better understanding of cloud security model
 - Reveals security bottlenecks and concerns
 - Allows understanding to how to improve the security posture
- Needs Time and Expertise

A Modular, User-Centric Security Analysis of OpenStack

Challenge:

- Cloud computing has a huge impact on society, but security concerns inhibit its uptake
- OpenStack is the prevalent open-source, non-proprietary package for managing cloud services and data centers
- Provide rigorous and holistic security analysis of OpenStack in the universally composable (UC) security framework

Solution:

- Analyze OpenStack's multiple inter-related components
- Assert the security of components individually
- Then compose to derive the overall system's security

Applications & platforms	
Operating system	-
Cloud IaaS management	
Hardware	-

Participating institutions: Boston University (NSF grant 1414119, "Modular Approach to Cloud Security), MIT (1413920], Northeastern (1413964), and UConn (1413996). For more info, email marten.van_dijk@uconn.edu.

Scientific Impact:

- User-Centric: Stresses the security guarantees given to users of the system
- Modular: Formulates security properties for individual components and deduces from these security properties of the overall service
- Defense in Depth: OpenStack can be improved, with minimal changes

Broader Impact:

- Showcase composable design and analysis as a viable basis for secure system design
- Impact upon the practice of cloud computing (collaboration Massachusetts Open Cloud)
- Several outreach programs to expose local-area middle and high school students and their teachers to cybersecurity

Ś

Thank You !

Lab's website: <u>http://scl.uconn.edu</u>

Other research: HW Trojans, Secure Supply Chain Management, Moving Target Defense, Secure Processor Architectures, Oblivious RAM, FHE, ... and wherever my students take me

Picture References:

- http://sthelenslscb.org.uk
- http://www.dell.com
- https://www.openstack.org