

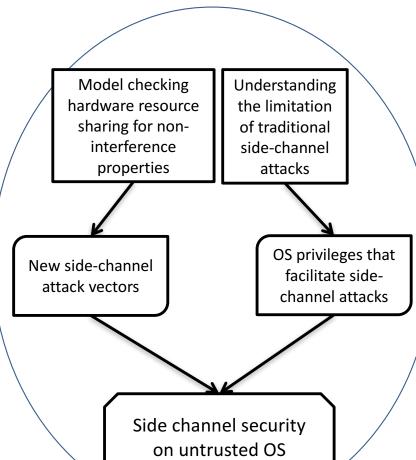
Rethinking Side Channel Security on Untrusted Operating Systems

YINQIAN ZHANG, OHIO STATE UNIVERSITY

Rethinking Side Channel Security on Untrusted Operating Systems

Yinqian Zhang, Ph.D. The Ohio State University

CRII: SaTC: Rethinking Side Channel Security on Untrusted Operating Systems


THE OHIO STATE UNIVERSITY

Challenge:

- Intel Software Guard
 eXtension (SGX) promises the
 confidentiality of software
 programs shielded in enclaves
 even when the operating
 system is untrusted
- Unfortunately, no systematic study of side-channel threats against the shielded execution on untrusted operating systems

Solution:

- Systematically investigating OS privileges that facilitate sidechannel attacks
- Model checking to identify new side-channel attack vectors

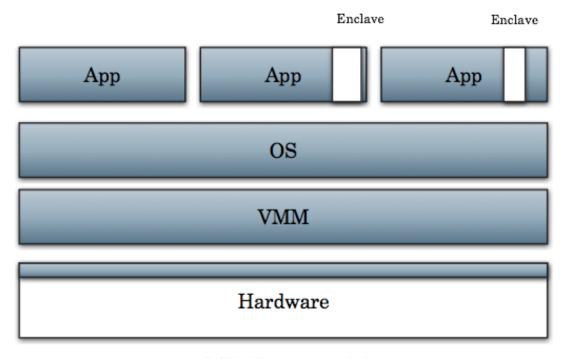
Scientific Impact:

- Advancing the state-of-theart of side channel studies by exploiting modelchecking techniques to automatically identify information leakage through shared hardware resources
- Systematic understanding of side-channel security against shielded execution on untrusted operating systems

Broader Impact:

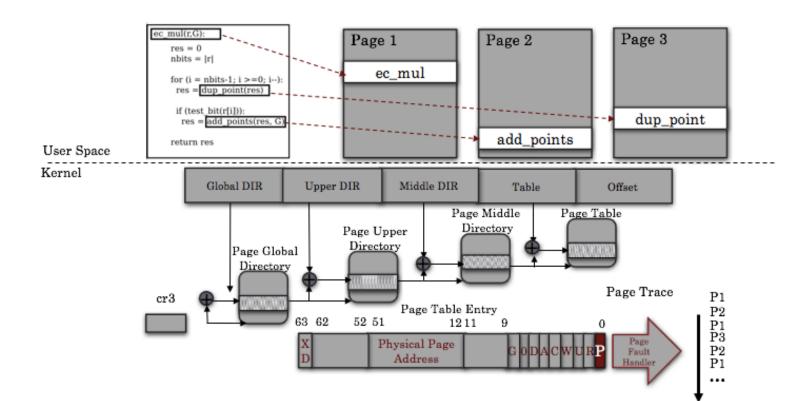
- Knowledge of side-channel threats will be disseminated to industry vendors, including both SGX hardware manufacturers and software developers
- Introduction of side channel security into undergraduate security courses
- Involvement of underrepresented minority students in security research

Award # 1566444


The Ohio State University

Contact: Prof. Yinqian Zhang

(yinqian@cse.ohio-state.edu)


- Intel SGX provides shielded execution environments to security-critical applications
- Secret data and code can be protected even though the operating system is untrusted/compromis ed

SGX Threat Model

Side-Channel Attacks against SGX Enclaves

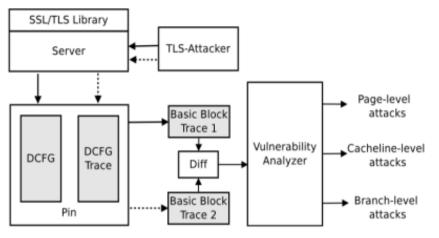
- Advance the state-of-the-art research on side channel security: automatically identify information leakage through shared resources.
- Evaluate the severity of side-channel attacks by privileged attackers: higher fidelity, efficiency, and robustness.
- Conduct a preliminary exploration of potential research directions towards effective mitigation of privileged side channel attacks.

Current Results (2016.05 - 2017.10)

- Understanding side-channel hazards of Intel SGX
 - Memory side-channel attack surfaces (CCS'17)
- Detecting side-channel vulnerabilities in enclave programs
 - Sensitive control-flow vulnerabilities in SSL/TLS (CCS'17)
- Compiler-assisted runtime defenses
 - Timed execution for detecting side-channel attacks at runtime (AsiaCCS'17)

Memory Side-Channel Attack Surfaces

- Leaky Cauldron on the Dark Land: Understanding Memory Side-Channel Hazards in SGX (CCS'17)
 - Collaboration among Indiana University, OSU, & UIUC
- A systematic study of memory side channels on SGX
 - Address translation caches
 - Page tables
 - · Cache & memory hierarchy
- New attacks:
 - Sneaky page monitoring (SPM) attacks
 - Cache-DRAM attacks

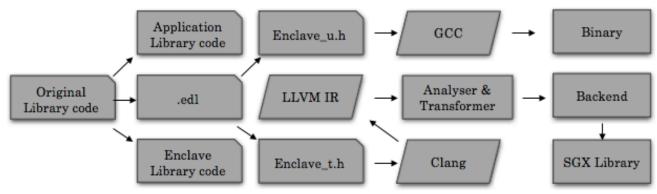

 Stacco: Differentially Analyzing Side-Channel Traces for Detecting SSL/TLS Vulnerabilities in Secure Enclaves (CCS'17)

SSL/TLS libraries inside SGX enclaves are subject to man-in-the-kernel

attacks

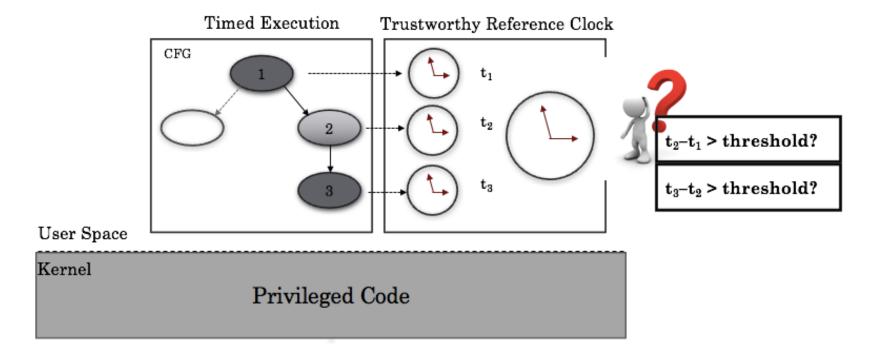
CBC padding oracle

Bleichenbacher attack



		OpenSSL			GnuTLS			mbedTLS			WolfSSL			LibreSSL			
	Test Name		1.0.2j			3.4.17			2.4.1			3.10.0			2.5.0		
		В	C	P	В	C	P	В	C	P	В	C	P	В	C	P	
Bleichenbacher attacks	PKCS#1 Conformant	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	
	Wrong Version	D	D	D	D	D	D	D	D	D	D	D	N	D	D	D	
	No 0x00 Byte	D	D	N	D	D	D	D	D	D	D	D	N	D	D	N	
	0x00 in Padding	D	D	D	D	D	D	D	D	D	D	D	N	D	D	D	
	0x00 in PKCS Padding	D	D	N	D	D	D	D	D	D	D	D	D	D	D	N	
	PMS Size=0	D	D	D	D	D	D	D	D	D	D	D	N	D	D	D	
	PMS Size=2	D	D	D	D	D	D	D	D	D	D	D	N	D	D	D	
	PMS Size=8	D	D	D	D	D	D	D	D	D	D	D	N	D	D	D	
	PMS Size=16	D	D	D	D	D	D	D	D	D	D	D	N	D	D	D	
	PMS Size=32	D	D	D	D	D	D	D	D	D	D	D	N	D	D	D	
	Exploitable	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
Padding Oracle attacks	Padding Length Byte XOR 1	D	D	N	N/A	N/A	D	D	D	D	D	D	D	D	D	D	
	Padding Length Byte = 0x00	D	D	N	N/A	N/A	D	D	D	D	D	D	D	D	D	D	
	Padding Length Byte = 0xFF	D	D	N	N/A	N/A	D	D	D	D	D	D	D	D	D	D	
	Last Padding Byte XOR 1	D	D	N	N/A	N/A	D	D	D	D	D	D	D	D	D	D	
	Last Padding Byte = 0x00	D	D	N	N/A	N/A	D	D	D	D	D	D	D	D	D	D	
	Last Padding Byte = 0xFF	D	D	N	N/A	N/A	D	D	D	D	D	D	D	D	D	D	
	Exploitable	1	1	×	N/A	N/A	1	1	1	1	1	1	1	1	1	1	

Attack Detection in SGX Enclaves



- Detecting Privileged Side-Channel Attacks in Shielded Execution with Déja Vu (AsiaCCS'17)
 - Collaboration between OSU and UNC
- Key insight
 - Exception-based attacks and interrupt-based attacks yield large number of AEXs
 - Shielded execution will be slowed down significantly when under attack
- Déjà Vu: a software framework to detect privileged side-channel attacks by measuring program execution time

Attack Detection in SGX Enclaves

- Detecting Privileged Side-Channel Attacks in Shielded Execution with Déja Vu (AsiaCCS'17)
 - Collaboration between OSU and UNC

Questions?

yinqian@cse.ohio-state.edu