Securing Smart Grid by Understanding
Communications Infrastructure
Dependencies

SAJAL DAS, MISSOURI UNIVERSITY OF SCIENCE & TECHNOLOGY

@ Cybersecurity Research Acceleration Workshop and Showcase, Indianapolis, IN

INTERNET.
October 11, 2017 %



MissoURl UNIVERSITY OF SCIENCE AND TECHNOLOGY MSISSOURI

Computer Science Department
NSF CPS - Breakthrough:

Securing Smart Grid by Understanding
Communications Infrastructure Dependencies

Sajal K. Das

sdas@mst.edu

(Bhattacharjee, Thakur, Silvestri, Das, Handbookson

ACM CODASPY 2017)

T o -/
s S Sy S S—— = > "
2 T P ¥ =y PR = W = = - f
2k ohat . o 1= - s
alo S ) -#EE =
o e U § s I
. 8 [ ‘, - i

Foundations and Challenges

Sajal Das, Krishna Kant, Nan Zhang

M<




NSF CPS - Breakthrough: Securing Smart Grid by Understanding
Communications Infrastructure Dependencies (Pl: Sajal K. Das)

Objectives:

» Characterize inter-dependence
between electrical grid and
communication systems

« Make Smart Grid protocols and state
estimation more robust

» Detect impacts (failures and attacks)
and prevent cascades

» Build models for attack mitigation

 Validate with micro-grid test-bed

Challenges: Inter-dependence, loT
Robustness, Cyber-Physical, Big Data

* Integrity mechanism for protection
and state estimation
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Scientific Impact:

« Anomaly detection
and trust models for
attack mitigation

e Situation-aware
models for threat
monitoring, analytics,
decision control
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Broader Impacts:

* Influencing the standards
Multi-disciplinary training in
CPS security
Experiential learning in real
micro-grid facility.
Outreach and research demo
Generalization to other CPS

Missouri S&T Micro-grid

S. Tan, D. De, W. Song and S. K. Das, “Security Advances in Smart Grid: A Data
Driven Approach,” IEEE Communications Surveys and Tutorials, 2017.




Example loT Systems: Smart City Scenario
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loT Enables Cyber-Physical Systems (CPS)
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Characterlstlcs Complex System of Systems, Large-scale, Heterogeneous loT, Big Data

Challenges: Inter-dependence, Robustness, Safety, Security, Reliability, Resiliency



Advanced Metering Infrastructure (AMI) Micro-Grid

Demand Response / Pricing Signals

Functions of AMI
e Automated Billing

 Demand Response (DR)
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Securing Smart Grid

* Integrity violation of smart
metering data in transit

 State perturbation and false
data injection

 AMI attack detection and
mitigation
e Attack and trust models

* Billing system vulnerability




loT and CPS Security — Who Cares?

We all care ... because our lives are at stake ...

Smart electricity meters can be dangerously insecure (Mar 2017)
— Hackers can cause fraud, explosions and house fires.

Hackers could turn your smart meter into a bomb and blow your
family to smithereens




Smart Meter Data Falsification

Organized, Persistent Adversaries:

Circumvent cryptographic defense
Compromise a large # of meters
Attacks persist and evolve

Mask easy consistency check

Knowledge of business and revenue
models

Challenges:

Consumption exhibits inherent
fluctuations

Distinguishing between
legitimate and malicious changes

Large # of Compromised Nodes
with Smaller Margin of False Data

Various Falsification Types

Attack Models:

Additive: Reports greater than actual power consumption

Deductive: Reports lesser than actual power consumption

Camouflage: Balance additive & deductive attacks from different meters

Conflict: Unbalanced additive and deductive attacks from multiple

uncoordinated adversaries




Proposed Approach
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Light weight, real time anomaly detection

* Not privacy intrusive

 Works for various attack types

* Distinguishes between legitimate and malicious changes
e Suitable for both isolated and organized attacks




Legitimate and Malicious Changes

» Transform the observed data into a Gaussian mixture

» A light weight statistical indicator for anomaly detection: Ratio of
Harmonic Mean (HM) to Arithmetic Mean (AM) of Gaussian mixture

HM and AM of mixture data
change due to legitimate weather
and other contextual factors

HM and AM may change
due to data falsification
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Anomaly Detection

HM to AM ratio HM to AM ratio > Adropin HM to AM
highly stable against drops for all types ratio is an indication
legitimate changes of Data Falsification of organized
falsification
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Performance Evaluation
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» Used real data set from
PECAN Street Project in
Texas (SmartGridGov)

» Emulated attacks on real
data fed to a virtual
simulated AMI

» Observed clear difference
between compromised &
non-compromised nodes

> Results are better due to
robustness of statistical
measures in various steps

» Works for isolated attacks
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Challenges: Inter-dependence, loT Broader Impacts:

Robustness, Cyber-Physical, Big Data * Influencing the standards

* Integrity mechanism for protection * Multi-disciplinary training in

and state estimation CPS security
« Experiential learning in real
* micro-grid facility.
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