

Securing Smart Grid by Understanding Communications Infrastructure Dependencies

SAJAL DAS, MISSOURI UNIVERSITY OF SCIENCE & TECHNOLOGY

Cybersecurity Research Acceleration Workshop and Showcase, Indianapolis, IN October 11, 2017

Computer Science Department NSF CPS - Breakthrough: Securing Smart Grid by Understanding Communications Infrastructure Dependencies

Sajal K. Das

sdas@mst.edu

(Bhattacharjee, Thakur, Silvestri, Das,

ACM CODASPY 2017)

Foundations and Challenges

Sajal Das, Krishna Kant, Nan Zhang

NSF CPS - Breakthrough: Securing Smart Grid by Understanding Communications Infrastructure Dependencies (PI: Sajal K. Das)

Objectives:

- Characterize inter-dependence between electrical grid and communication systems
- Make Smart Grid protocols and state estimation more robust
- Detect impacts (failures and attacks) and prevent cascades
- Build models for attack mitigation
- Validate with micro-grid test-bed

Challenges: Inter-dependence, IoT Robustness, Cyber-Physical, Big Data

• Integrity mechanism for protection and state estimation

Broader Impacts:

- Influencing the standards
- Multi-disciplinary training in CPS security
- Experiential learning in real micro-grid facility.
- Outreach and research demo
- Generalization to other CPS

S. Tan, D. De, W. Song and S. K. Das, "Security Advances in Smart Grid: A Data Driven Approach," *IEEE Communications Surveys and Tutorials*, 2017.

Missouri S&T Micro-grid

Example IoT Systems: Smart City Scenario

IoT Enables Cyber-Physical Systems (CPS)

Challenges: Inter-dependence, Robustness, Safety, Security, Reliability, Resiliency

Advanced Metering Infrastructure (AMI) Micro-Grid

Smart Grid Architecture

Securing Smart Grid

- Integrity violation of smart metering data in transit
- State perturbation and false data injection
- AMI attack detection and mitigation
- Attack and trust models
- Billing system vulnerability

IoT and CPS Security – Who Cares? We all care ... because our lives are at stake ...

Smart electricity meters can be dangerously insecure (Mar 2017) – Hackers can cause fraud, explosions and house fires.

Hackers could turn your smart meter into a bomb and blow your family to smithereens

Smart Meter Data Falsification

Organized, Persistent Adversaries:

- Circumvent cryptographic defense
- Compromise a large # of meters
- Attacks persist and evolve
- Mask easy consistency check
- Knowledge of business and revenue models

Challenges:

- Consumption exhibits inherent fluctuations
- Distinguishing between legitimate and malicious changes
- Large # of Compromised Nodes with Smaller Margin of False Data
- Various Falsification Types

Attack Models:

- Additive: Reports greater than actual power consumption
- Deductive: Reports lesser than actual power consumption
- Camouflage: Balance additive & deductive attacks from different meters
- Conflict: Unbalanced additive and deductive attacks from multiple uncoordinated adversaries

Proposed Approach

Legitimate and Malicious Changes

- Transform the observed data into a Gaussian mixture
- > A light weight statistical indicator for anomaly detection: Ratio of Harmonic Mean (HM) to Arithmetic Mean (AM) of Gaussian mixture

HM vs. AM: Legitimate Data

Anomaly Detection

- A drop in HM to AM ratio is an indication of organized falsification
 - The ratio is
 maintained as
 forgetting and
 cumulative moving
 averages
- Property holds for all attack types and higher fraction of compromised nodes

Performance Evaluation

- Used real data set from
 PECAN Street Project in
 Texas (SmartGridGov)
- Emulated attacks on real data fed to a virtual simulated AMI
- Observed clear difference
 between compromised &
 non-compromised nodes
- Results are better due to robustness of statistical measures in various steps
- Works for isolated attacks

NSF CPS - Breakthrough: Securing Smart Grid by Understanding Communications Infrastructure Dependencies (PI: Sajal K. Das)

Objectives:

- Characterize inter-dependence between electrical grid and communication systems
- Make Smart Grid protocols and state estimation more robust
- Detect impacts (failures and attacks) and prevent cascades
- Build models for attack mitigation
- Validate with micro-grid test-bed

Challenges: Inter-dependence, IoT Robustness, Cyber-Physical, Big Data

• Integrity mechanism for protection and state estimation

Broader Impacts:

- Influencing the standards
- Multi-disciplinary training in CPS security
- Experiential learning in real micro-grid facility.
- Outreach and research demo
- Generalization to other CPS

S. Tan, D. De, W. Song and S. K. Das, "Security Advances in Smart Grid: A Data Driven Approach," *IEEE Communications Surveys and Tutorials*, 2017.

Missouri S&T Micro-rid