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Value	proposition:
• Fully	leverage	the	open	source	nature	

of	libraries
• Enabling	users	to	find	more	in-depth	

bugs

Solution:

• Employing	Symbolic	Execution	(SE)

• Mitigating	path	explosion	in	SE

• Using	specially	crafted	input

• Bypassing	crypto.	functions

• Extracting	the	certificate	input	universe

• Partitioning	the	universe	to:

• Accepting	universe

• Rejecting	universe

• Launching	differential	testing
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Quad	Chart	for: A	Principled	Approach	Aiding	the	Development	of	a	
Compliant	Internet	PKI

What	we	need	to	TTP
• Automated	instrumentation
• Analysis	engines		
• Your	input

Contact
• omar-chowdhury@uiowa.edu

• Complex	structure	of	X.509	PKI	certificate

• Cryptographic	libraries

• Code/logic	coverage:

• Standard	specification

SymCert
preparation

! 2*α4==α1

α1>α4+10
α1=0
α4=1

α1=2
α4=1

α1=30
α4=15

false true

false true

RejectedAccepted

Symbolic 
execution

"#..																		…	%#

Missing field 
check detector

Cross validation
engine

"&	%'

"' 	%&

Detected 
inconsistencies

NSF	CRII	SaTC #1657124
The	University	of	Iowa

PI:	Omar	Haider	Chowdhury,	
Assistant	Professor	of	Computer	Science



Untrusted Network

Public key cryptography
Problem?
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Secure distribution of public key
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Certificate Authority
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Now, how can we obtain the CA’s public key?



Root-level CA
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Intermediate-level CA
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X.509 Usage

IPSec…

37% 18%
66%
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Role of X.509 in SSL/TLS

SSL/TLS Client SSL/TLS Server
Client hello

Server hello (containing certificate chain) 

Client key exchange

Send client certificate (Optional)

Client finished

Server finished
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certificate 
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SSL/TLS Verification
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Not-quite-so-broken TLS: lessons in re-engineering a security protocol

specification and implementation
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Abstract
Transport Layer Security (TLS) implementations have a

history of security flaws. The immediate causes of these

are often programming errors, e.g. in memory manage-

ment, but the root causes are more fundamental: the chal-

lenges of interpreting the ambiguous prose specification,

the complexities inherent in large APIs and code bases,

inherently unsafe programming choices, and the impos-

sibility of directly testing conformance between imple-

mentations and the specification.
We present nqsb-TLS, the result of our re-engineered

approach to security protocol specification and imple-

mentation that addresses these root causes. The same

code serves two roles: it is both a specification of TLS,

executable as a test oracle to check conformance of traces

from arbitrary implementations, and a usable implemen-

tation of TLS; a modular and declarative programming

style provides clean separation between its components.

Many security flaws are thus excluded by construction.

nqsb-TLS can be used in standalone Unix applica-

tions, which we demonstrate with a messaging client,

and can also be compiled into Xen unikernels (spe-

cialised virtual machine image) with a trusted comput-

ing base (TCB) that is 4% of a standalone system run-

ning a standard Linux/OpenSSL stack, with all network

traffic being handled in a memory-safe language; this

supports applications including HTTPS, IMAP, Git, and

Websocket clients and servers. Despite the dual-role de-

sign, the high-level implementation style, and the func-

tional programming language we still achieve reasonable

performance, with the same handshake performance as

OpenSSL and 73% – 84% for bulk throughput.1 Introduction
Current mainstream engineering practices for specifying

and implementing security protocols are not fit for pur-

pose: as one can see from many recent compromises of

sensitive services, they are not providing the security we

need. Transport Layer Security (TLS) is the most widely

deployed security protocol on the Internet, used for au-

thentication and confidentiality, but a long history of ex-

ploits shows that its implementations have failed to guar-

antee either property. Analysis of these exploits typically

focusses on their immediate causes, e.g. errors in mem-

ory management or control flow, but we believe their root

causes are more fundamental:Error-prone languages: historical choices of pro-

gramming language and programming style that tend to

lead to such errors rather than protecting against them.

Lack of separation: the complexities inherent in

working with large code bases, exacerbated by lack of

emphasis on clean separation of concerns and modular-

ity, and by poor language support for those.
Ambiguous and untestable specifications: the chal-

lenges of writing and interpreting the large and ambigu-

ous prose specifications, and the impossibility of di-

rectly testing conformance between implementations and

a prose specification.
In this paper we report on an experiment in developing

a practical and usable TLS stack, nqsb-TLS, using a new

approach designed to address each of these root-cause

problems. This re-engineering, of the development pro-

cess and of our concrete stack, aims to build in improved

security from the ground up.We demonstrate the practicality of the result in sev-

eral ways: we show on-the-wire interoperability with ex-

isting stacks; we show reasonable performance, in both

bulk transfer and handshakes; we use it in a test oracle,

validating recorded packet traces which contain TLS ses-

sions between other implementations; and we use it as

part of a standalone instant-messaging client. In addition

to use in such traditional executables, nqsb-TLS is us-

able in applications compiled into unikernels – type-safe,

single-address-space VMs with TCBs that run directly
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Abstract—TLS is possibly the most used protocol for secure

communications, with a 18-year history of flaws and fixes,

ranging from its protocol logic to its cryptographic design, and

from the Internet standard to its diverse implementations.

We develop a verified reference implementation of TLS 1.2.

Our code fully supports its wire formats, ciphersuites, sessions

and connections, re-handshakes and resumptions, alerts and

errors, and data fragmentation, as prescribed in the RFCs; it

interoperates with mainstream web browsers and servers. At the

same time, our code is carefully structured to enable its modular,

automated verification, from its main API down to computational

assumptions on its cryptographic algorithms.

Our implementation is written in F# and specified in F7. We

present security specifications for its main components, such as

authenticated stream encryption for the record layer and key

establishment for the handshake. We describe their verification

using the F7 typechecker. To this end, we equip each crypto-

graphic primitive and construction of TLS with a new typed

interface that captures its security properties, and we gradually

replace concrete implementations with ideal functionalities. We

finally typecheck the protocol state machine, and obtain precise

security theorems for TLS, as it is implemented and deployed.

We also revisit classic attacks and report a few new ones.

I. INTRODUCTION

Transport layer security (TLS) is possibly the most used

security protocol; it is widely deployed for securing web traffic

(HTTPS) and also mails, VPNs, and wireless communica-

tions. Reflecting its popularity, the security of TLS has been

thoroughly studied, with a well-documented, 18-year history

of attacks, fixes, upgrades, and proposed extensions [e.g.

28, 21–23, 53, 43]. Some attacks target the protocol logic,

for instance causing the client and server to negotiate the

use of weak algorithms even though they both support strong

cryptography [42]. Some exploit cryptographic design flaws,

for instance using knowledge of the next IV to set up adaptive

plaintext attacks [47]. Some, such as padding-oracle attacks,

use a combination of protocol logic and cryptography, taking

advantage of error messages to gain information on encrypted

data [56, 17, 57]. Others rely on various implementation

errors [14, 44, 38] or side channels [16]. Further attacks

arise from the usage or configuration of TLS, rather than the

protocol itself, for instance exploiting poor certificate manage-

ment or gaps between TLS and the application logic [52, 30].

Overall, the mainstream implementations of TLS still require

several security patches every year.

Meanwhile, TLS security has been formally verified in

many models, under various simplifying assumptions [51, 20,

32, 49, 48, 29, 36, 33]. While all these works give us better

confidence in the abstract design of TLS, and sometimes reveal

significant flaws, they still ignore most of the details of RFCs

and implementations.

To achieve provable security for TLS as it is used, we

develop a verified reference implementation of the Internet

standard. Our results precisely relate application security at

the TLS interface down to cryptographic assumptions on the

algorithms selected by its ciphersuites. Thus, we address soft-

ware security, protocol security, and cryptographic security in a

common implementation framework. In the process, we revisit

known attacks and discover new ones: an alert fragmentation

attack (§II), and a fingerprinting attack based on compression

(§IV). Our two main goals are as follows:

(1) Standard Compliance Following the details of the RFCs,

we implement and verify the concrete message parsing and

processing of TLS. We also support multiple versions (from

SSL 3.0 to TLS 1.2) and ciphersuites, protocol extensions, ses-

sions and connections (with re-handshakes and resumptions),

alerts and errors, and data fragmentation.

The TLS standard specifies the messages exchanged over

the network, but not its application programming interface

(API). Since this is critical for using TLS securely, we design

our own API, with an emphasis on precision—our API is

similar to those provided by popular implementations, but

gives more control to the application, so that we can express

stronger security properties: §IV explains how we reflect frag-

mentation and length-hiding, to offer some protection against

traffic analysis; §VI explain how we report warnings, changes

of ciphersuites, and certificate requests.

We illustrate our new API by programming and verifying

sample applications. We also implement .NET streams on

top of it, and program minimal web clients and servers,

to confirm that our implementation interoperates with main-

stream implementations, and that it offers reasonable usability

and performance. (In contrast, most verified models are not

executable, which precludes even basic functionality testing.)

Experimentally, our implementation also provides a convenient

platform for testing corner cases, trying out potential attacks,

and analyzing proposed extensions and security patches. In the

course of this work, we submitted errata to the IETF.
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Abstract—TLS was designed as a transparent channel abstrac-tion to allow developers with no cryptographic expertise to protecttheir application against attackers that may control some clients,some servers, and may have the capability to tamper with networkconnections. However, the security guarantees of TLS fall shortof those of a secure channel, leading to a variety of attacks.We show how some widespread false beliefs about these guar-antees can be exploited to attack popular applications and defeatseveral standard authentication methods that rely too naively onTLS. We present new client impersonation attacks against TLSrenegotiations, wireless networks, challenge-response protocols,and channel-bound cookies. Our attacks exploit combinations ofRSA and Diffie-Hellman key exchange, session resumption, andrenegotiation to bypass many recent countermeasures. We alsodemonstrate new ways to exploit known weaknesses of HTTPover TLS. We investigate the root causes for these attacks andpropose new countermeasures. At the protocol level, we designand implement two new TLS extensions that strengthen theauthentication guarantees of the handshake. At the applicationlevel, we develop an exemplary HTTPS client library thatimplements several mitigations, on top of a previously verifiedTLS implementation, and verify that their composition providesstrong, simple application security.

I. TRANSPARENT TRANSPORT LAYER SECURITY?TLS is the main Internet Standard for secure communica-tions and still, after 20 years of practice, the security it providesto applications remains problematic.
I-A APPLICATIONS VS PROTOCOLS. By design, TLS intendsto provide a drop-in replacement of the basic networkingfunctions, such as connect, accept, read and write,that can effortlessly protect any application against a net-work attacker without the need to understand the protocol orits underlying cryptography. Pragmatically, TLS offers muchflexibility, so the security properties provided by the protocol[43, 35, 32, 29] and its implementations [20, 14, 15] dependon how TLS is used. For instance, if the application enables anunsuitable ciphersuite [4], uses compression [25], or ignoresstate changes [45], it opens itself to attacks. Furthermore,applications-level security mechanisms increasingly seek tobenefit from the underlying TLS connection by reusing itsauthenticated peer identities, key materials [48], and uniqueidentifiers [6].
As a consequence, TLS libraries provide low-level APIsthat expose many details of the cryptographic mechanismsand certificates negotiated during successive handshakes. Someapplication-level libraries, such as CURL, seek to recover thesimplicity of a secure channel by implementing an abstractionlayer that smooths over the details of TLS by managing

sessions, validating certificates, etc. Meanwhile, TLS appli-cations continue to rely on URLs, passwords, and cookies;they mix secure and insecure transports; and they often ignorelower-level signals such as handshake completion, sessionresumption, and truncated connections.Many persistent problems can be blamed on a mismatchbetween the authentication guarantees expected by the appli-cation and those actually provided by TLS. To illustrate ourpoint, we list below a few myths about those guarantees, whichwe debunk in this paper. Once a connection is established:1) the principal at the other end cannot change;2) the master secret is shared only between the two peers,so it can be used to derive fresh application-level keys;3) the tls-unique channel binding [6] uniquely identi-fies the connection;
4) the connection authenticates the whole data stream, so itis safe to start processing application data as it arrives.The first is widely believed to be ensured by the TLS renego-tiation extension [49]. The second and third are used for man-in-the-middle protections in tunneled protocols like PEAP andsome authentication modes in SASL and GSS-API. The fourthforms the basis of HTTPS sessions on the web.These assumptions are false, and this enables various at-tacks, even against applications using the latest, fully-patchedTLS 1.2 implementations. Whether these attacks should beblamed on the protocol or its usage, we argue that the transportand application protocols must be analyzed together to achievereliable, meaningful, application-level security.On the other hand, our paper does not challenge the cryp-tographic security of the core constructions of TLS—mostof our attacks apply even under the (theoretical) assumptionthat clients and servers only use cryptographically strongciphersuites, as formalized, for example, in [15, 35, 29, 16].I-B NEW ATTACKS OVER TLS. We report new practical at-tacks against applications that rely on TLS for their security.The first family of attacks uses a combination of successiveTLS handshakes over multiple connections to disrupt clientauthentication. The second family of attacks targets HTTPSmessage integrity but may apply to other application protocols.Triple Handshakes Considered Harmful (§V, §VI) Wefirst point out unknown key-share [17] vulnerabilities in RSA,DHE, and abbreviated handshakes, and we compose themto implement a malicious TLS proxy that can synchronizethe keys on separate connections with honest peers. Thesevulnerabilities do not in themselves constitute attacks on theintegrity and confidentiality guarantees of TLS. However, weshow that they enable new man-in-the-middle attacks that
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FLEXTLS

A Tool for Testing TLS Implementations
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Abstract

We present FLEXTLS, a tool for rapidly prototyping

and testing implementations of the Transport Layer Secu-

rity (TLS) protocol. FLEXTLS is built upon MITLS, a

verified implementation of TLS, and hence protocol sce-

narios written in FLEXTLS can benefit from robust li-

braries for messaging and cryptography. Conversely, at-

tack scripts in FLEXTLS can be used to evaluate and com-

municate the impact of new protocol vulnerabilities.

FLEXTLS was used to discover recent attacks on TLS

implementations, such as SKIP and FREAK, as well as to

program the first proof-of-concept demos for FREAK and

Logjam. It is also being used to experiment with proposed

designs of the upcoming version 1.3 of TLS. Our goal

is to create a common platform where protocol analysts

and practitioners can easily test TLS implementations and

share protocol designs, attacks or proofs.

Keywords. Transport Layer Security, Cryptographic Pro-

tocols, Attacks, Protocol Testing

1 Introduction

Transport Layer Security (TLS) is used to establish se-

cure channels for a wide variety of applications, includ-

ing HTTPS websites, encrypted email, VPNs and Wi-Fi

networks. As such, the TLS protocol and its implemen-

tations have been carefully scrutinized and formally an-

alyzed [10, 6]. Still, protocol flaws and implementation

errors keep being discovered at a steady rate [9, 2, 1],

which forces browsers and other TLS software vendors

to release multiple security patches each year. Attacks

against TLS are also increasing in complexity: the recent

Triple Handshake attack [3] requires a man-in-the-middle

that juggles with no less than 20 protocol messages over

four connections to perform a full exploit. Assessing the

impact of such vulnerabilities can be challenging, both

for formalists and practitioners, because of the large ef-

fort needed to implement them from scratch, or to modify

an existing implementation in order to test potentially af-

fected libraries.

In this paper, we present FLEXTLS, a tool for instru-

menting arbitrary sequences of TLS messages. FLEXTLS

was originally created in order to write proofs of concept

of complex transport layer attacks such as Triple Hand-

shake or the early CCS attack against OpenSSL [9]. It

has been further extended to support automatic execution

of multiple scripted scenarios: our tool has the ability to

connect (either as a client or as a server) to a peer and

send a set of programmatically generated sequences of

TLS messages. This feature has been leveraged in order to

test the robustness of various implementations of the TLS

state machine against unexpected sequences of protocol

messages [2]. This effort led to the discovery of several

new high-impact security vulnerabilities in a number of

TLS implementations, including the FREAK attack.

Partly in response to these attacks, the IETF is con-

sidering several new extensions [4, 8, 11], as well as a

completely new revision of the protocol (TLS 1.3 [12])

that introduces new message flows and handshake modes.

Typically, academic scrutiny of new protocols lags behind

standardization, because developing models and proofs is

time consuming and the effort can only be justified for

stable protocols. We demonstrate that FLEXTLS can be

used to quickly implement and evaluate various new pro-

posals, thus allowing us to contribute feedback early in

the standardization process.

FLEXTLS is built using MITLS [5], a verified refer-

ence implementation of TLS. In particular, it reuses the

MITLS modules for message formatting and TLS-specific

cryptographic constructions, but wraps them within mod-

ules that are more flexible and allow the core protocol

mechanisms to be used in new and unexpected ways. Al-

though the core MITLS modules have been proved cor-

rect, we make no formal claims about the correctness of

FLEXTLS. We note that extending MITLS with new pro-

tocol features requires a significant verification effort to

preserve its security proof. FLEXTLS aids, however, this
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X.509 RFC 5280

RFC

5280
• Describes format & structure of a certificate

• Specifies Certificate Chain Validation Logic
• CCVL

• Written using natural languages

the serial number MUST be a
positive integer assigned by the CA
to each certificate ... non-
conforming CAs may issue
certificates with serial numbers
that are negative or zero.
Certificate users SHOULD be
prepared to gracefully handle such
certificates.

—RFC5280

“

”

Root-level CA 
certificate

End entity 
certificate

Subject Name:
Country
State
Locality
Organization
OrganizationalU

nit
Common name

Issuer Name:
Country
State
Locality
Organization
OrganizationalUnit
Common name

Validity
Not before
Not after

Extensions
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e.g., Basic constraint
pathLengthConstraints



Noncompliance in X.509

Overly 
permissive

Overly 
restrictive

Impersonation 
attack

Loss of service
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CCVL
Accept

Reject

Certificate 
Chain

𝑥", 𝑥$, … , 𝑥&
Parameters

Certificate
universe

Accepting 
universe

Rejecting
universe
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Re
f
Re
f

Accepting 
universe

Rejecting
universe

CCVL
Reference
CCVL
Model

There is no reference model

210

How can we check the noncompliance of an 
implementation in the lack of the reference model?

1

How can we obtain the accepting and rejecting 
universes?

2



CCVL
1

CCVL
2

Case 
1

Case 
2

Case 
3

Case 
4

Result

NoncompliancePotential compliance

Both implementations may suffer 
from the same mistake

To address the lack of reference model

Certificate 
chain
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Which one is right or wrong!



𝜶
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• Employs symbolic execution technique

• Focuses on the small footprint X.509 implementations 

• Leverages some domain-specific insights

• To compensate symbolic execution limitations

• Fully leveraging the open source nature of source 
code 

Chau et al., IEEE Symposium on Security and Privacy, 2017.

𝛼
Testing implementations by providing a symbolic 

input, SymCert, and extracting regions in the universes 
instead of some samples
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•
• 1950 2049

y = 2000 + 10 * (c[0] - ’0’) + (c[1] - ’0’); c += 2;
/* Years from ’96 through ’99 are in the 1900’s */
if (y >= 2096) { y -= 100; }

to->year += 100 * (to->year < 90);
to->year += 1900;

if (tm.tm_year <= 50) { /* 1951-2050 thing */
tm.tm_year += 100;

}

MatrixSSL 3.7.2

tropicSS
L

axTLS 1.4.3 
axTLS 1.5.3

1996 to
2095

1990 to
2089

1951 to
2050
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•
•

ExtKeyUsage Purposes of using a key

218

e.g., 1.3.6.1.5.5.7.3.1

Object
Identifier

a.b.c.d.e.f.g.h Server 
Authentication

a+b+c+d+e+f+g+h=711.3.6.1.5.5.7.3.1 vs

Overly Permissive Compatibility Issues



•

• Capable of finding more in-depth bugs

• Accepting and rejecting universes with high coverage 

• Leverages the open source nature of the 

implementations

• Unable to handle traditional (Large-scale) libraries
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CCV
L

Reference 
implementation

CCV
L

A substitution for existing 
implementation

CCV
L

Act as an oracle

SSL/TLS

X.50
9

Complete Formally verified
SSL/TLS ecosystem

CCV
L

CCV
L

CCV
L

X.50
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