

High-Fidelity, Scalable, Open-Access Cyber Security Testbed for Accelerating Smart Grid Innovations and Deployments

BRUCE WANG, IOWA STATE UNIVERSITY

High-Fidelity, Scalable, Open-Access Cyber Security Testbed for Accelerating Smart Grid Innovations and Deployments

Manimaran Govindarasu

Presented by: Pengyuan (Bruce) Wang

Dept. of Electrical and Computer Engineering

Iowa State University, USA

gmani@iastate.edu
http://powercyber.ece.iastate.edu

NSF Award #: CNS 1446831 Funded by jointly by NSF and DHS

Supported partially by DOE OE- CEDS grant

Cybersecurity Research Acceleration Workshop and Showcase

October 11, 2017 | Indianapolis, IN

High-Fidelity, Scalable, Open-access Cyber Security Platform for Accelerating Smart Grid Innovations and Deployments

Challenge:

Develop a remotely accessible and cost effective CPS security platform with high-level fidelity and scalability that can serve heterogeneous purposes such as R&D, education, workforce training, etc.

Solution:

- High fidelity. Build up a HIL testbed that integrates commercial SCADA/EMS system, IEDs and real time power system simulators.
- Scalability. Apply virtualization and VLAN technologies to improve testbed scalability.
- Remote access. Develop a web based interface for remote users.
- Realistic use cases. Replicate realistic cyber attacks and mitigations as study cases.

NSF CNS #1446831

PI: Manimaran Govindarasu Team: Douglas Jacobson, Venkataramana Ajjarapu

Value proposition:

- TTP. Accelerate R&D process and TTP in smart grid.
- Education. Improve industry workforce's CPS security awareness and skills through effective training.
- Collaboration. Share resource with remote users and serve as a pilot project of testbed federation.

What we need

- Industry data sets, real system models and intrusion scenarios
- Academic users for R&D
- Industry users for R&D
- Academic users for education use
- Collaborators for testbed federation

Contact us

Manimaran Govindarasu

Department of Electrical and Computer Engineering, lowa State University.

gmani@iastate.edu

Team Profile

Manimaran Govindarasu, Pl

Douglas Jacobson, Co-PI

Venkataramana Ajjarapu, Co-PĪ

CPS Security Testbeds

CPS Security Testbed Abstraction

EMS, SAS, RTUs, IEDs

Routing infrastructure, Network protocols, Routers, Firewalls

Defenses

Power System Simulators (RTDS, Opal-RT, etc.)

Information & Control Layer

Communication Layer

Cyber

attacks

Physical Layer

ISU PowerCyber Testbed Architecture

Adam Hahn, Aditya Ashok, Siddharth Sridhar, Manimaran Govindarasu, *Cyber-Physical Security Testbeds: Architecture, Application, and Evaluation for Smart Grid*, IEEE Transactions on Smart Grid, vol 4, no. 2, June 2013.

Testbed Remote Access

http://powercybersec.ece.iastate.edu

Testbed Users

Testbed Users (I)

Collaborators: Dr. Amin Hassanzadeh, amin.hassanzadeh@accenture.com
Dr. Malek Ben Salem malek.ben.salem@accenture.com

User Goal

 ✓ Validating Alert Correlation Engine (as part of Anomaly Detection System) in a realistic ICS environment.

Approach

- ✓ ICS topology with separate IT, OT and External networks.
- ✓ Realistic attack scenarios that include accessing the OT network through the IT network.
- ✓ ISU team contributed to Accenture's goal in design, implementation, and execution of scenarios.

Outcome

Datasets (system logs, firewall logs, IDS logs) that contributed to the design and evaluation of Alert Correlation Engine. Students have gained valuable experience working with industry professionals.

Testbed Users (II)

Collaborators: Dr. David McKinnon, Dr. Siddharth Sridhar, Dr. Aditya Ashok

User Goal

✓ Validating Attack-Resilient Control (ARC) algorithm for Wide-Area Control on a realistic testbed environment.

Approach

- ✓ Implemented the ARC algorithm on the PowerCyber testbed.
- Performed realistic cyber attack experimentation involving a typical Man-in-the-Middle attack manipulating AGC measurements.

Implementation

Architecture

- Control center RTU communication used DNP3 protocol.
 - Man-in-the-middle (MITM) attack performed using ARP spoofing.
 - Attack modified AGC measurements between control center and RTU.
- Attack injected malicious frequency and tie-line flow measurements based on stealthy attack vectors.

Outcome

- ✓ Performance evaluation of ARC on the testbed validated earlier simulation-based studies.
- ✓ Experimental results were published in Resilience Week 2016. Paper awarded 'Best Paper Award.'

Testbed Users (III)

COLLABORATOR: Bill Lawrence

Engagement Goal

Hands on power system cyber-attack and defense via remote access to testbed.

Approach

- ✓ Module based attack-defense scenarios are developed within a typical SCADA environment.
- ✓ Scenarios and task description are provided.
- ✓ Provide on-site assistance to help participants go through pre-designed modules.

During the training

User take-away

✓ Cyber security awareness is highly increased.

Key Success Factors for TTP

- Testbed development has been completed smoothly
 - cumulated knowledge over the years
 - interdisciplinary expertise of the team
- Multiple use cases R&D, education, training have been great and created broad impacts
 - understanding of the needs from industry and academia
 - demonstration of the capability of our testbed
- Building early users community is a success!
 - try to make the cooperation a win-win
 - good communication and coordination is the key

Key Barriers for TTP

- Time and other resources become an issue when more users are supported.
 - Careful resource planning, scheduling, and coordination is critical.
- Insufficiency of models and datasets has become a major obstacle for the researcher to get hands on real problems.
- Sustaining of human resources
 - Mentoring of pipeline of graduate students

Contact Info

Manimaran Govindarasu

IOWA STATE UNIVERSITY

Iowa State University gmani@iastate.edu 515-294-9175

http://powercyber.ece.iastate.edu

Collaborator: Dr. Lanier Watkins, lanierwatkins@gmail.com

User Goal

✓ Novel IPS design based on PLC ICMP and TCP packet features considering varying CPU load levels.

Approach

- ✓ Configure the EMS/SCADA system with specific SIEMENS RTUs and relays located at the substation.
- ✓ Configure the relay with CFC charts such that relays can have different CPU usage levels.
- ✓ ICMP data collected on the RTU side are delivered as raw data source.

Deployment Topology

Outcome

Datasets (mainly PLC pcaps captured under different PLC CPU load levels) are delivered and the effectiveness of IPS algorithm has been well verified.

CLIENT: UNIVERSITY OF MINNESOTA DULUTH Driven to Discover	COLLABORATOR: Dr. Desineni Subbaram Naidu dsnaidu@d.umn.edu
Engagement Goal	UMD Course
Experimentation on cyber-attack impact	Course: EE5533 Grid: Resiliency, Efficiency & Technology
characterization on power grid using	Level: Graduate Background: Electrical Engineering
remote interface to PowerCyber testbed	Number of Students: 14
Approach ✓ Presenting an overview about CPS Security for UMN-D Smart Grid class	Lab Assignment ✓ Experimenting cyber attack impact characterization – quantify power flow, voltage, frequency
✓ Introducing Power Cyber testbed with architecture details	 ✓ Performing cyber-attacks on different power system models – a Wide Area Protection Scheme
✓ Providing overview of Remote access framework with user interface guide	✓ Experimenting different types of attacks on each model – Coordinated attacks (DoS, data integrity)
Students Learning ✓ Identifying most impactful cyber attack by comparing pre & post attack values on power system.	

CLIENT: Black Sea Utility Regulators from Ukraine, Georgia, etc.

COLLABORATOR: Paul Sinton Stack <u>pstack@narus.org</u>

Engagement Goal

Demonstration & comprehensive analyses of 2015 Ukrainian Attack and effective mitigation, utility policy and regulation.

Approach

- ✓ Demonstration of Ukrainian attack
- ✓ Demonstration of other power system attack scenarios
- ✓ Discussion among utilities, researchers and regulators.

Ukrainian Attack Implementation

Visitor Learning

✓ Learning about the best practices to make power system secure and the proper procedures to carry out of relevant regulation and implementation.

CLIENT:

Cedar Falls Utilities Central Iowa Power Cooperative MidAmerican Energy

Josh Hoppes Josh. Hoppes@cfunet.net COLLABORATOR: Chad Miller Chad.miller@cipco.net Patrick Ryan pkryan@midamerican.com

Engagement Goal

Hands on power system cyber-attack and defense via remote access to testbed.

Approach

- ✓ Module based attack-defense scenarios are developed within a typical SCADA environment.
- ✓ Scenarios and task description are provided.
- ✓ Provide on-site assistance to help participants go through pre-designed modules.

Training Assignment

Module 1: Reconnaissance as an attacker. Active hosts and services discovery with NMAP

Module 2: Vulnerability analysis tool application. Application of OpenVAS

Module 3: Cause power loss with replay attack. Packets sniffing with wireshark, and python script coding to trip circuit breakers.

Module 4: Best defense practice. Apply host firewalls, network egress filtering as mitigation.

User Learning

✓ Understanding how cyber attack can take place step by step in power system and learning about proper mitigations.

Survey Tools to Collect Feedback

Workshop Overall:

http://bit.ly/ttpindyws

Researcher Assets:

http://bit.ly/ttpindyresearch

