

Semantic Security Monitoring for Industrial Control Systems BRO

ADAM SLAGELL, UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Cybersecurity Research Acceleration Workshop and Showcase

October 11, 2017 | Indianapolis, IN

Quad Chart for: Semantic Security Monitoring for Industrial Control Systems

Challenge:

Develop new network security monitoring techniques for Industrial Control System networks based off of protocol semantics & physical state

Solution:

- Understand the high-level semantics of key ICS protocols
- Create proof-of-concept new attack detection methodology for industrial control systems
- Demonstrate feasibility of nonsignature-based detection against several attacks in the lab
- Develop & release ICS protocol analyzers to incorporate into Bro to support the research objectives of this award

Value proposition:

- Advance the understanding of ICS network defenses
- Provide a framework to develop new tools to detect 0-day exploits
- Protect critical infrastructure such as the power grid

What we need to TTP

- Additional ICS networks for Bro deployment
- Feedback on the set of analyzers already developed
- Real world traffic from ICS networks

NSF SaTC #1314891 NCSA/UIUC

PI: Adam Slagell, NCSA; Co-PI Ravi Iyer UIUC Team: Daniel Thayer, Vlad Grigorescu, Jon Siwek, Phuong Cao, Hui Lin

Contact us

- slagell@illinois.edu
- rkiyer@illinois.edu
- info@bro.org

Runtime Semantic Security Analysis to Detect and Mitigate Control-Related Attacks in Power Grids

Challenge:

- Control-related attacks:
- Penetrated isolated control networks
- Use commands crafted in legitimate formats to cause damage
- Hard to detect control-related attacks
- Few anomaly activities are found in SCADA networks
- Few attack signatures are publically available

Scientific Impact:

- Detect attacks by estimating the consequence of executing commands
- Balance detection accuracy and latency
- Reduce the computation time by fifty percent compared with AC power flow analysis

Solution:

- Extend Bro IDS to support protocols in Power Grids
- IDS at control center
- Use power flow analysis to analyze commands
- Adapt power flow analysis to balance detection latency and accuracy
- IDS at substations
 - obtain trusted measurements from local sensors
- Validate absence of corrupted measurements at other locations

 Increase the accuracy by two orders of magnitudes compared with DC power flow analysis

Broader Impact:

- Provides protection to manual commands
- Does not affect the normal operations
- Can be extended to other industrial control systems
- IDS can be equipped with other scenariospecific policies

Semantic Security Monitoring for Industrial Control Systems, NSF Award #1314891

Contacts: Adam Slagell slagell@illinois.edu (PI), Ravishankar Iyer (Co-PI)

What is a Software TTP Success?

- Commonly cited or inferred:
 - Financial stability
 - Broad user base
 - Sustained development
 - Spinning off a startup
 - Not asking for money any more ☺
- What's the Problem?
 - These are neither necessary nor sufficient
- Real goal is hard to measure; has many paths
 - A strong and diverse user base with a responsive development team

Post hoc ergo propter hoc

Globus

- Serves 1000s of users; builds on nearly 20 years of history
- Approach: SaaS and closed source

• Bro

- Serves 100s of EDUs, many Fortune 50 companies; built into appliances
- Exponential community growth over 20 year history;
- Approach: Join a foundation for open source & startup company

• LLVM

- Millions of developers use it for compiler and other tools
- Google and Apple depend on it
- Approach: Start a foundation, large sponsorship, 100s of contributors

Can we learn anything?

- Unlikely to predict successes, too many variables
- Almost every successful TTP has made hard trade-offs survive
 - SaaS is often not applicable
- User growth does NOT imply contributor growth
 - Complex software often has few contributors, harder to keep free
- Huge deployments can grow technical debts silently
 - E.g., OpenSSL crisis a couple years ago
- Software we make today can become tomorrow's critical infrastructure
 - Tragedy of the commons to sustain

Conclusion

 Transitioning research to practice is hugely important to realize the impacts from research, but we have not come close to solving the next problem, transition to sustainability.

