

NETWORKING APPROACH TO HOST-BASED INTRUSION DETECTION

DAVID FORMBY INTERNET2 CINC UP CALL OCTOBER 13, 2017

CREATING THE NEXT[®]

CURRENT EVENTS

KIM ZETTER SECURITY 11.29.10 04:18 PM

IRAN: COMPUTER MALWARE SABOTAGED URANIUM CENTRIFUGES

CRASH OVERRIDE': THE MALWARE THAT TOOK DOWN A POWER GRID

CYBER RISK SEPTEMBER 6, 2017 / 6:05 AM / 14 DAYS AGO

WannaCry ransomware ca Plant to shut down Hackers gain entry into U.S., warns

It's still making the rounds.

OVERVIEW

- Background
 - What is critical infrastructure and why is securing it so hard?
 - Why haven't there been more attacks on them?
- Ransomware for industrial control systems
 - Ransomware business model
 - Demo ransomware attack against a water utility
- What to do about it?
 - Standard defenses and their shortcomings
 - Program change detection
- Conclusions and discussion

BACKGROUND: CRITICAL INFRASTRUCTURE

CREATING THE NEXT®

DHS – 16 Critical Infrastructure Sectors 9 rely on industrial control systems (ICS)

		5	33			
Chemical	Factories	D	ams	Energy	/	Defense
Foo	d N	uclear	Transpo	rtation	Water	

BACKGROUND: ICS (IN)SECURITY

Standard security practices

- Regular, timely patching
- SSH, SFTP, HTTPS
- Required, long, complex passwords
- Confidentiality, integrity, availability
- Firmware signing
- ASLR, DEP, stack canary

Standard ICS practices

- Patches yearly, if ever
- Telnet, FTP, cleartext ICS protocols
- NO passwords, default, weak, clear
- Availability, availability, availability
- Starting to sign firmware
- Nope

BACKGROUND: ICS (IN)SECURITY

Case study – Power grid

- Vulnerability predictable TCP initial sequence numbers (1985)
 - Discovered from passive observations
 - Allows blind hijacking

- Power Distribution Substation Network
 - 196 Nodes 68% vulnerable
 - 3 out of 8 device vendors vulnerable
 - VxWorks the "Windows" of RTOS
 - GE "no method available to update this device"

BACKGROUND: ICS (IN)SECURITY

WHY IS ICS SECURITY SO HARD?

- Downtime
 - Lost revenue every minute
 - Always on power grid, water distribution...
- Legacy devices
 - Designed for 20 year lifecycles, not the IT standard of 3-5 years
 - Originally made for dedicated serial links, the only access control was physical
 - Misconceptions in industry

MISCONCEPTION - AIRGAP

Claim

"Our control network is airgapped, so we don't have to worry about security."

Reality

- Vendor maintenance access
- Remote monitoring
- Laptops, USB sticks
 - Stuxnet
- Insiders

MISCONCEPTION - BACKUPS

Claim

"If a PLC gets infected, we'll just switch it out with another."

Reality

- Likely ALL of your PLCs
 - \$10k x 100 PLCs > \$1million of PLC inventory

Georg

- Engineering software likely infected
- Manpower rewiring, reprogramming
- Original vulnerability STILL there

MISCONCEPTION - MOTIVATION

Claim

"Why would anyone want to attack us?"

Reality

- Small to medium sized businesses hit hardest by cyberattacks
- Havex, BlackEnergy, DragonFly already widespread
- Motivation
 - Monetary in the form of ransomware

CREATING THE NEXT[®]

Georgia Tech

OUTLINE

- Background
 - What is critical infrastructure and why is securing it so hard?
 - Why haven't there been more attacks on them?

Ransomware for industrial control systems

- Ransomware business model
- Demo ransomware attack against a water utility
- What to do about it?
 - Standard defenses and their shortcomings
 - Program change detection
- Conclusions and discussion

CREATING THE NEXT[®]

NEWS

Move over Healthcare, Ransomware Has Manufacturing In Its Sights

by Sill McGee | Jun 06, 2016 | Filed in: Industry Trends & News

NotPetya Ransomware Attack CFedEx estimates ransomware attack Maersk Over \$200 Million cost \$300 million

WHAT MAKES A RANSOMWARE ATTACK SUCCESSFUL?

Hospitals

- Easier targets
 - Old equipment
 - Traditionally weak security posture
- Increasing time pressure
- Lives at stake
- Crown jewels = patient data

ICS Networks

- Easier targets
 - Old equipment
 - Traditionally weak security posture
- Increasing time pressure
- Lives at stake
- Crown jewels = safe operation

ICS RANSOMWARE: MARKET SIZE ANALYSIS

Businesses Hit by Ransomware

- 70% paid the ransom
- Median payout approx. \$10k
- Small, medium sized businesses less prepared

Source: IBM, "Ransomware: How consumers and businesses value their data"

PLCs on the Internet

- MicroLogix 1400
- 1,300
 Schneider Modicon M221
- 200

1,500x\$10,000x50%=\$7.5 MillionTrivial PLCsExpected payoutConservative
success rate

DEMO: WATER TREATMENT FACILITY

Testbed simulates the

DEMO: INITIAL FOOTHOLD

Schneider Modicon M241

- Running CODESYS V3
 - Third party PLC runtime environment used by over 200 vendors
- Password
 - No brute force checks
 - No strength policy

• Controlling the water input and monitoring the storage levels

DEMO: NETWORK SCAN

Reprogram the M241 to scan the internal network and grab model numbers

> Allen Bradley MicroLogix 1400

> > Modicon M221

david@dell-xps:~/Documents/rsa_pres\$ sudo nmap 192.168.1.241 Starting Nmap 6.40 (http://nmap.org) at 2017-02-03 15:17 EST Nmap scan report for 192.168.1.241 Host is up (0.012s latency). Not shown: 997 closed ports ORT STATE SERVICE 21/tcp ftp open http 80/tcp open 1105/tcp open ftranhc MAC Address: 00:80:F4:0A:9D:C7 (Telemecanique Electrique) Nmap done: 1 IP address (1 host up) scanned in 159.76 seconds david@dell-xps:~/Documents/rsa_pres\$ python internal_recon.py Devices found:

192.168.1.140 1766-LEC

192.168.1.221 → TM221CE24T david@dell-xps:~/Documents/rsa_pres\$

😑 💿 david@dell-xps: ~/Documents/rsa_pres

DEMO: NETWORK SCAN

CREATING THE NEXT®

Allen Bradley MicroLogix 1400

- Password only checked in engineering software, NOT the PLC
- SMTP mail client
- Controlling the addition of chlorine (iodine)

Schneider Modicon M221

- Password only checked in engineering software, NOT the PLC
- Controlling the final output of treated water

DEMO: NETWORK

Input water valve

Mixing valve to control ratio of water/iodine

Level sensors

Programmable logic controllers

Output water valve

MAXIMIZE SUCCESS

- Pick targets with high downtime costs
- Understand the process behind the PLCs
- Threaten to screw things up if they don't meet deadline
 - What if they just unplug everything?
- Covertly move system into critical state **before** notifying them
 - Allow reserve storage tank to get low first, blinding operators
 - Make continued operation by attacker more attractive than shutting everything down

DEMO

https://youtu.be/t4u3nJDXwes

CREATING THE NEXT[®]

Georgia Tech

DEFENSES

- Proper password authentication
 - Requires vendors, not happening anytime soon
- Network segmentation, secure remote access
 - Insiders
- Monitor the network

Misses attacks launched from local access

Georgia Tech

OUTLINE

- Background
 - What is critical infrastructure and why is securing it so hard?
 - Why haven't there been more attacks on them?
- Ransomware for industrial control systems
 - Ransomware business model
 - Demo ransomware attack against a water utility
- What to do about it?
 - Standard defenses and their shortcomings
 - Program change detection

Conclusions and discussion

/////// CREATING THE NEXT®

Problem: Need intrusion detection of hosts for defense-in-depth **Solution:** Program execution time signatures

CREATING THE NEXT®

Programmable Logic Controllers (PLCs) 1. Read inputs 3. Update outputs Controllers (PLCs) 3. Update outputs

BACKGROUND

Used everywhere from oil & gas to rollercoasters and elevators

Determined by hardware and complexity of program

THEORY

CREATING THE NEXT®

Any <u>consistent</u> change, no matter how small, will eventually build up to observable differences

Example

Original Scan Cycle Time = 1ms + single bit comparison (0.1µs) Modified Scan Cycle Time = 1.0001ms

After 10 minutes, the original program has executed 60 cycles more than the modified one

DEFENSES: EXPERIMENTAL SETUP

PLCs used

PLC Model	Application Memory	Cycle Resolution
MicroLogix 1100	8 KB	100 µs
Siemens S7-1200	75 KB	1 ms
Schneider M221	256 KB	1 µs
Schneider M241	8 MB	1 μs

Georgia Tech

Example programs used

Program	Description	Instructions	Data Words
P1	Motor Starter	553	1068
P2	Sequencer Example	365	160
Р3	Bottling Plant	419	433
P4	Conveyor Belt	615	425

DEFENSES: PLC PROGRAM FINGERPRINTS

Fingerprints using system diagnostics

DEFENSES: REFINED SCAN CYCLE MEASUREMENT

Improved accuracy

using cumulative scan cycle count

Clear distinctions

between programs

DEFENSES: ATTACKER MODEL

- Attacker Goals
 - No immediate impact on process to hide from operators
 - Insert logic bomb to cause damage over time
 - Stuxnet, e.g.
- Logic bomb triggers Inserted in Main Control Loop
 - Examine if closed (XIC)
 - Compare
 - Timer
 - Counter

DEFENSES: CHANGE DETECTION RESULTS

Detection time < 5 seconds, 0% FPR

Detection time < 1 minute, 0% FPR

DEFENSES: INTELLIGENT ADVERSARY

- Intelligent adversary can replay and mimic
- Use proof of work functions to give PLCs "alibis"
 - Prove they were not executing additional instructions
 - More robust way of measuring program execution time
- Proof-of-work (POW) function
 - Computationally expensive to solve, but easy to verify
 - Typically used as defense against denial of service
 - Ex. Discrete Log Problem: Solve for k in $g^k \mod p = b$

98.5% TPR at 0% FPR

DISCUSSION

- Branching
 - PLC programs mostly operate in states (startup, running, shutdown...)
 - Different fingerprints for different states
 - Little branching within state
 - Averages out quickly over thousands of cycles per second
- Overhead
 - Approximately 10 lines of code (2% increase)
 - Worst case, 1ms extra time

CONCLUSIONS

- Critical infrastructure is STILL insecure
- Lack of attacks not a sign of security, but of motivation
 - Ransomware could change this
- Current defenses fail to detect skilled adversaries
 - Need to go beyond simple network anomalies
 - Proof-of-work functions can give controllers provable "alibis"

THANK YOU!

DAVID FORMBY DJFORMBY@GATECH.EDU