
2nd Annual PKI Research Workshop
Pre-Proceedings

http://middleware.internet2.edu/pki03/

Gaithersburg, Maryland, USA
April 28-29, 2003

In cooperation with USENIX, the PKI Forum, and IFIP TC8

Organizers

General Chair: Ken Klingenstein, University of Colorado.

Program Chair: Carl Ellison, Intel Corporation

Steering Committee Chair: Neal McBurnett, Internet2.

Local Arrangements Chair: Nelson Hastings, NIST.

Program Committee:

Peter Alterman, NIH.
Matt Blaze, AT&T Labs Research.
Bill Burr, NIST.
Yassir Elley, Sun Microsystems.
Carl Ellison, Intel.
Stephen Farrell, Baltimore Technologies.
Richard Guida, Johnson and Johnson.
Peter Honeyman, University of Michigan.
Ken Klingenstein, University of Colorado.
Neal McBurnett, Internet2.
Clifford Neuman, USC.
Eric Norman, University of Wisconsin.
Tim Polk, NIST.
Ravi Sandhi, George Mason University.
Krishna Sankar, Cisco Systems.
Frank Siebenlist, Argonne National Laboratory.
Sean Smith, Dartmouth College.
Michael Weiner, Independent.

1st Annual PKI Research Workshop:

Archival materials live at www.cs.dartmouth.edu/˜pki02/

Refereed Papers

An Overview of Public Key Certificate Support for Canada's Government On-
Line (GOL) Initiative

o Mike Just, Treasury Board of Canada, Secretariat

1

FreeICP.ORG: Free Trusted Certificates by Combining the X.509 and PGP
Hierarchy Through a Collaborative Trust Scoring System

o Marco Antônio Carnut, Evandro Curvelo Hora, Cristiano Lincoln
Mattos : Tempest Security Technologies; Fábio Silva, Universidade
Federal de Pernambuco - CIn/UFPE, Brazil

13

Improving Message Security With a Self-Assembling PKI

o Jon Callas, PGP Corporation

30

Intrusion Tolerant Password-Enabled PKI

o Xunhua Wang, James Madison University

44

Decentralization Methods of Certification Authority Using the Digital
Signature Schemes

o Satoshi Koga, Kouichi Sakurai, Kyushu University, Japan

54

MOCA: Mobile Certificate Authority for Wireless Ad Hoc Networks

o Seung Yi, Robin Cravets, University of Illinois at Urbana-
Champaign

65

Mediating Between Strangers: A Trust Management Based Approach

o Joachim Biskup, Yücel Karabulut, Universität Dortmund, Germany

80

Electronic Signature System with Small Number of Private Keys

o Ahto Buldas, Tallinn Technical University, Estonia; Märt Saarepera,
Independent

96

Privacy-enhanced credential services

o Alex Iliev, Sean Smith, Dartmouth College

109

On the usefulness of proof-of-possession

o N. Asokan, Valtteri Niemi, Pekka Laitinen, Nokia Research Center,
Finland

122

Keyjacking: Risks of the Current Client-side Infrastructure

o John Marchesini, Sean Smith, Meiyuan Zhao, Dartmouth College

128

An Overview of Public Key Certificate Support for
Canada’s Government On-Line (GOL) Initiative

Mike Just

Treasury Board of Canada, Secretariat (TBS)1
Just.Mike@tbs-sct.gc.ca

Abstract: The Canadian Federal Government is delivering on-line services to its citizens. A

critical feature for ensuring the acceptance of these services is to ensure that security
and privacy requirements are met. To this end, Canadian citizens may obtain an epass
allowing them to securely obtain services through a government program web site.
Technically, an epass is composed of a pseudonymous public key certificate. In this
paper, we analyze the system in which this epass is managed and used, with particular
emphasis as to how it supports the security and privacy of Canadian citizens.

1 Introduction
Governments have an obligation to protect the concerns of their citizens (hereafter referred to as
individuals), above and beyond what might typically be provided for a more focused or
specialized user base. In recent years, privacy is often cited as a primary concern. In Canada, this
concern prompted the development and passing of the Personal Information Protection and
Electronic Documents Act (PIPEDA) [PIPE00].2

As the Canadian Federal Government continues to offer online services, it is of the utmost
importance that security and privacy requirements are met so as to lessen any potential concerns,
and ensure user uptake. Though one of many service delivery channels (others include by phone
and in-person), on-line service delivery can offer much efficiency and thus cost savings, but these
can only be realized if on-line services are used. Canada has stated that government departments
will have a complete online presence by 2005. With a population of greater than 31 million, and
more than 1000 programs and services, the Canadian project is by no means small. This is
especially true considering the collaborative potential with provincial and municipal
governments.

In the remainder of this paper, we focus on the PK-based solution for the authentication of
individuals using an epass. Technically, the epass is composed of a pseudonymous public key
verification certificate along with its corresponding private key. The main results of this paper are
twofold:
• To describe Canada’s epass system, supporting secure access to online government services;
• To discuss how this system satisfies privacy and security requirements of individuals.

1 The Treasury Board of Canada, Secretariat (TBS - http://www.tbs-sct.gc.ca/) is a central government
agency whose mission is to manage the Government of Canada’s human, financial and information
resources. Within TBS, the Chief Information Officer Branch (CIOB - http://www.cio-dpi.gc.ca/) is
responsible for coordinating Information Technology (IT) and IT Security activities.
2 Whereas the Privacy Act [Priv85] applies to federal government institutions, PIPEDA applies to
organizations that collect information for commercial purposes. Currently, PIPEDA applies to federally
regulated organizations, but as of January 2004, it will also apply to provinces and territories that have not
enacted similar legislation.

2nd Annual PKI Research Workshop---Pre-Proceedings

1

The epass system has undergone legal, privacy impact, and threat and risk assessments (see
Lazarus [Laza02] for further information). In this paper, we focus primarily on the technical (as
opposed to physical, procedural, legal, etc.) security and privacy measures. Whereas security
requirements are met using familiar techniques and controls, some novel techniques are used to
enhance privacy. In particular,
• Individuals are enrolled and identified only to government programs with which they already

have a relationship. No identifying information is shared with the central certificate issuer.
• A Meaningless But Unique Number (MBUN) is used as the Distinguished Name (DN) in an

individual’s public verification certificate. On its own, this certificate contains no identifying
information. Within a government program, the MBUN is tied to a Program Identifier (PID)
corresponding to the individual.

• Individuals have the flexibility to use more than one epass, allowing them to fine-tune their
protection based on their level of privacy concern. A sufficiently private baseline solution is
offered for individuals that use a single epass.

As this system and its deployment continue to evolve, this paper captures many features that are
part of the current system, though also highlights several research considerations for future
applications (which are worth considering as more and more programs offer secure online
services). Throughout, features that are not part of the current GOL system are explicitly noted as
such.

In Section 2, we describe the management of the epass, from registration to renewal, recovery and
revocation. Section 3 examines the use of epass for the Address Change Online (ACO)
application provided by the Canada Customs and Revenue Agency (CCRA). We discuss the
privacy and security issues regarding the management and use of the epass in Section 4. In
Section 5, we provide some concluding remarks.

2 System Design
There are numerous statutory and regulatory requirements upon which a governmental service
delivery system must be built. For the purposes of this paper and its security analysis, these
requirements can be safely abstracted as the traditional security requirements of confidentiality,
integrity, and non-repudiation, as well as ensuring that individual privacy is met. Matched
against security requirements is often a requirement for ensuring system usability. Indeed, a more
usable system is often used in a more secure manner.

In this section, we describe the design of the PK-based epass3 system supporting individual
authentication. Though the resultant security solution is a combination of legal, policy and
technical controls, for the purpose of this paper we focus primarily on technical safeguards and in
particular the use and management of public key certificates issued to individuals.

We begin with a high-level system overview, where more detail is given in the subsections
below. Individuals register and obtain a single4, pseudonymous public key certificate (an epass),
issued by a central Certification Authority (CA). The identifier within this certificate is a
Meaningless But Unique Number (MBUN). The property of uniqueness ensures that no two

3 The term epass is an abstraction used to identify a generic credential used by individuals to authenticate
for government services. Though generally referring to the doubly-encrypted object containing private and
public keys and obtained by an individual at login, the term is sometimes used to identify only the public
key certificate portion of this object.
4 At their discretion, an individual may obtain more than one epass.

2nd Annual PKI Research Workshop---Pre-Proceedings

2

individuals possess the same MBUN, while lack of meaning ensures that given only an MBUN,
no information as to the corresponding individual identity can be gleaned.

Individuals must separately enrol to each government program (one-time at first use) for which
they desire electronic government services. This enrolment requires that the individual properly
identify him or herself to the program (e.g. based on program-specific shared secret information),
thereafter allowing the program to associate an MBUN to the individual’s Program Identifier
(PID) within that program.5 The program will continue to use the PID as an index for the user,
rather than the MBUN, at least since the MBUN may change. More specifically, the MBUN will
be managed by the epass Management System, whereas the government program manages the
PID. Hence, the MBUN may change, independently from any actions by the government
program. For example, an MBUN associated with a user may change as a result of re-registration
after certificate expiry or certificate revocation. Also, an individual may choose to associate a
different epass with a government program at any time (and hence, associate a different MBUN
with the PID).

The resulting picture is one in which pseudonymous user credentials are securely stored
centrally.6 Within a program, a translation from the MBUN to the PID is maintained in the form
of a translation table. Once enrolled, a user can thereafter authenticate with their epass (using
public key authentication techniques), after which a translation to the appropriate PID identifies
the individual within the context of the government program.

Figure 1: Distinction between MBUN and PID amongst system entities.

Recall that an individual may choose to have multiple credentials, in which case distinct
Username and Encrypted Credentials would be maintained, and a separate MBUN may be used
for access to each program.

The current system implementation relies on the individual having access to a web browser. A
COTS product that implements a downloaded (FIPS 140-1 certified) Java applet provides the
necessary additional functionality.

5 The PID (sometimes called a legacy identifier) is chosen and managed by the government program,
independent of the epass.
6 As described below, the epass solution offers support for roaming users whereby an individual’s private
and public keys are stored, doubly encrypted in a central repository.

1334981035

PIDMBUN

1334981035

PIDMBUN

Program B

9983211035

PIDMBUN

9983211035

PIDMBUN

Program C

1234561035

PIDMBUN

1234561035

PIDMBUN

Program AXXXXXXXXXJ1969

Encrypted CredsUserID

XXXXXXXXXJ1969

Encrypted CredsUserID

Central CA Program Specific
Repositories

2nd Annual PKI Research Workshop---Pre-Proceedings

3

In the following subsections, the detail regarding the registration for an epass and program
enrolment, in addition to the epass management, is discussed. The use of an epass for obtaining
government services is discussed in Section 3.

2.1 Registration and Enrolment
Several variations are conceivable for the initial registration and enrolment of an individual for
access to government services (see Section 2.1.1 for a brief description of some enrolment
variations). Below, we expand on a common scenario, and in particular one that is currently
offered by the Canada Customs and Revenue Agency (CCRA, formerly Revenue Canada)7 in
support of their Address Change Online (ACO) application.

Before continuing, we highlight an important terminology distinction. An individual will register
with the central Certification Authority (CA) for an epass. The CA is not aware of any personal
information regarding this user; hence the user is not required to identify for the purpose of
obtaining an epass. However, when an individual enrols with a government program, they will
identify themselves to that program. It is with a program that further services may be obtained.
To facilitate use of the epass with the government program, at the time of enrolment the program
will create an association between the MBUN (from the epass) to the Program ID (PID), where
the latter is the index for the user within the realm or context of the program. To avoid
unnecessary epass issuance, in the current system only individuals that have properly identified to
a program will be redirected to the CA at the epass Management System (MS). And only once
they have an epass can they complete program enrolment. Therefore, the process proceeds as
three main steps:

1. Individual identification to a government program.
2. Individual registration for an epass.
3. Individual program enrolment (mapping the epass MBUN to the PID).

This process is described in more detail below.

An individual ultimately enrols in a government program by identifying him or herself to the
program. This step assumes that the individual already has a relationship with the program, and
in particular, has an assigned Program Identifier (PID) (see possible variations to this assumption
in Section 2.1.1). As part of the identification process, the individual would typically provide
information requested by the program. As a concrete example, individual enrolment within
CCRA requires presentment of four pieces of information, namely

1. The individual’s date-of-birth,
2. The dollar amount entered by the individual at line 150 of their 2000 or 2001 tax return,
3. A numeric identifier returned to the individual as part of their 2000 or 2001 tax

assessment, and
4. The individual’s social insurance number (SIN) (roughly equivalent to the US Social

Security Number).

After identifying, if the individual doesn’ t currently have a public key certificate (or perhaps has a
certificate but chooses to register for another for use with a program), the individual is
transparently redirected to register for the epass. As part of registration, a random, unique
MBUN is generated and placed in the certificate for the epass. The transfer to the CA for the
purpose of certificate registration does not include transmission of any information that would
identify the individual to the CA.

7 http://www.ccra-adrc.gc.ca/

2nd Annual PKI Research Workshop---Pre-Proceedings

4

The steps in the process of program enrolment and certificate registration are depicted and
described below.

Figure 2: epass registration and government program enrolment

1. An individual visits a Federal Government program web site using their web-browsing
client for the purpose of obtaining some secure services. The individual is redirected to
the program Access Point (AP).

2. At the AP, there are several options, depending upon whether the user has previously
registered for an epass or enrolled with the program:

a. If the user already has an epass, they either
i. Login (presuming the user has already enrolled with the program) and

securely access program services (see Section 3), or
ii. Enrol with the program.

b. If the user does not have an epass, or wish to obtain a new pass for use with this
program, they will proceed with enrolment.

As part of enrolment, the registrant identifies himself or herself by answering questions
posed by the program, derived from shared secret information shared between the
individual and the program.

3. The registrant-provided answers are validated against the information stored in the
program’s legacy database.

4. If the registrant has successfully identified them self, a signed cookie is returned to their
browser, and they are redirected to the epass Management System (MS) for registration
(only if they wish to obtain an epass to use with this program, i.e. they don’ t yet have an
epass, or have one but wish to use a new epass with this program). As part of this process

a. The individual chooses a user ID and password;
b. The individual selects recovery challenge questions and answers; and
c. A private key is generated, with an MBUN similarly generated and assigned by

the MS.
d. The MS, given the public key and MBUN, then creates a public key certificate.

5. The individual’s password-protected profile (containing their private and public keys)
and recovery questions are further encrypted and stored in the MS repository. Note that
no personal information is stored at this repository.

Individual
Gov Prg
Services

Gov Prg
Access Point

Gov Prg
Backend

epass Mng
System

epass
Backend

1. Visit

2. Enrolment Ident.

4. epass registration

3. Verify

5. Store

6. Mapping

7. Store

2nd Annual PKI Research Workshop---Pre-Proceedings

5

6. The information used to identify the individual as part of program enrolment is signed
and encrypted. The MBUN, used as the certificate identifier for the user, is mapped by
the program to the individual’s Program ID (PID).

7. The program stores the signed registration information and MBUN-PID mapping.

The system supports a roaming client, as the individual’s credentials may be stored in a
management system repository. This so-called profile for the individual is doubly encrypted,
including publicly encrypted for the management system and also encrypted using a key derived
from the individual’s password.

2.1.1 Variations
As suggested above, there are variations possible for the registration and enrolment process
described above. In particular, the differing needs of each department will require that some
flexibility exists, though from the point of view of usability, a consistent look-and-feel is
maintained as much as possible for the individual. As more and more programs go online, some
of these variations may be considered.

No shared secrets with program. There are situations in which direct, on-line program enrolment
may not be possible, as the individual does not have a sufficient relationship with the program
(e.g. may not have a PID):

1. Individuals that do not have a relationship with any program, e.g. newborn child;
2. Individuals that have a relationship with some programs, but not others, e.g. individuals

that have a record of employment but no passport;
3. New citizens (e.g. landed immigrants); or
4. Programs that don’ t have sufficient shared information with which an individual may be

identified as part of enrolment.

For these situations, there are a few options that could be considered to aid in secure enrolment
(the second and third can be thought of as special cases of the first):

1. Guarantor. A trusted third-party (perhaps another individual, or a dedicated
organization) can be used to attest as to the identity of an individual. In particular, the
individual will identify to the guarantor (based possibly on some shared secret
information, acceptable documentation, or based on some other form of relationship)
whereby the guarantor will provide evidence attesting to some attribute for the user. A
similar process is currently used for Canadian passport applications.

2. Shared program enrolment services. In cases where an individual is able to enrol within
program A, but not program B (due to a lack of shared information with program B), the
individual might choose to allow program B to request identification information from
program A. Such a service would require that the individual’s privacy be respected, e.g.
that consent is obtained prior to the sharing of such information. The overall privacy
implications for designing such a service would also have to be carefully considered.

3. In-person registration. Whereas an online registration relies on shared and trustworthy
digital information, an in-person registration would allow a registrant to present physical
identification (e.g. passport) in order to properly identify them. The cost-benefit of such
a system would have to be carefully considered.

Multiple certificates. As mentioned earlier, the registration system is flexible so as to satisfy a
wide spectrum of privacy requirements. In the case that an individual uses a single epass, the
MBUN is not used as an index by government programs and programs cannot match data based
on the MBUN (without the explicit approval of the individual) [Priv85, Priv93]. Alternatively, an

2nd Annual PKI Research Workshop---Pre-Proceedings

6

individual may obtain any number of certificates, e.g. a different epass is used for access to each
program. This would not require any additional enrolment by the individual, as they must enrol
one-time with each program already, though would require they register for and track each epass
separately.

Business registration. In addition to individual registration and enrolment, Canada’s GOL
initiative will support business enrolment and registration. The first program and department to
participate is expected to be the Employment Insurance (EI) program, as managed by Human
Resources Development Canada (HRDC).8 This online registration project will support the
submission of Records of Employment (ROEs) by Canadian businesses. Business representatives
will similarly enrol within the program, whereas a business-designated representative manages
control regarding who is able to enrol.

2.2 Certificate Lifecycle Management
In the previous section, epass registration and program enrolment were discussed. In this section,
we focus on the certificate lifecycle management operations of renewal, recovery and revocation.

2.2.1 epass Renewal
Presuming that an individual is able recall their password, periodic (and automated) update of an
epass represents the dominant certificate management activity. This update would be attempted
when a prescribed portion of their certificate lifetime has been reached, as certificate update
requests would be generated (transparent to the individual) at each occasion when they login to
access government services. Currently, a citizen epass is issued with a five-year lifetime, and
updates are attempted once 50% of this lifetime has elapsed.

2.2.2 epass Recovery
In the case that an individual loses control of their password, additional measures must be in
place. It is widely recognized that automated recovery processes are key to offering a cost-
effective system; else help-desk costs can dominate (e.g. based on lost passwords). As such, as
part of the epass registration process, individuals provide a list of challenge questions and
corresponding answers. As a result of a successful recovery, a new verification certificate is
generated, containing the same MBUN.9

At a later time (such as when they no longer remember their password), the user will be prompted
with the question and provide the appropriate answer for each. The current question and answer
model involves providing a fixed list of questions to the user, with the user selecting five and
selecting from a list of fixed answers. (See [Just03] for alternative recovery question models.)

A graduated lockout mechanism could be used to mitigate against exhaustive attacks attempting
to maliciously recover a user. In such a scheme, an individual could be temporarily locked out for
several rounds, each round triggered by a number of consecutive recovery failures. Looking
ahead, other options for recovery are possible, including free-form answer submission and
possibly voice biometrics. In the latter case, a user could be prompted to record a short statement
when registering. At recovery, the individual could be asked to repeat the statement. Of course,
this would unfortunately require a change in service channel (from computer to phone).

8 http://www.hrdc-drhc.gc.ca/
9 Hence, this is more properly viewed as account recovery, rather than epass recovery.

2nd Annual PKI Research Workshop---Pre-Proceedings

7

If an individual is unable to recall their username, then the recovery questions cannot be retrieved
and posed to the user. Since the CA does not have any other context in which they could re-
register the user, this could require re-registration and further, re-enrolment in each program.10
However, one could envision making use of the reverse PID-MBUN mapping (stored at a
program) to aid recovery. Subject to the user’s consent, it would be technically possible to allow
the user to subsequently identify themselves to a program (that both has a record of the PIN-
MBUN mapping and has a suitably secure set of shared secrets that may be used to identify the
user) in which case the MBUN could then be used to proceed with the aforementioned recovery
process through the CA.

2.2.3 epass Revocation
Given the distinction between registration and enrolment, we can consider two instances of
“ revocation.” As related to public keys, an individual’s epass can certainly be revoked, in which
case the individual would no longer be able to use the revoked certificate to authenticate to any
government program. There seem to be few reasons for which such a revocation would occur
(e.g. death). Currently, the certificate owner is able to revoke their certificate by correctly
responding to their recovery questions.

In addition, per-program “ revocation” can occur by “de-activating” the PID-MBUN mapping so
that for that program a user cannot be successfully authenticated. Depending on the reason for
revocation in both cases, programs may still want to be able to verify digital signatures so that a
history of the PIN-MBUN mapping is maintained.

3 System Use
The first and only application that currently makes use of the epass system is the Address Change
Online (ACO) application provided by the Canadian Customs and Revenue Agency (CCRA –
formerly Revenue Canada). The steps performed during the execution of this application are
depicted and described below.

Figure 3: Program login and execution of address change application

10 Other systems, such as Yahoo!, support the recovery of the username by matching to the user’s email and
sending an email, containing the username, to the user’s email address-of-record. However, with the GOL
solution, the CA is not privy to any personal information that might identify the user (such as an email
address). Hence this solution cannot be used.

Individual
Gov Prg
Services

Gov Prg
Access Point

Gov Prg
Backend

epass Mng
System

epass
Backend

1. Visit

5. Mapping

7. Verify

8. Update

2. Login

4. Authenticate

6. Address change

9. Confirm

3. Retrieve encrypted creds

2nd Annual PKI Research Workshop---Pre-Proceedings

8

1. The individual visits a Federal Government program web site using their web-browsing
client for the purpose of obtaining some secure services. The individual is redirected to
the program Access Point (AP).

2. At the AP, there are several options, depending upon whether the user has previously
registered for an epass or enrolled with the program:

a. If the user already has an epass, they either
i. Login (presuming the user has already enrolled with the program) and

securely access program services (see Section 3), or
ii. Enrol with the program.

b. If the user does not have an epass, or wish to obtain a new pass for use with this
program, they will proceed with enrolment.

Assuming that the individual already has an epass and has enrolled with the program, at
this point the individual will enter their user ID and password for retrieval of the epass.

3. Through a secure session, the individual’s encrypted credentials are retrieved and
returned to the individual.

4. The individual’s password is used to decrypt their encrypted credentials at their browser
and the individual uses their epass to authenticate to the government program. A signed
cookie is returned to the browser if the authentication is successful.

5. Upon verification of the user’s authentication attempt, the MBUN from the epass is used
to map to the appropriate program ID (PID).

6. As part of the ACO application the user may browse their address information. When
they choose to update address information, the appropriate form is returned to the user.
The user completes the form then it is digitally signed and encrypted and returned to the
web server.

7. The server validates the signed message, including revocation checking, and confirms
that the user is authorized to make the change for the address information corresponding
to the given PID.

8. The address change is made in the government program database and the signed and
encrypted confirmation form is also stored.

The ACO application is particularly interesting from a privacy point of view as it represents an
application whereby an individual is able to both view and correct their personal information – in
this case, their address information. As with epass registration, the retrieval of the epass is
achieved in an anonymous way, so that the central epass system does not know any personal
information regarding the holder of the epass. Authentication and signing with the epass
credentials are performed so that only the program in question is able to successfully identify the
individual (through the MBUN-PID mapping).

4 Discussion
The resultant epass system is a combination of technical, legal, policy and procedural controls.
As in the previous sections, in the discussion below we focus on the technical aspects, though will
cite other controls as appropriate.

It is likely that a variety of other technical solutions would satisfy the security and privacy
requirements for individuals, and likely more or less proficient in different areas. The primary
advantage of a public key-based system is that it allows storage of persistently authenticated data
with a digital signature. The management support (though not necessarily unique to PKI) is also
advantageous, supporting relatively convenient automated renewal, recovery and revocation.

2nd Annual PKI Research Workshop---Pre-Proceedings

9

The advantageous properties, relating to the use of pseudonymous certificates, are discussed
primarily in Section 4.1 below. The alternative of veronymous11 certificates seems unnecessary,
and would likely result in either a set of sufficiently identifying information being stored in the
certificate (in order to satisfy the differing identification requirements within the context of each
program) or a smaller set of information being used similar to a universal identifier. Alternative
solutions, using attribute certificates for example, might also produce a sufficient solution. With
the current epass solution, programs maintain their current individual identifiers.

4.1 Privacy
The familiar set of privacy principles (e.g. FIPs [FIPs00], OECD [OECD80]) cover a wide range
of issues and a broader set of potential services than for the epass functionality discussed in this
paper. In the discussion below, we enumerate some of these principles as relevant, as well as
some additional principles that seem appropriate to analyzing an authentication system (some of
which were stated in the results of the Privacy Impact Assessment performed on the epass system
[Priv02]).

We focus on the attributes relevant to the epass as a pseudonymous certificate below. Note that
signed messages are also encrypted so that information about an individual, as contained in a
signed message, is only visible to the intended recipient.

1. Anonymity/Pseudonymity. Outside of a program in which an epass-holder has enrolled,
the public key certificate reveals no information about an individual; to an observer, the
individual is essentially anonymous. Within a program that the individual has enrolled,
the MBUN acts as a pseudonym, allowing proper identification of the individual once
linked to the PID.

2. Choice. Individuals can choose to register for a single epass, or alternatively, a separate
epass for use with each program. With a single epass, a comfortable level of privacy is
provided since (i) programs will continue to use the PID as their primary index (recall,
the MBUN can change, outside of the control of the program), and (ii) legislation
[Priv85] and policy [Priv93] restrict the sharing of information between government
programs. While more than one epass might allow a more comfortable separation of
program information for some, it requires registration for and tracking of more than one
epass (e.g. to determine which epass is used for access the services of a particular
program). More generally, further choice is offered by the maintenance of multiple
channel support (e.g. telephone), in which case individuals are not obliged to obtain an
epass.

3. Inference. Compared to an alternative solution in which the name of a particular issuer
and subject are cited in a certificate (e.g. if “John Doe” were issued a certificate from the
“Department of Corrections”), no similar inference may be drawn with an epass as the
Government of Canada issues certificates.

4. De-centralized information. The only centralized entity involved in this system (the CA)
does not possess, nor is ever given, personal information.

5. Data separation. With a single epass, programs index on a program ID (PID). Privacy
legislation and policy ensure that new use of information is not performed without user
consent [Priv85, Priv93]. As a technical option, users may choose to have more than one
epass.

11 A term coined by Carlisle Adams. Distinguishing from anonym (“no name”) and pseudonym (“ false
name”), a veronym refers to a “ true name.” A veronymous certificate refers to a certificate that contains a
veronym.

2nd Annual PKI Research Workshop---Pre-Proceedings

10

6. Access to personal information. As a particular example, specific to the ACO application,
users may view and correct their address information within a program.

An additional concern related to privacy is that of identity theft. Such theft could allow fraudulent
program enrolment. For this reason, each program ensures that a suitably high level of assurance
is supported when identifying individuals. In addition, the design philosophy, whereby
individuals must enrol separately to each program, mitigates the scope for potential fraudulent
enrolments.

4.2 Security
Beyond system privacy, system security can be qualified. We do so by discussing the
confidentiality, integrity and non-repudiation as achieved by use of an epass. In general, these
properties are achieved using a combination of familiar technical security controls, in addition to
other physical and procedural controls; we highlight some relevant technical controls below.

The individual interacts with programs through secure sessions. Therefore, we achieve
confidentiality and integrity by reliance on this secure channel (i.e. SSL). In addition, persistent
encryption and signing beyond the session may also be achieved depending the needs of a
particular government program. For persistent encryption, a client is able to encrypt using the
encryption certificate for a back-end server. Similarly, a client may persistently sign information,
in support of authentication and non-repudiation.

Elaborating on identification, certificates are pseudonymous whereby a link is maintained at each
program that matches the MBUN to the corresponding PID. In addition, at enrolment, the
individual signs the evidence of enrolment. This supports proper identification (as would be
necessary for further authorization requirements) and allows evidence to be contributed for non-
repudiation. For an observer outside of a government program, the verification certificate
attached to the signed (and encrypted) data is not readily attributable to any particular individual.

5 Concluding Remarks
In this paper, we’ve described and analyzed the system in which individuals may obtain an epass
for accessing secure services online. Currently, this system is demonstrated through a single
address change application. However, many more applications will be added as more and more
departments similarly offer secure services.

This use of public keys for an epass is similar to modifications as suggested by Ellison [Elli02].
In our case, the use of some certificate identifier (other than the public key or some other value
dependent upon the public key, such as its hash) allows for the same identifier to be used even as
a result of epass renewal or recovery (in which case, a new public key is generated).

Looking ahead, there will be numerous opportunities for individuals to operate within multiple
jurisdictions with their epass. Already, cross-certification has begun between the federal and
provincial levels. And as this paper is written, the Canadian Federal Government is working
towards cross-certification with the US Federal Bridge CA.

Acknowledgements
Thanks to several Treasury Board colleagues for their helpful comments, including Rick Brouzes,
Michael de Rosenroll, Rhonda Lazarus, Wendy Stewart, Brenda Watkins and John Weigelt.
Thanks also to the workshop referees for their comments.

2nd Annual PKI Research Workshop---Pre-Proceedings

11

6 References
[Elli02] Carl Ellison, “ Improvements on Conventional PKI Wisdom,” in Proceedings of the

1st Annual PKI Research Workshop, April 2002.
http://www.cs.dartmouth.edu/~pki02/

[Laza02] Rhonda Lazarus, “Government of Canada’s Legal and Policy Framework for
Government On-Line,” presented at Canadian IT Law Association Conference,
October 2002. http://www.cio-dpi.gc.ca/pki-icp/issuesactiv/frame/frametb_e.asp

[FIPs00] Federal Trade Commission, “Privacy Online: Fair Information Practices in the
Electronic Marketplace,” May 2000
http://www.ftc.gov/reports/privacy2000/privacy2000.pdf

[Just03] Mike Just, “Designing Secure Yet Usable Credential Recovery Systems Using
Challenge Questions”, Workshop on Human-Computer Interaction and Security
Systems, 6 April 2003.

 http://www.andrewpatrick.ca/CHI2003/HCISEC/index.html
[OECD80] Organization for Economic Co-operation and Development (OECD), “Guidelines

on the Protection of Privacy and Transborder Flows of Personal Data” , 1980.
[PIPE00] Department of Justice – Canada, Personal Information Protection and Electronic

Documents Act (PIPEDA), 2000. http://laws.justice.gc.ca/en/p-8.6/text.html
[Priv85] Department of Justice - Canada, Privacy Act, 1985.

http://laws.justice.gc.ca/en/P-21/index.html
[Priv93] Treasury Board of Canada, Secretariat, Privacy and Data Protection Policy,

Chapter 2-5 – Data Matching, Dec 1, 1993.
 http://www.tbs-sct.gc.ca/pubs_pol/gospubs/TBM_128/CHAP2_5_e.asp
[Priv02] Treasury Board of Canada, Secretariat, Privacy Impact Assessment Policy and

Guidelines, May 2002.
http://www.tbs-sct.gc.ca/pubs_pol/ciopubs/pia-pefr/siglist_e.asp

2nd Annual PKI Research Workshop---Pre-Proceedings

12

FREEICP.ORG: FREE TRUSTED CERTIFICATES BY COMBINING THE X.509 HIERARCHY AND THE PGP WEB OF
TRUST THROUGH A COLLABORATIVE TRUST SCORING SYSTEM

Marco Antônio Carnut (kiko@tempest.com.br)

Tempest Security Technologies
Centro de Estudos e Sistemas Avançados do Recife - CESAR

Universidade Federal de Pernambuco – CIn/UFPE

Evandro Curvelo Hora (evandro@tempest.com.br)
Tempest Security Technologies

Centro de Estudos e Sistemas Avançados do Recife - CESAR
Universidade Federal de Pernambuco – CIn/UFPE

Universidade Federal de Sergipe – DCCE/UFS
Cristiano Lincoln Mattos (lincoln@tempest.com.br)

Tempest Security Technologies
Centro de Estudos e Sistemas Avançados do Recife - CESAR

Universidade Federal de Pernambuco – CIn/UFPE

Fabio Q. B. da Silva (fabio@cin.ufpe.br)
Universidade Federal de Pernambuco – CIn/UFPE

ABSTRACT
This paper describes a CA hierarchy that mimicks PGP’s web-of-trust model using a collaborative web-based trust scoring
system to provide free client digital certifcates with strong identity guarantees. Entry-Level CAs that approve temporary short-
lived certificates immediately may replace traditional password-based web registration systems; identity guarantees may be
added later by passing several qualification rounds in a trust manager web application. When the user exceeds the minimum
qualification criteria, he is granted a Verified Identity-class certificate. The system encourages users to tie their digital IDs with
their real world IDs, making them more institutionally acceptable and sometimes automatically verifiable; it is argued how this
can also provide means of mitigating and managing identity disputes. Experiences gathered from implementing both a CA
hierarchy and a relying party web application based on these principles are also presented.
.

1 INTRODUCTION
The hierarchical X.509 PKI [13, 12] and the PGP web
of trust [25, 6, 3] have historically been presented as
inherently antagonic approaches [2, 8] and extensive
discussion has been published about their limitations
and unsuitability for global e-commerce [24, 19, 10,
9]. Notwithstanding, these were the only ones to
achieve a reasonable level of popularity, as measured
by the widespread availability of implementations
(PGP [27], GPG [31] and numerous email client
plugins), toolkits (OpenSSL [28], Jonah [33], Cryptlib
[34], etc.), web server software (Apache [30] +
mod_ssl [29]) and clients (IE, Netscape, Mozilla,
Opera, etc).
This paper proposes a way to take the best of both
worlds, showing one possible way to endow an X.509
hierarchy with a collaborative trust system somewhat
like the PGP’s web of trust model, but with
considerable advantages. In fact, we wanted that the
two PKIs user bases could reinforce each other,
making our solution also a kind of bridge-CA.
Specifically, we wanted to provide a way for
individuals to be identified by means of SSL/TLS
client certificates for authentication purposes in web-
based applications, but without having to pay for their
identities to be verified like in commercial CAs. The
solution has been present in PGP since its inception:
users vouch for other users’ identities by signing their
keys, building a distributed, collaborative web of trust
[15]. X.509 was not quite designed to support this, so
we built a web-based CA application that allows users
to introduce each other, assigning numeric scores to
the amount of certainty users grant each other – in fact,
a generalization of PGP’s own trust scores, but with a

few novelties: a mechanism for tying their virtual
identities to real world identifiers (so as to make them
more “institutionally acceptable”); a way to perform
many simple identity validation checks automatically;
and a method to detect and manage identity disputes,
either malicious or not.
We also tried to maintain a few key design principles:
the whole CA infrastructure should be implementable
with common open-source software (Apache,
mod_ssl) and should be usable with the standard
popular web browsers (IE, Nescape, etc.). Moreover,
they should be made as simple as possible, up to the
point of rivalling with common “email & password”
web registration schemes.
The rest of this paper is organized as follows: section 2
describes the CA infrastructure at considerable length:
the Entry-Level and Verified Identity family of
Certificate Authorities, the Trust Manager and the trust
scores, along with many experiences from the actual
reference implementation. Section 3 details the
combination of automatic and human-assisted identity
validation procedures used by the Trust Manager to
ascertain the users and hosts identities. Particular
attention is given to the resilience to misbehavior with
a description of the identity contention management
scheme. It is also argued that these metrics adhere to
good design principles proposed in the literature. We
could not judge how well our system would perform
without trying it in a real application; section 4
describes our initial experience in adapting an existing
application to support our mixed-PKI infrastructure.
Section 5 presents conclusions and future work
directions.

2nd Annual PKI Research Workshop---Pre-Proceedings

13

2 SYSTEM ARCHITECTURE

2.1 CA and Key Hierarchy
We start by proposing a fairly standard CA hierarchy:
a root CA which certifies two families of intermediate
CAs:
• The Entry-Level (EL) CA family: these CA

applications generate certificates online to any
user that requests one, with just minimal
validation, such as complying with a simple
naming policy, avoiding duplicates and
challenging the validity of the email address by
replying to it. Its sole purpose is to put a valid,
working, fully functional digital certificate into
the users’ client applications – most likely, their
web browsers – immediately and for free. These
certificates have short validity periods compared
with the more trusted ones – two or three months
seem sensible. They should be accepted only for
testing or initial enrollment in web applications.

• The Verified Identity (VI) CA: this CA issues
digital certificates when users meet some specific
credibility and trustability scoring. These
certificates have a larger validity period,
something like six to twelve months. Actually,
there could be several such CAs, each with
successively more stringent scoring requirements.
Large-scale production applications should require
these certificates for the bulk of their
functionality; the applications should “insist” that
the users “upgrade” to a VI certificate as soon as
possible.

The VI CAs would have both X.509
certificates/private keys and PGP keypairs, so they
could act as cross-certifiers. The idea is to leverage
each PKI’s user base to reinforce each other and foster
wider adoption.

2.2 The Entry-Level Certification Authorities
We wanted to make users able to generate a new SSL
client certificate just as easily as PGP users can

Root CA

Verified Identity
Clients CA

Entry-Level
CA

Direct
Introduction

Strong Validators

Non-unique ID
Validators

Unique ID
Validators

Validator Robots

Standalone
Entry-Level

WebCA
Application

Trust Manager Web App

• Certificate/CRL Pool
• Trust Scores
• Transaction Log

DATABASE

. . . More Stringent
VI CA

Web-searchable
databases

• Issues certificates only to those who passed the
trust manager app’s minimum criteria

• Revoke certs under suspicion

Verified Identity
Servers CA

Entry-Level
CA

PGP-Key based
Introduction

Web App/Portal
with integrated

CA for user
registration

• Issue certificates to anyone
with little verification.

• Short-lived certificates
• Automatically add the new

cert to the application’s
access control system

. . .

HTTP queries over
the Internet

relationship type
and

degree of trust
Signed

PGP key SSNs, Driver
Licenses, CPFs,
 etc.

Phone,
address,
etc.

USERS

Figure 1: Overall system architecture: above, the X.509 treelike root CA → intermediate CAs key heirarchy. The two main CAs are the Entry-
Level and the Verified Identity, associated to their respective web sites. The first issues certificates to nearly any user, just to allow them to log on

the trust manager web application. Web portals might have an integrated EL CA as its user registration system. Users are allowed to issue
certificates under the Verified Identity CA only when they meet a minimum set of scores. The way to increase them is by passing through several

kinds of validators: the validators robots check the users’ personal information on web databases; and the strong validators are based on user-to-user
introduction. The VI CA also has a PGP keypair and adds his signature to users with PGP keys (when they qualify); and accepts signed PGP keys as

strong-validation introductions. This leverages the userbases of both PKIs, helping them to reinforce each other.

2nd Annual PKI Research Workshop---Pre-Proceedings

14

generate their key pairs. However, most web browsers
don’t have provisions for properly signing Certificate
Signing Requets; and even if they did, we would have
to be part of a hierarchy anyway. So, we need a CA;
we call it an Entry-Level CA.
We use the term “Entry-Level” to suggest a certificate
with no identity guarantees – just like PGP keypairs –,
in analogy with “temporary” membership or airline
frequent flyer cards. The user should expect that he
will be required to change it for a “definitive” one.
Applications should grant minimum “guest-like”
privileges to accesses made with this certificate.
To maintain parity with PGP, users are identified by
their email addresses and a nickname (possibly, but not
necessarily, their real names). In our prototype
implementation we followed a Google-like UI
simplicity principle: the user types in his name and
email in a single form field and gets the certificate
installed in the very next screen.
This ideal has been implemented with reasonable

success on Netscape and similar browsers (Mozilla,
Opera), as shown in figure 2: from the moment the
user hits the submit button to the point the certificate
gets installed, those browsers add just a few simple
steps to ask or set the private key container’s
passphrase. Internet Explorer, however, proved much
more intimidating: figure 3 shows that even when it’s
not necessary to update the ActiveX control that
handles key/CSR generation, the process may take up
to 12 steps with scary messages about scripting
violations; and the user interface almost compels the
user to store his certificate with no passphrase.
Another catch is that the user has to have already
installed our root CA’s certificate. In our intranet
setting, this is part of our customized OS installation
procedure, so our users don’t have to perform this step.
In other environments, however, this will be needed;
although the process is not complex, some browsers
present a multi-step wizard with many choices that
non-technical users often misunderstand.

 (a) (b)

 (c) (d)
Figure 2: Mozilla & Netscape-derived browsers are more amenable to the express certificate concept: the whole process can be done in 4 steps.
In (a), the user types his name, email address and hits the Issue button. In (b), the user is asked its container passphrase, or, in this case, to set one
up. After that the user needs to perform no further action but to wait the key generation to finish (c) and the installation to complete (d). In Opera,
the dialogs look different but the process is essentially the same. All that supposes that the user has already installed the root certificate, which is

conducted by a 1-6 step “wizard-like” sequence of dialog boxes, depending on the exact browser used. Mozilla, shown here, is the simplest.

2nd Annual PKI Research Workshop---Pre-Proceedings

15

Users also often don’t get the point of the fingerprint
verification and in many cases proceed without
actually performing it rigorously. We can only hope to

gain enough popularity in the future to be able to
include our final root CA certificate in upcoming
versions of common web browsers.

 (a) (b)

 (c) (d)

 (e) (f)

Figure 3: Express certificate generation in IE takes at least 11 steps, six of which shown here: in (a) the user types his username and email. In
(b), IE warns the novice with a somewhat needless obvious question. In (c) and (d), the uncommonly well informed and disciplined user sets the
security level to high; if he didn’t explicitly ask for the high security setting (which the API doesn’t allow the CA to set), the certificate would be

stored without a passphrase. In (e), the user finally gets to set his passphrase. In (f), after confirming two levels of dialog boxes, there user receives
another scary message before getting his certificate installed. All this supposes that the user has already installed the root certificate (a 9-step

wizard) and has a recently patched (pos-Q323172) version of Internet Explorer (2 more steps which may fail silently if the computer is configured
with policies restricting software installation); these were omitted for sake of brevity. All this ends up making certificate generation a frustrating

process that fails in more than 60% of the attempts.

2nd Annual PKI Research Workshop---Pre-Proceedings

16

After having the certificate installed, a confirmation
email is sent to the address the user specified. It clearly
informs:

• The website name and the exact URL he accessed
to perform the enrollment;

• An URL to revoke this certificate in a single click
– for instance, in case the user feels the certificate
was issued by someone other than himself;

• A succint description of the certificate’s purpose –
often, its sole purpose is to access some web
application; in some EL CAs, we redirect the user
to a directory of services that require these
certificates;

• The fact that EL certificates are to be understood
as “temporary, limited access”, having a
somewhat brief validity period (a few days or
weeks); and the fact that the user can apply for a
Verified Identity Certificate which grants greater
validity and, possibly, more access privileges; an
URL where the user can learn more about the
certificate classes, CPSs, etc., is also given.

The loose identity tie, based mostly on the email
address, makes the EL certificate somewhat like
Verisign’s Class 1 certificates [22]. Their process,
however, require confirmation that the user controls
that email address: they send an email with an URL
that the user must access to pick up his/her certificate.
Since it’s very easy to create a valid email address in
one of the many free webmail services, this doesn’t
add much security. Since commercial CAs usually take
several hours to issue the certificate and send the email
inviting the user to pick it up, this also sets the stage
for a very common mistake: trying to pick it up in a
different browser or computer from where the user
requested it.
Every now and then some users lose the email with the
revocation URL. In these cases, we tell them to go to
the EL CA enrollment page just as if they wanted a
new certificate. It detects that the supplied email
addresses already have a valid certificate associated
with them and offers the users three choices:

• Revocation: the EL Web CA application resends
the email with the revocation URL; if and when
the user wants to revoke the certificate, he
accesses the URL.

• Reissuing: the EL Web CA sends a email with a
special URL that revokes the previous certificate
and issues a new one in a single step.

• Do nothing: leave things as they are.
There is considerable debate about whether revocation
is a good idea or even needed at all in PKI systems
[18, 16]. In light of this “revoke if it wasn’t you who
requested it” philosophy, along with the need to
reissue certificates often due to the short certificate

validity, revocation seems well suited, even though
most relying-party applications neither correctly
process CRLs nor support OCSP [26] or the like. We
decided that all our “FreeICP.ORG-compliant”
applications should include full support to a policy-
based revocation verification system.
Another important point is the naming policy. It
follows the following principles:

• Globally Unique DNs: The certificate holder’s
Distinguished Name in the Subject field should
identify only his email address (with the Email
OID), his name (in the Common Name OID) and
the name of the Entry-Level CA who issued the
certificate in a OU field. This makes DNs globally
unique, preventing name clashes in case some user
tries to issue certificates under more than one EL
CA. Thus, the EL CA does not need to check
elsewhere to see if this DN has already been
taken. This also simplifies building associated
directory services, like a global LDAP database.

• Only one certificate per email address:
otherwise, the identity guarantee would be even
slacker and the reissuing/revocation detection
wouldn’t work.

• Server Certificates: If a user supplies a valid
DNS name as his name, the EL CA may issue a
server certificate instead. It does need to do any
kind of checks to see if the address exists. Several
server certificates may be issued for the same
contact email address (presumably, the servers’
administrator). These certificates, however, are to
be used for testing purposes only, since they bear
no identity guarantees, and, as we shall see, the
process for generating Verified Identity server
certificates does not need them. The EL CA has
the option, according to its own policies, of not
issuing server certificates at all.

• Identity privacy: nickname and email offer little
to correlate the user with his real world persona
and sound very familiar to oldtime PGP users.
This is in stark contrast with several other
certification services, which require lots of
personal data in advance to perform identity
validation – an extreme example being the
Brazilian National PKI, which not only demands
the user’s ID in the four most proeminent national
registries [4], but includes them in the certificate,
making them easy prey for spammers and identity
thieves. In our system, personal data is required
only when the user wants to get his identity
validated, as shown in section 3.1 .

The deliberate bias towards user friendliness instead of
“security” (as represented by identity guarantees) may
be regarded as distateful by PKI purists. In fact, the
scheme proposed above provides only slightly more

2nd Annual PKI Research Workshop---Pre-Proceedings

17

features than the PGP PKI (because of the much
clearer revocation process) and the same level of
identity validation – nearly none at all.
We argue, however, that all these usability trade-offs
are fundamental to get user acceptance – both the end-
user and the web application developers and
administrators. To the best of our knowledge, there are
no comprehensive studies on how usability problems
affect the X.509 PKI – despite profuse folkloric horror
user support stories within CA managers and PKI
practitioners communities. However, [23] explains
why PGP, widely thought as being “user friendly”
because its Windows versions have a decent GUI, is
much more non-intuitive and less usable than many of
its enthusiasts would like to admit. Many of its results
are very well applicable to the X.509 arena and have
inspired our design for extreme simplicity.
Admittedly, even this simplicity cannot solve many
compliance defects [5] inherent in PKI systems, like
the impossibility to enforce good passphrases to
protect the private key (since its generated by the client
software; as shown in Figure 3, Internet Explorer, in
particular, makes it upsettingly easy to have a private
key with no passphrase at all; both Netscape and IE
don’t provide a way to require a minimum passphrase
complexity) or to securely distribute the root CA’s
certificate (all of our EL CA’s pages invite the user to
reinstall the root CA certificate and check their
fingerprints). However, yet again we are trusting the
client software and user to do the “Right Thing”. It is
hoped that future versions of these clients may rectify
these deficiencies.
Notwithstanding, the EL CA’s Certificate Practice
Statement must make it very clear what “Entry-Level
certificate” means: no identity guarantees, good for
testing, learning and initial entry in the trust system;
and that the user’s ultimate goal should be to upgrade
the Entry-Level certificate to a Verified Identity one.

2.3 The Trust Manager Application and the Verified
Identity CA
The PGP PKI adds in-band identity guarantess by
allowing public keys to bear (possibly many)
signatures from other users. In the X.509 PKI we can’t
to that because certficates can’t have more than one
signature; and end entities can’t sign certificates – only
CAs can. Thus, the natural solution is to make a CA
that issues the user another certificate, which we call a
“Verified Identity” certificate, when he passes some
set of identity verification criteria.

Along with this Verified Identity CA there is the
trust manager web application (TMWA, for short). It
requires SSL client certificate authentication,
accepting any user whose certificate was issued by
both the EL and VI CAs. For each of them, the
application would store their certificates, personal and
contact data that the user voluntarily made available

for purposes of identity checking and three trust
scores:
• Credibility score: measures how certain we are

that this individual is who s/he claims to be. It will
be calculated as a weighted average of several
validators, described below. It is analogous to
PGP Key’s “validity” rating, but much more
granular – PGP’s validity can be only “valid” or
“invalid”, while our credibility score is an integer
number.

• Introducer score: indicates how trustable this
user is when attesting or repudiating other users’
identities. EL-certified users cannot have
introducer points; only VI-class users may
introduce other users. It is akin to PGP’s “trust”
rating, but, again, much more granular.

• Suspicion score: keeps track of how much this
user is involved in identity contention with
someone else. Users under suspicion (i.e., with
non-zero suspicion scores) cannot have
certificates issued or reissued under the VI CAs;
besides, their introducer power is suspended.
Notwithstanding, they can accumulate credibility
points normally. If his credibility score exceeds
his suspicion points, his privileges will be granted
back and his suspicion points will be reset to zero.
If a user spends too much time (say, a month)
under suspicion, his account is deleted (“garbage
collected”, in our jargon) after being sent an email
warning a few days before.

It is instructive to compare this scheme with other
proposals like Thawte’s Freemail Web-of-Trust
program [21]: in their system, there is only one score
that handles both the user’s credibility and its
experience/reliability as an introducer (which are
called “notaries”). There is no suspicion management,
since each notary is required to meet in person with
any individual he introduces and it is seems to be
thought that this makes the system immune to disputes.
Each VI CA would have an “eligibility criteria”, based
on the trust scores, metrics from the trust graph and,
possibly, other criteria (e.g., requiring a specialized
client, more secure than the mainstream web
browsers). When some EL certificate user meets or
exceeds these criteria, the VI CA would send an email
inviting him to issue a VI certificate (this most likely
requires generating a new private key, since most
client software requires a one-to-one mapping between
a certificate and a private key).

3 VALIDATORS
Validators are procedures executed by the TMWA for
verifying the identity a certificate holder. We propose
the following kinds of validators:
• Automatic validators: scripts/robots that verify

some of the users personal data through automated

2nd Annual PKI Research Workshop---Pre-Proceedings

18

SSN validator script:
Checks against public SSN databases
Sucessful validation: +15 credibility points

Homer
0/0/0

Homer J. Simpson

SSN: 568-47-0008

homer@snpp.com

742 Evergreen Terrace
Springfield, NT 49007

(HTTP web query on an external site)

Homer
15/0/0

Homer J. Simpson

SSN: 568-47-0008

homer@snpp.com

742 Evergreen Terrace
Springfield, NT 49007 Address/Phone validator script:

Checks against whitepages services:
Successful validation: +10 credibility points

(HTTP web query on an external site)

Homer
25/0/0

Homer J. Simpson

SSN: 568-47-0008

homer@snpp.com

742 Evergreen Terrace
Springfield, NT 49007

Institutional email validator script:
Checks against corporate directories that
willingly cooperate with the system.
Successful validation: +20 points

(LDAP query or SMTP VRFY)

Max trasferable
points for name
confirmation: 10%

80% x 50% = 40%

50% x 10% = 5%

45% x 1000 = 450Homer
45/0/0

Homer J. Simpson

SSN: 568-47-0008

homer@snpp.com

742 Evergreen Terrace
Springfield, NT 49007

Lisa
300/1000/0

Lisa Simpson

lisa@oai.org.br

Max trasferable
points for photo
confirmation: 50%

I am 50% certain that
the holder of this

certificate is called
Homer J. Simpson

I am 80% certain that
the holder of this

certificate looks like
this picture

+

Homer
495/0/0+

Figure 4: Automatic (“weak”) validators
in action: Homer Simpson enrolls in the
TMWA and starts with no credibility,
introduction or suspicion points. After
having posted some verifiable personal
information in the TMWA database, the
system runs several scripts to confirm his
claims: in (a), the TMWA queries an
external web site (say, usinfosearch.com) to
validate his name and SSN, earning him 15
points. In (b), the TMWA queries another
website (in the example, superpages.com) to
verify his address, earning 10 more points.
In (c), it queries his empolyer’s LDAP
database and/or mail server. Homer gets out
of the weak validator process with 45 points
(not shown in the picture), with shouldn’t be
enough to grant him a VI certificate.

Figure 5: Strong validator process: A case
of strong validation through direct
introduction: Lisa is a highly trusted
introducer, with 1000 introducer points. In
(a), she transfers 50% of certainty that the
certificate’s owner name is Homer J.
Simpson. The TMWA presets this validaton
as yielding at most 10% of the introducer’s
trust score, so it transfers only 5% of Lisa’s
1000 intro points to Homer. In (b), Lisa also
attests with 80% certainty that this is
Homer’s picture, which, multiplied by the
TMWA built-in limit of 50% for photo
validations, grant him 40% of Lisa’s 1000
points. He finishes this accredidation session
with 45 points from the weak validators and
450 points from the strong validators. If this
exceeds some VI CA minimum thresholds,
it will grant him a VI certificate.

(a)

(b)

(c)

(b)

(a)

queries on public websites. For instance, checking
names and addresses in whitepage services such
as knowx.com or public government services
(section 3.1 presents more specific examples).
Users passing on these validators would receive a
small amount of credibility points. It has to be
small because, since it is based on public data, it’s
rather easily spoofed – because of that, the
automatic validators are also called “weak”
validators. However, they fulfill an important role:
tying the certificate holder with a verifiable
identity in the real world, as maintained by other
independent sources. If anyone wants to spoof
anyone else, they would spoof someone who
probably exists and may eventually expose the
spoof and/or dispute with the spoofer.

 An important design principle is that they should
not, insofar as possible, require on-site CA
operators; they should be performed

automatically, either by querying an online public
Web database or being driven by remote users’
input. They are to be triggered by the client users
themselves, by accessing the proper web pages in
the TMWA. One of their main functions is to
allow users who already possess an entry-level
certificate to increase their scores, up to the point
for qualifying to get a VI certificate issued –
without having to go in person or send paper
credentials over snail mail to the CA.

• User-driven Introduction: the traditional way of
cross-certification through trusted introducers –
the user gets someone else already with a high
introducer trust rating to vouch for his identity.
The introducer would access his personal account
in the Web CA and fill in a form saying that he
has x percent certainty that the newcomer is who
he says he is. This number would be multiplied by
his introducer trust score and an attenuation factor

2nd Annual PKI Research Workshop---Pre-Proceedings

19

dependent on the exact identifier being validated.
For instance, photographs are harder to fake than
names or email addresses, so they should grant
more points. The final result is added to the
newcomer’s credibility score.

All that means that the web-of-trust exists on the Web
CA application’s database as a set of trust scores; a
graph of introducer-introductee relationships; and a log
of validation procedures followed by each user. This
last item is especially interesting for debugging and
auditing, for it allows us to reconstruct the user’s
history and justify why the system has given him the
score he has.
Any given user is capable of, at any time, check his
scores and be informed of what steps to take in order
to increase them. When the scores of a particular user
grow beyond a specified threshold, he should be issued
a certificate under the Verified Identity CA. That
would mean that the user passed enough challenges
and validations for the VI CA to be sure enough of his
identity to issue him a certificate.

3.1 Automatic Validators (“Validator Robots”)
Automatic validators provide new users a way to gain
a small but significant initial credibility quickly,
online, without having to ask other people to vouch for
them.
It works like this: a new user would log on the TMWA
using his EL certificate/private key pair and supply
certain kinds of online-verifiable personal data, such as
postal address, phone numbers, IDs in public services
– Social Security Numbers, driver license numbers,
etc.
The user would not be required to enroll his personal
data in the TMWA; however, as he earns credibility
points for each successful validation, he has an
incentive to voluntarily do so. The Web CA/TMWA
has a strict and clearly published privacy policy about
keeping this data.
Also notice that the newcomer’s personal data will be
seen only by introducers (and possibly external
auditors), which are expected to be much less than all
Verified Identity users, and even less that the public at
large. The TMWA may also offer to show the
newcomer’s personal data only to introducers he
explicitly allows or invites, such as close friends,
business associates, etc.
Groupings of the user’s personal data could be
validated by performing a HTTP web query on widely
known and respected services. (This query would be
performed by an automated script; no CA operator or
human assistance should be necessary.) For instance:
• Addresses and phone numbers: these could be

validated by checking them on whitepages
directories such as knowx.com, whitepages.com
and the like. It is considered valid only if the

phone/address is registered with the user’s name.
Other people living in the same address would not
pass this validation, but they have other
alternatives.

• Country-specific identifiers in public national
databases: Unique identifiers would be especially
desired. For instance, several Brazilian
governmental agencies’ web sites provide web
interfaces for querying their databases. Our
prototype implementation has robots to check
users’ driver licenses, elector IDs, and others. The
sites usually return the users full name and other
status information when given the numeric IDs the
user entered in the TMWA. If the name they give
match (with some fuzziness factor to account for
slight misspellings and truncations) with what the
user provided, he is granted a few points.

• PGP Key-based validation/introduction: if the
newcomer has a PGP key, he could post it to the
TMWA. The PGP automatic validator then sends
him an email encrypted with his PGP key
containing an URL with a random validation code.
If the TMWA receives the hit in this URL (which,
remember, requires SSL client authentication), we
take it as proof that the owner of the PGP key is
the same person that owns the SSL client
certificate. For that, we grant him a few credibility
points.

 Since we are sure the user controls the PGP
private key, we can take it a step further: if the
user’s PGP public key is signed by some trusted
introducer, then it will be regarded as a direct user
introduction, as described in section 3.2 – but
performed in an entirely automatic manner. This is
a special case where a “weak” validation may
become a “strong” introduction.

• Photographs and other human-verifiable data:
Certain personal data, such as headshot
photographs, could also be accepted. Since they
cannot be validated automatically, they would just
“sit there” waiting for a human introducer to
validate (as a means of saying “I attest that I
checked that the individual who owns the private
key corresponding to this certificate looks like this
photo”) or repudiate (“This is the picture of a slug
and this certificate holder is fooling around with
the system”). More about that in section 3.2 .

It is important to remind that all this personal data is
kept in the TMWA database only. It is not included in
the digital certificate when it is finally granted to the
user. The VI certificate’s DN is nearly the same of the
EL certificate (except for the name of the VI CA in the
OU field).
As each successful validation is achieved, the user’s
credibility points should be increased by the
validator’s trust weight multiplied by a measure of the

2nd Annual PKI Research Workshop---Pre-Proceedings

20

success of the validation. Figure 4 illustrates the
process schematically, while figure 6b shows some
snapshots of the process being conducted in our
prototype implementation.
These kinds of validations are said to be “weak”
because they are based on public data. They don’t
really prove the user is who he says he is. Thus, the
amount of credibility points a user receive by these
validations should be small compared with other
validators, given that anyone can get personal data
from some random individual in the very same
services the TMWA uses to validate them and claim to
be someone else.
The primary security function of the weak validators is
to make it harder for a spoofer to get a certificate
issued to an entirely fictious individual whose
existence would be unlikely to be challenged. By
having to assign a verifiable identity to the certificate,
a spoofer incurs the risk of being challenged by the
spoofed individual, as detailed in section 3.3 .

3.2 Strong Validators
The fastest way for a user to gain credibility points in
the trust scoring system is by having other participants,
especially highly trusted ones, to voluntarily verify his
identity. This is particularly easy if the newcomer has
a friend, supervisor, business associate or anyone
within his acquaintance that holds a sizeable amount of
introducer points.
The process is envisaged in the following ways:
• TMWA introduction: suppose Newton the

newcomer asked (by email or though the TMWA
community service) Ingus the introducer to vouch
for him. Ingus logs on the TMWA, searches
Newton in the database and fills a form specifying
the amount of certainty he has that the individual
he is introducing is who he says he is. This
number, multiplied by his introducer score and an
attenuation factor, is added to the Newton’s
credibility score. The attenuation is to prevent a
single introducer from being able to escalate
someone else’s credibility too fast. Figure 5
sketches the situation schematically and figure
6c/d show the same situation happening in our
prototype implementation.

 In order to encourage Ingus to perform the
confidence level evaluation with the greatest care,
the system informs him that if Newton is later
determined to be a fraud, Ingus will have his
introducer points reduced by the same percentual

amount of confidence he deposited in Newton;
and will receive as many suspicion points – which
might put him directly in suspicion mode if it
turns out to exceed his credibility. In other words,
Ingus’ evaluation is interpreted to be like an
insurance: the amount of his own trust he would
be willing to lose if Newton is found not to be
who he says he is.

• Cross-Certification: A natural generalization of
the PGP key-based “weak validator that may
become an automatic strong introduction” is to
accept certificates from other CAs or key
hierarchies whose validation processes are known
and that can be easly assigned a credibility rating.
For instance, Verisign certificates could be
accepted as another level of validation – Class 1
certificates, which validate only the email address,
would add little extra credibility, while Class 2
and 3 certificates, which rely on institutional
credentials and in-person enrollment, respectively,
would grant much more points. Certificates from
the CAs within our own hierarchy that employed
traditional validation processes, as described in
section 3 , could be likewise accepted.

It is worth reminding again that all these operations
should be carefully logged, both for debugging and
auditing purposes, so it becomes possible to
reconstruct exactly why any particular user has got his
scores.

3.3 Contentions
If a user Charlie the challenger supplies an unique
identifier (say, his name, e-mail address, SSN, etc.)
already claimed by someone else, he is to be put in
suspicious mode: he earns as many suspicion points as
the sum of the credibility scores of each user (himself
included) having the same ID.
If Charlie’s credibility reaches a certain fraction (say,
half) of the credibility of some user he is contending
with, the challenged user gets notified of this fact by
email. This warning should give him time to take
precautions against takeover: if Charlie’s credibility
exceeds the challenged user’s, Charlie is awarded
possession of the contended IDs. The challenged user
is then put into suspicious mode: it’s now his problem
to prove his identity beyond Charlie’s credibility.
These rules attempt to foil some avenue of identity
theft attacks outlined below:

2nd Annual PKI Research Workshop---Pre-Proceedings

21

• Post-takeover: Suppose a legitimate user has
already got his VI certificate issued without
incident. Then, a persistant attacker issues several

EL certificates with his name and uses them to log
in the TMWA and generate contentions, supplying
the legitimate user’s public personal data to pass

 (a) (b)

 (c) (d)

 (e) (f)
Figure 6: A simulation of Homer getting his VI cert: In (a), he uses his EL client certificate to log on to the TMWA/VI CA; in (b), we see him

after he has already inserted some of his real-world IDs; as he was inserting them, some automatic validators have started their jobs: we see that his
name/SSN tuple has already been validated, while the email and street address validators are still in the execution queue (“pending”). In (c), Lisa
logs on to the TMWA and searches for Homer. She checks his photo and in (d) vouches for it. In (e), we go back to Homer and see him already

qualified. After clicking the Issue button, he finally gets his VI certificate in (f).

2nd Annual PKI Research Workshop---Pre-Proceedings

22

through many weak validators and gain a modest
amount of credibility points. As long as the
legitimate user keeps his own credibility points
high, the contenders won’t be able to steal his
identity. He is probably in the best position to do
so, since he can convince introducers to attest his
identity and strong validators yield so much more
credibility points. The legitimate user gets early
notification about contenders and their chances to
take over his identity.

• Pre-population: The attacker enrolls in the
TMWA before the legitimate user, supplying
some of the spoofed user’s public personal data to
pass some of the weak validators. If the eligibility
criteria for getting a VI certificate is set to near or
more than the sum of what all possible weak
validators could give, or requires a minimum
number of introducers regardless of the credibility
points, the attacker won’t be able to assume the
(unsuspecting) legitimate user’s identity. Later,
when the legitimate user enrolls, he will get into
suspicion as soon as the starts contending with the
spoofer; but since he is “the real one”, he should
be in the best position to convince the introducers
to vouch for him and should win the credibility
point fight easily.

All that relies, of course, in the trustworthiness of the
introducers and the rigor with which they perform
every single identity check. A rogue introducer can
help attackers to bootstrap themselves through the
credibility ranks or even create whole cliques of self-
certifying fake communities (as long as the real users
being spoofed don’t enroll in the system and start
contending with the fakes). The population base of our
prototype implementation has not reached enough
critical mass to allow these phenomena to be
empirically observed, measured and statistically
characterized, but it is natural to expect these issues
will manifest themselves as the population base grows.
The fact that credibility points given from the
introducer to the introductee act as insurance creates
an incentive for caution: the introducer should know
that if an identity validation error from his part is
discovered (say, by other more graduated introducers
or external audits), it will revert against himself,
almost certainly quelling his privileges – a
phenomenon we call “introducer demise”.
In our prototype implementation, we didn’t make
introducer demises propagate through all of his
introductees – this forces the whole trust scores to be
recalculated, and, if not carefully calibrated, may make
the entire trust web collapse. It was felt as undersirable
in our small web, making it too fragile; but may be
considered a minor local event in a large scale (say,
millions of nodes) web, adding a self-correcting nature

against introducer-aided fraud. Surely, this deserves
deeper study.
At any rate, it is expected that contentions require
much more human intervention than identity
validations that go about without incidents. On the
other hand, it should be possible to calibrate the
system so that the former happens much more rarely
than the latter.
Contentions also help to avoid “no way out” situations.
For instance, it is not rare for users to lose their private
keys. In these cases, we simply direct the user to get a
new EL certificate and use it to reenroll in the VI CA.
He will immediately start a contention with the “old
copy” of himself – however, by simply reinserting his
personal data and asking the same introducers he used
last time to vouch for his identity, he should be able to
surpass his old version’s scores and get a new VI
certificate. This will also cause his old VI certificate to
be revoked, the old account to get in suspicion and
eventually deleted by the garbage collector.
In short, contentions (and the whole score system) play
an essential role in managing the users identities and
real world IDs associations. It doesn’t aim to be 100%
fraud-proof; instead, it tries to be good enough for
practical purposes and provide means of discovering
and correcting errors, insofar as possible in an
automatic manner; and appeal to the introducer
community as a last resort.

3.4 VI certificate eligibility criteria
Our prototype implementation has only one VI CA
with a very simple acceptability criterion: if the user
exceeds 300 credibility points given from at least two
introducers, he is granted a “VI level 1” certificate.
This simplistic approach was chosen because it’s easy
to explain, simple for users to know what to do and
makes the process of getting the VI1 certificate very
quick: the user enters as much personal verifiable data
as he wants, gathering a small amount of credibility
due to the weak validators; then he consults the public
list of introducers in the TMWA community page,
asking the ones he knows to vouch for him.
Typically a few hours later, when the introducers
check their emails (the TMWA informs them that
someone asked to be introduced), the newcomer is
validated and he is invited to the VI certificate
generation page (it is worth noting that all this is made
with SSL client authentication, thus requiring his EL
certificate). His VI certificate is then issued in the
same single-step manner adopted by the EL CAs and,
finally, the user is informed of the applications that
accept/require his newly issued certificate, along with
instructions about how to register with them.
We plan to have “level 2”, “level 3”, VI certificates
with stricter validation requirements, such as requiring
several introducers, allowing the introducers to specify
the validity of their trust grant and allowing the

2nd Annual PKI Research Workshop---Pre-Proceedings

23

newcomer to attain VI status only if at least one
introducer vouches for him for at least one year (the
suggested validity period of the VI certificates), etc.
Another idea is to have a VI CA that requires the
introducers to be members of stricter PKIs, such as
ICP-BR (the Brazilian National PKI).
This makes a good moment to remind that each
certificate from each CA has a life cycle of its own;
they are not necessarily coupled or associated in any
way. There’s no need, for instance, to revoke an EL or
a lower level VI certificate because the user has been
issued a higher-level VI certificate. The only tying
association is that they’re kept in the TMWA.
It is interesting to compare this authentication metric
with others, such as the ones studied by [17]. It is
worth repeating the eight authentication principles they
laid out and comment how our system adheres to or
deviates from them.
• Principle 1: The model, to which a metric is

applied, should not require the user to infer
bindings between keys and their owners. In
particular, when representing certificates in a
model: entities don’t sign certificates, keys do.

 In our system, the TMWA clearly identifies the
several identities associated with a particular
keypair/certificate, leaving no room for
guesswork.

• Principle 2: The meaning of the model’s
parameters should be unambiguous. This
especially applies to the meaning of probabilities
and trust values in the models that use them.

 The numeric trust scores provide quantitative
estimates of each trust quality (credibility,
introducer, suspicion, etc). The scale and
calibration may be somewhat arbitrary, but, within
itself, it’s self-consistent.

• Principle 3: A metric should take into account as
much information as possible that is relevant to
the authorization decision that the user is trying to
make.

 The user (or application) doesn’t make much more
authorization decisions than choosing what EL or
VI CAs to trust. But their acceptability criteria can
be very well specified. We have tree different
scores, which seem already a great deal of
relevant authorization information – our system
even has suspicion detection and management, a
feature not found in many other metrics. We feel
that more than that would overcomplicate the
system.

• Principle 4: A metric should consult the user for
any authentication relevant decisions that cannot
be accurately automated. A decision that could
affect authentication should be hidden from the

user only if it can be reached using unambiguous,
well-documented, and intuitive rules.

 That’s precisely what strong validators are for.
Since it was felt that automated validations could
be rather easily spoofed, we made them the weak
validators.

 On the other hand, our concept of “trust
insurance” doesn’t mean “monetary insurance”
that would be paid in case of system failure
(although it may be conceivable that it may
provided as a add-on commercial service);
instead, it means only a guarantee that introducers
will be penalized for errors or misbehavior.

• Principle 5: The output of a metric should be
intuitive. It should be possible to write down a
straightforward natural language sentence
describing what the output means.

 It is easy to explain what the metrics measured:
“you got n points from one introducer, m points
from another one, i points from posting your SSN,
j points from posting your email, k points from
posting your Brazilian CPF number, which add up
more than the t threshold needed to get you a VI
certificate.”

 This opens up an interesting possibility: the page
containing the certificate’s CPS could add, within
the bulk of the CPS text, an automatically
generated, natural language explanation of these
metrics and the guarantees (technical and legal)
they provide – much like the “Unabridged
Certificate” proposed in [7].

 Although the implementation has to take into
account a lot possible state transitions, it is
surprisinly easy to explain the dynamics of the
scores due to its close mapping to how we
intuitively transfer trust in the real world: we
believe someone is who he says he is when he
shows credentials and our acquaintances confirm;
the credibility points just put a numeric scale to it.
When we are introduced by someone highly
regarded, we “gain” his credibility – he doesn’t
lose it unless we are proven to be a fraud. When
we catch two or more people claiming to be
someone else, we try to gather more and more
evidence that supports one of them and disproves
the others. Consistently bad introducers tend to
develop bad reputations and become no longer
trusted.

• Principle 6: A metric should be designed to be
resilient to manipulations of its model by
misbehaving entities, and its sensitivity to various
forms of misbehavior should be made explicit.

 Section 3.3 detailed some of the contention
management and their resistance to misbehavior.

2nd Annual PKI Research Workshop---Pre-Proceedings

24

More field experience is needed, however, to
ascertain their efficiency in practice.

• Principle 7: A metric should be able to be
computed efficiently.

 Since the TMWA enforces only direct
introductions, there is no need to construct the
entire introduction graph to compute the trust
scores nor run graph-theoretic algorithms with
superlinear time complexities (it may be useful to
build the graph for other purposes, though). The
calculations can be done incrementally and even
reconstructed from the transaction log in linear
time.

• Principle 8: A metric’s output on partial
information should be meaningful.

 Any user registered in the TMWA has trust
scores, even if they have passed no validators. So,
the metric is meaninful (although not useful) even
in the absence of information.

3.5 The Root CA
The root CA has a very simple website offering the
following services:
• Automatic Entry-Level CA certificate signing:

the Entry-Level CA reference implementation
sports a semi-automatic installer. One of its chores
is to request the name and administrative email
address of the new EL CA use them to generate its
private key and CSR. It then sends it to a special
URL within the Root CA’s site that enqueues
CSRs for processing by the signing engine. The
queue has some built-in intelligence to discard
duplicate attempts within a certain timeframe and
avoid some flooding attempts. After being signed,
the resulting certificate is sent to its administrative
address specified in the beginning of the process.

 It has been suggested that the signing process
should demand that the EL CAs administrator
should be VI users; this guarantees a contact
person and helps minimize rogue EL CAs.
Although not implemented at the moment, this
will probably be done in the near future.

• Manual CA certificate signing: an alternative
manual procedure in case the automatic fails; now
seldom used.

• Revocation and non-compliance denounce: the
EL CAs have only a few obligations: they must
not generate certificates that diverge from the
naming policy nor issue certificates with validity
periods greater than three months. But since the
EL CAs operators have the source code, they may
very well cheat. It’s not possible to avoid it
preventively, but the root CA can “retaliate”: if
anyone submits a nonconformant certificate to this
service, the root CA will revoke the EL CA’s

certificate. (Generating an invalid certificate on
prupose with a special “self-destruct” string is the
correct, although exotic, procedure that the EL CA
administrator should follow when he wants to
revoke it). Admittedly, this is a rather weak
contermeasure, given that most relying parties
may not check the root CA’s CRLs regularly or at
all.

3.6 Server Certificates
Our initial focus was to identify individuals. However,
one of the biggest demands – which spawned many
commercial CAs – is to provide server identification.
A free, collaborative way to securely identify servers
might be desirable. Many of the concepts we
developed seem to apply equally well to this field.
• The weak validator concept can be, in principle,

extended for Internet hosts (say, for IPSec using
IKE) or SSL servers: the robot would “ping” the
service to see if it is up and running in the DNS or
IP address specified by certificate’s DN. In the
case of SSL or IKE, it could also check if it is
returning a proper set of certificates, etc. It should
be possible to validate many kinds of services:
HTTPS (HTTP over SSL), POP3 and SMTP over
SSL, and possibly other less popular services,
such as TELNET, FTP, VNC or Jabber over SSL.

• Internet hosts could be introduced in a similar
way, except that their administrators would act in
their behalf, inviting introducers to vouch for the
identity of their SSL servers or IPSec-enabled
hosts.

These generalizations, however, may be suceptible to
DNS forgeries. Besides, there seems to be some
confusion about what kind of guarantee the system
could provide: many users misunderstand the term
“secure site” and unrealistically expect them to mean
“unhackable”, or that the institution running the server
is trustworthy; among many other interpretations quite
different from the correct one. We are still working on
a sensible set of validation procedures more easily
understood by introducers and final users alike.

4 EXPERIENCES WITH THE FIRST RELYING-
PARTY APPLICATIONS
The VI CA itself is the zeroth relying party
application, since it is a full-fledged Web aplication
requiring SSL client authentication. However, its tight
integration with the other CAs makes it too much of a
special case; to really grasp what our infrastructure
could do, we selected another application to add
FreeICP support to. TWiki [32], a web based
collaborative content management system, was the
natural choice, since we already used to run a few
Wiki sites and making a PKI-enabled version with
stronger authentication and improved security was a
longtime wish of ours.

2nd Annual PKI Research Workshop---Pre-Proceedings

25

A short description of TWiki’s functionalities follows:
it looks just like an ordinary web site but allows
editing the web pages (called “topics”) directly in the
web browser, adding attachments and keeping
everything under revision control, so it’s possible to
reconstruct any past version, know who changed what
and when, or undo undesired changes. Topics about

the same subject of interest are grouped in “webs”. It
has a simple but effective access control system: each
web can have an access control list defining which
users may be granted or denied permission to read or
change the information. Individual topics can also
have these ACLs for further granularity.
The original TWiki identified its users by the
traditional username/password pair through the
standard HTTP BasicAuthentication mechanism. User
names are internally mapped to WikiNames satisfying
its special naming conventions. To use mod_ssl’s
FakeBasicAuthentication mechanism is a natural and
simple way to “upgrade” the system to use client
certificates instead. This, however, proved rather
unsatisfying, so we quitted using it and decided to
implement client certificate support directly in the core
application code:
• The application parses the certificate and maps the

DNs to usernames. If it is not found in the user list
(which is itself a topic), it redirects the user to an
error page (except in the VI listing upgrade case
described below).

• If the user’s certificate is not a Verified Identity
one, it is only granted access to public webs; that
is, ones with no ACLs – even if that user is
explicitly included in some web’s ACL. This
implements the “low privilege, guest-like access”
principle that Entry-Level certificates should have.
In this mode, the user can read the tutorials,

practice with the test/sandbox areas, but has no
access to sensitive information.

• If the user logs with a VI cert but is still enrolled
with a corresponding EL certificate (i.e., one with
exactly the same name and email address), the
user is not redirected to the error page; instead, it
is sent to a page offering to automatically upgrade
his registration data. After confirming, he can no
longer log on with his EL certificate; from this
point on, only his VI certificate will be accepted
and he will be granted access to the private webs
(i.e., ones with explicit ACLs). This implements
the “higher level, privileged” access principle that
VI certificates are entitled to.

• An integrated Entry-Level CA was added as the
new user registration box, as shown in Figure 7.
That way, the user gets his certificate issued and
his initial setup in the application (creating his
personal topic from a template, adding him to the
user’s list) done in two simple steps (modulo the
web browser’s idiosyncrasies explained before).

• Besides getting access to the private webs, another
motivation for upgrading to a VI certificate is the
fact that when EL certificates expire, anyone can
issue a new one with the same name/email and
thus fake the previous user. To avoid that, we
made the system accept EL certificates only up to
two weeks from the initial inclusion in the users
list, regardless of the age of the certificate.

• To cope with many revocations caused the users
intial experimentation with client certificates, we
implemented a full-blown policy-based revocation
verification system. At first, we used mod_ssl’s
built-in CRL verification features, but it had a few
limitations: first, we had to have external scripts to
download the CRLs and put them in files that
mod_ssl could read – that is, we couldn’t have on-
demand CRL downloads. Secondly, mod_ssl
breaks the SSL connection when it determines the
client certificate has been revoked. Although it
seems the right thing to do, that denies the
application an opportunity to display a page
explaining to the user why his access was denied.
Worse still, when this happens, Internet Explorer
displays a bogus dialog box complaining that “the
site cannot be trusted”, instead of something more
truthful like “this client certificate has been
revoked”.

 Because of all that, we disabled mod_ssl’s
revocation checking and patched TWiki to support
it natively. It proved to be quite a challenge itself,
but in the end it supported on-demand CRL
downloading (i.e., it only downloads a CRL when
it is needed to check the user’s certificate), which
contributes to alleviate the classical CRL problem
of every relying party wanting to download the

Figure 7: FreeICP integration in applications: The simplicity of Entry-
Level CAs allow them to be included as a small visual element (the

“Quick Registration” box) in a web application. It is integrated with the
application in the sense that it not only generates certificates, but also
performs the application setup necessary to create the user’s account.

2nd Annual PKI Research Workshop---Pre-Proceedings

26

freshest CRL at the same time; it displayed a nice
message explaining to the user what happened;
and incorporates some features to make it resistant
to transient CRL download failures.

We made several other small changes to TWiki’s core
functionality. Although many of them were security
related (for instance, the search feature didn’t respect
the ACLs; we fixed that) and sometimes quite
interesting by themselves, most have little relation
with digital identity support and have been omitted
here for sake of brevity.
The final result was quite satisfactory: we managed to
keep the registration process very quick and simple
from the point of view of the novice users wanting
immediate access to the tutorials and public webs.
And, by compelling users to upgrade to VI certificates,
we achieved considerable certainty about their identity
and that they could only see information they were
strictly authorized. Some informal testing we made in
trying to subvert the system was promptly detected,
but much greater scale testing is still needed to
evaluate its merits relative to other authentication
technologies.
It is natural to ask whether how well and quickly the
users grasp all those trust scoring rules. In our
experience, most users only invest the time to
understand what they strictly need. Since most of our
users only wanted to get access to TWiki and other
apps, they got to learn only the rules related to
increasing their credibility score (and many promptly
forget them after getting the VI cert). Even so, we
consider the fact that many users can get their VI certs
in something between a few minutes to a few hours a
striking success.
People only dive deeper when a suspicion event
happens or we compel someone to become an
introducer, requiring a more thorough understanding of
the whole process. When their curiosity is then
aroused, these users usually didn’t feel intimidated by
the complexity of the system; many end up making us
explain all those rules in great detail. The single
biggest reason for user rejection, in our experience, has
come from IE users when the EL express certificate
issuance process fails – which, unfortunately, happens
in more than half of the cases.

5 CONCLUSIONS AND FUTURE WORK
We proposed two CA families to implement a PKI
mixing the PGP and X.509 models based on the
realization that the process of aggregating strong
identity guarantees to a certain key/certificate should
not be tied to its issuance; it should be done at a later
moment, if and when convenient to the certificate
holder. In fact, there are many instances when it’s
simply not worth the hassle to go through an extremely
strict identity validation procedure when a not-so-
trusted certificate would do just fine.

In our system, the Entry-Level family of CAs provide
this focus on user and administrative simplicity. We’ve
argued that it provides roughly the same kinds of
protections that the PGP infrastructure: confidentiality
through encryption but with little certainty of who the
keys onwers are in respect to other identification
systems. The proposed scheme allows the certificate to
be granted immediately, becoming well suited for
replacing website registration systems and similar end-
user applications. The short lived certificates, when
combined with application demand, creates an
incentive for the user to “upgrade” his entry-level
certificate to the longer lived, more widely trusted,
Verified Identity ones.
Space constraints prevented us from being able to
report the many interoperability pitfalls we ran into,
the nontrivial solutions we were often forced to adopt
and several other interesting implementation details.
These may make material for a future paper;
meanwhile, the reader is invited to visit our
implementation site: www.freeicp.org.
The proposed Verified Identity family of CAs provide
the higher identity assurance levels. It can be seen as a
framework to unify several identification services and
strictness criteria. It encompasses both the human-
operator-based identity check systems now common
on commercial or institutional CAs and a novel idea of
a trust scoring web application that allows borrows the
PGP’s web-of-trust model but implemented over a
centralized database to provide online-only, semi-
automated identity validation – vaguely resembling the
credit scoring systems now common in financial
institutions. We argue that its collaborative nature may
be exploited to make near-zero-cost certificates
possible and thus allowing the “commoditization” of
trustable digital certificates.
A trust management system was described that allows
the users to tie their certificates to automatically
verifiable real world identities and accumulate
credibility by having these identities verified by
veteran users that act as trusted introducers. The
proposed model uses a much more precise system
based on numeric scores that evaluate the user’s
identity credibility, trustworthiness as an introducer,
and the amount of dispute that the user is having to
gain control of other user’s identities. In fact,
contention detection and control is another area that
this system proposes and both PGP and X.509 lack.
Precisely because of its novely, it deserves deeper
study.
We have shown that Verified Identities CAs can use
these trust metrics to decide, according to their own
acceptability criteria, whether a particular user or
internet host is eligible to one of its certificates. A
simple threshold criterion was proposed that
subjectively adheres to all the authentication metric
design principles posed by Reiter and Stubblebine. An

2nd Annual PKI Research Workshop---Pre-Proceedings

27

interesting point is that the metric allows for an easy
description of itself in natural language that could be
added directly to an automatically generated
Certificate Practice Statement.
Other interesting avenue being pursued is the use
graph-theoretic algorithms to monitor the growth of
the certification network and provide feedback to help
calibrate the system parameters to achieve specific
security guarantee goals. Their use as authentication
metrics may be also considered.
The field of automated identity verification has been
blossoming with interesting new proposals. For
instance, in [1] it is described a system in which an
automated voice system dials to the telephone number
the user supplied in the enrollment process and
requests the user to confirm a challenge number and
record his name and affiliation, for audit purposes. A
whole different idea, much more sophisticated, would
be to accept digitized fingerprints to be matched
against law enforcement’s databases. The inclusion of
those kinds of automated identity verification systems
within an implementation of the framework proposed
in this paper may become a worthwhile research
avenue.
Finally, we studied the customization of a web
application to suport user identification using our CA
infrastructure. Several proeminent lessons emerged:
first, web browser’s UIs could be adjusted to provide
simpler certificate generation that could bring us closer
of the “express certificate” concept brought by the EL
CAs – in particular, Microsoft’s Internet Explorer
proved to be an endless source of user frustration.
Second, applications must undergo significative
changes to support the “temporary limited access”
semantics of EL certificates and wider privileges of the
“Verified Identity” class of users. Besides, revocation
checking can no longer be ignored; applications must
have full revocation verification support and its
interactions and potential vulnerabilities must be
carefully understood; this might become quite a
challenge by itself. Notwithstanding, we have shown a
situation in which the final result was quite acceptable.
We plan to add FreeICP-like support to many other
kinds of applications.

6 ACKNOWLEDGEMENTS
Thanks are due to Aldo Albuquerque, João Paulo
Campello and Felipe Nóbrega for their helpful
suggestions, insightful criticisms and invaluable
assistance in coding the prototype implementations.
We also thank all users at C.E.S.A.R. for agreeing to
be our test population base by using our PKI-enabled
TWiki and the other FreeICP-compliant applications.
Rômulo Albuquerque, Renato Martini and Robson
Gomes were especially patient with the quirks of the
first versions. We are also indebted to the anonymous

referees for their most valuable coments and criticisms
on the first version of this paper.
“The Simpsons” characters are trademark and
copyright of Fox and its related companies, even
though they have arguably became part of popular
culture. Used here just for entirely non-profit
illustration purposes.

7 REFERENCES
1. Authentify, Inc., Authentify|Register™ and RSA

Keon® OneStep – Assuring User Identities in the
Registration Process,
http://www.authentify.com/images/pdf/AR_RSA_
Keon.pdf

2. Marc Branchaud, A Survey of Public-Key
Infrastructures, MSc. Thesis, Department of
Computer Science, McGill University, 1997.

3. J. Callas, L. Donnerhacke, H. Finney, R. Thayer,
RFC 2440: OpenPGP Message Format, 1998,
www.ietf.org/rfc/rfc2440.txt

4. Comitê Gestor da ICP-BR, Resolução nº 11 de 14
de fevereiro de 2002,
www.icpbrasil.gov.br/RES_ICP11.htm

5. Don Davis, Compliance Defects in Public-Key
Cryptography, Sixth Usenix Security Symposium
Proceedings, July 1996, pp 171-178.

6. Simon Garfinkel, PGP: Pretty Good Privacy.
O’Reilly & Associates, 1994, ISBN 1565920988

7. Ed Gerck, N. Bohm, X.509 Certificates: A
Readable Unabridged Inside View,
www.mcg.org.br/x509cert.htm

8. Ed Gerck, Overview of Certification Systems:
X.509, CA, PGP and SKIP, MCG Group, 1998,
www.mcg.org.br/cert.htm

9. David Goodenough, A Heretic's view of
Certificates,
www.dga.co.uk/customer/publicdo.nsf/public/WP
-HERESY

10. Richard Guida, Rebuttal to “Ten Risks of PKI”,
Computer Security Institute Alert, n 204, 2000,
www.gocsi.com/pdfs/expert.pdf

11. Peter Gutmann, X.509 Style Guide, 2000,
www.cs.auckland.ac.nz/~pgut001/pubs/x509guide
.txt

12. Russel Housley, Warwick Ford, Tim Polk &
David Solo, RFC 3280: Internet X.509 Public Key
Infrastructure Certificate and CRL Profile, 2002

13. ITU-T, Recommendation X.509/ISO/IEC 9594-8:
Information Technology – Open Systems
Interconnection – The Directory: Authentication
Framework, Internation Telecommunication
Union, 1997.

14. Burton S. Kaliski Jr, An Overview of the PKCS
Standards, RSA Laboratories, 1993

2nd Annual PKI Research Workshop---Pre-Proceedings

28

15. Neal McBurnett, PGP Web of Trust Statistics,
1997, bcn.boulder.co.us/~neal/pgpstat

16. Patrick McDaniel & Aviel Rubin, A Response to
“Can We Eliminate Certificate Revocation
Lists?”, Proc. Financial Cryptography 2000,
February 2000.

17. Michael K. Reiter & Stuard G. Stubblebine,
Authentication Metric Analysis and Design, ACM
Transactions on Information and System Security,
Vol. 2, No. 2, May 1999, pp 138-158.

18. Ronald Rivest, Can We Eliminate Certificate
Revocation Lists?, Proceedings of Financial
Cryptography 98, LNCS 1465, Springer-Verlag,
pp. 178-183, Anguilla, BWI, February 1998

19. Bruce Schneier & Carl Ellison, Ten Risks of PKI:
What You're Not Being Told About Public Key
Infrastructure, Computer Security Journal, v 16, n
1, 2000, pp. 1-7, www.counterpane.com/pki-
risks.pdf

20. William Stallings, Cryptography & Network
Security: Principles & Practice, 2nd Edition,
Prentice-Hall, 1998, ISBN 0138690170

21. THAWTE Inc., Certifying your Credentials
through the Thawte Web of Trust,
www.thawte.com/whitepapers/guides/pdfversion/
wotguide.pdf

22. VERISIGN, Inc., VeriSign PKI Disclosure
Statement,
www.verisign.com/repository/disclosure.html

23. Alma Whitten, J. D. Tygar, Why Johnny Can’t
Encrypt: A Usability Evaluation of PGP 5.0,
Carnegie Mellon University, Proceedings of the
8th USENIX Security Symposium, August 1999,
www.cs.cmu.edu/~alma/johnny.pdf

24. Jane K. Winn, The Emperor’s New Clothes: The
Shocking Truth About Digital Signatures and
Internet Commerce, 2001,
faculty.smu.edu/jwinn/shocking-truth.htm

25. Phillip R. Zimmermann, The Official PGP User’s
Guide, MIT Press, 1995.

26. M. Myers, R. Ankney, A. Malpani, S. Galperin, C.
Adams, RFC 2560: X.509 Internet Public Key
Infrastructure Online Certificate Status Protocol –
OCSP, 1999, www.ietf.org/rfc/rfc2560.txt

27. PGP Corp Web Site:
www.pgp.com

28. OpenSSL Project:
www.openssl.org

29. Mod-SSL:
www.modssl.org

30. Apache Web Server Project:
www.apache.org

31. GNU Privacy Guard:
www.gnupg.org

32. TWiki: A Web-Based Collaboration Platform:
www.twiki.org.

33. Jonah Freeware PKIX implementation:
www.foobar.com/jonah

34. Cryptlib security toolkit:
www.cryptlib.orion.co.nz

2nd Annual PKI Research Workshop---Pre-Proceedings

29

Improving Message Security With a Self-Assembling PKI

Jon Callas (PGP Corporation, Palo Alto CA, jon@pgp.com)

April 4, 2003

Abstract

Public Key Infrastructures (PKIs) exist for a number of purposes. One purpose for a PKI
is achieving wide-spread deployment of secure communication; the PKI makes it easy for two
parties to communication securely. Another purpose is that of secure delivery to a recipient;
the PKI makes sure that when Alice sends a message to Bob, it arrives to the very Bob that
Alice intended it to arrive to. The paper describes a Self-Assembling-PKI, a new way of con-
structing the corpus of certificates that makes up a PKI with a solution to the first problem –
widespread deployment of secure communication. It does not address the second one, but can
use and interoperate with a PKI designed to achieve that goal. It creates itself by observing and
monitoring existing message traffic, and transparently inserting security protocols into existing
traffic. Most radically, its mechanisms trade perfect security for ubiquity.

1 Introduction

The Self-Assembling PKI is not a new technology, nor does it require new standards; instead it is
a new way to think about existing PKIs, security standards, and systems to achieve these goals:

1. Wide-spread deployment of communications security. Presently, within organizations, secure
email tends to be used by five to fifteen percent of the organization [PGPUSE]. This figure
applies to a self-selecting group that includes people who already consider secure email to
be important or have regulatory requirements. Network-wide, this number is much lower,
probably no more than five percent of total users [GARTNER]. A number of factors cause
this, all of which ultimately center around ease-of-use [JOHNNY].

2. Transparency of use. Even within a population of people who regularly use traditional public-
key cryptography, human error is a formidable problem. The solution to these inevitable
lapses in judgment is a system that requires no thought on the part of the user.

3. Ease of deployment. Not only must a PKI be easy for the end users to work with, but it must
be easy for its administrators to set up, deploy, and run. Traditional PKIs have not been
widely deployed, difficulty in deployment being much of the problem [GUTMANN]. This is
another facet of ease of use, merely with another set of users.

2nd Annual PKI Research Workshop---Pre-Proceedings

30

4. Policy management. A PKI that is operating on behalf of end users must have a collection
of rules that describe what actions it performs under what circumstances. These rules are
the PKI policies; they describe both the mechanisms that apply to outgoing messages and
incoming messages as well.

5. Risk Mitigation. Because the PKI is operating on behalf of humans and without their in-
tervention, it is vital that it include detailed reporting. Inevitably, the PKI will contain
errors, and its human administrators must themselves detect and correct these problems.
This cannot happen without robust reporting.

Additionally, there is an old principle of security that the value of what is being protected affects
the measures taken to protect it. This approach strives to the above goals, but is willing to trade
perfection for ease of widespread deployment in the belief that a message security system with
known limitations that can be used by anyone is more secure overall than one that can only be
used by a few experts.

2 A Change in Metaphor

Traditionally, a PKI operates using a telephone metaphor. From the very first description of
certificates, they were described to be analogous to a telephone number; Alice would find Bob’s
certificate similarly to the way that she might find his telephone number.

The Self-Assembling PKI is the metaphor of the robot operator. The PKI determines the connection
and relationship between the sender and recipient, and processes it. Without prior registration into
the PKI, however, there is no way to complete the connection – if you don’t have a phone, you
don’t have a number, and no one can place a call to you.

The Self-Assembling PKI uses a different metaphor. It is a postal metaphor rather than a telephone
metaphor. This operates as if it were a robot messenger that has the job of delivering information as
securely as possible. The messenger operates on behalf of the sender and recipient, adding security
to the system (which would otherwise be done with standard insecure protocols) as much as it can.
It uses the policies and heuristics of both the sender and recipient to improve a transaction between
them.

We look at the problem this way because of the realities of how users use Internet communications.
When someone sends an email message, they expect it to be delivered post haste. Security is a
feature they desire, but delivery is what they are after. Similarly, people rarely stop using other
systems such as web browsing and instant messaging just because they are reasonably insecure. In
fact, one of the main security concerns organizations have about instant messaging in particular
is that users shift to it because it is fast, reliable, and convenient. Instant messaging sees great
growth in organizations where email security policies make email inconvenient.

People need to communicate more than they need to communicate securely. As security system
designers, we may not like this, but it behooves us to be their messengers rather than their switch-
board operators. If we refuse to connect their call, they don’t decide they didn’t need to place the

2nd Annual PKI Research Workshop---Pre-Proceedings

31

call, they just find another way to do it. The messenger metaphor is the attitude that the mail
must go through. It is a step towards making PKIs be used when they haven’t in the past. It
makes PKI be an enabling rather than disabling technology.

While the messenger metaphor applies most closely to email, it also fits other protocols and com-
munication systems. I have already mentioned instant messaging, but the principles apply to many
other systems as well.

3 How the PKI Self-Assembles

The whole point of a self-assembling PKI is of course that it does not require its administrators to
construct it before it can be used. Often a PKI requires the people who construct it to understand
the larger system it resides within. If they must do this while they are building it, it dramatically
slows down construction.

Compounding this difficulty, even though the resulting PKI might in theory be completely accurate,
the externals may have changed. If it takes longer for the PKI to be constructed than for the system
it serves to change, then the PKI will never be accurate.

Self-assembly shifts the PKI staff from constructing the infrastructure to overseeing it. They correct
inaccuracies, shape policy, and adapt the PKI to the larger system it serves. It is similar to the
manufacturing principle of continuous improvement. It combines the great power of computers to
rapidly, accurately do repetitive tasks with the power of humans to understand complexity and
provide feedback to mechanism.

Components of PKI construction work by getting in the middle of the network processes, monitoring
them, observing them, and constructing the PKI so that it reflects the actual use of the system.

Other components of PKI work within the active network processes, shaping them and adding
security features. For example, email can be encoded to have a security envelope. An instant
message can also be wrapped with added authentication and message privacy.

It is also important to note that a pre-existing PKI only enhances these newer, more flexible
components. This need not replace existing PKIs. The robot messenger can exploit the work done
to create robot operators.

3.1 Format Agnosticism

The robot messenger desires to deliver messages, and desires to deliver them as securely as pos-
sible, despite obstacles. A physical messenger must overcome rain, snow, and dark of night. The
robot messenger has to overcome a wide variety of security standards including OpenPGP, X.509,
S/MIME, SPKI, XKMS, TLS, and so on.

2nd Annual PKI Research Workshop---Pre-Proceedings

32

The robot messenger must therefore be without religion when it comes to message and certificate
format. It must be able to speak a variety of protocols well enough to be understood, and well
enough to abide by the policies that govern their use. The mail must go through.

While there are quite a number of possible combinations, navigating them isn’t as difficult as it could
be. If the messenger finds an OpenPGP certificate in a global keyserver, the recipient probably
would prefer the message to be delivered in OpenPGP format rather than S/MIME. Similarly, an
X.509 certificate in an LDAP directory probably calls for an S/MIME message. It’s a safe bet.
Heuristics do work.

Ironically, some incompatibilities can allow for better heuristics as well. There are a number of
issues around using LDAP as a mechanism for distributing certificates [CHADWICK], but while
the lack of a unified directory mechanism makes lookup harder, it also provides hints as to how to
use the certificate.

Nonetheless, even when the system can completely infer how to use a certificate, implementing
format agnosticism has a few rough edges that the implementations must overcome. Here are two
obvious ones:

3.1.1 Multiple Certificates

The messenger might find multiple certificates for a given recipient. It is also possible that at least
one of these certificates might be bogus, expired, or lost. Policy and heuristics can assign value to
the certificates by weighting the authority of a CA, timestamps on the certificates, size of the key,
and so on. While the general case can have many options, these can be truncated with obvious
shortcuts such as using a certificate if supplied by some reasonable authority such as the recipient’s
domain.

In other cases, such as finding multiple OpenPGP certificates, a heuristic could be to use them
all, or a reasonable subset. Note that in this case, there is a security issue. The issue is that
Alice’s message may be encoded to Bob but also to an eavesdropper, Eve, who is impersonating
Bob. So long as the message is kept out of Eve’s hands, the security of the message is preserved.
In the general case, this can be guarded against with relatively simple mechanisms within the
infrastructure – such as protecting the actual transport of the message via SSL/TLS, IPsec, or
SSH. There are still cases where this does not guard against Eve, for example the case where Eve
is the sysadmin of Bob’s mail server. The infrastructure can help protect Bob in future messages,
and some of these are described below.

The most counterintuitive situation is when the messenger finds two incompatible certificates of
equal perceived value (for example, a X.509-S/MIME certificate and an OpenPGP certificate).
Following the principle that the mail is to be delivered, the messenger could send the same content
in two separate messages.

2nd Annual PKI Research Workshop---Pre-Proceedings

33

3.1.2 Multiple Recipients

Messages are often sent to a group of people. This creates similar issues to the section above, but
with a small added twist. For example, if Alice is sending a message to Bob and Cindy, it may
simply need to be coded in S/MIME to Bob, but XML-encrypted to Cindy.

3.2 Certificate Creation

The Self-Assembling PKI can use existing certificates, but to achieve its goals, it must create keys
and certificates for all of its users. As mentioned above, it sits within the network infrastructure. A
number of components of the PKI proxy existing protocols as part of their work. In this position,
they can observe the appearance of authenticated users, and automatically create certificates. These
certificates can be rewritten as more information is learned about the users.

The PKI can manage the certificates it creates for the users, or it can share them with the users
for joint management. (There is an obvious third case in which a user creates their own certificate
or has a key certified by a CA. For these purposes, this case is the same as using an existing
PKI’s certificates; this can be considered to be merely be a PKI of a single user.) PKI-managed
certificates may be marked as being in the possession of a machine. Depending on policy, they may
be considered lower-valued certificates than ones held solely by the end user. This is perhaps more
important for a certificate used to sign rather than encrypt, but many people are uncomfortable
with the notion of robot-controlled key pairs, and so we allow for (and encourage) full disclosure.

A few examples of how the PKI creates and manages certificates follow:

• Alice connects to her usual mail server over the POP3 protocol. A proxy mediates this
connection, and upon observing her successfully authenticate to the actual mail server, creates
a certificate for her.

• Alice sends Bob a mail message, which is itself authenticated using SMTP-AUTH. Part of the
message, the “From” line of the message has Alice’s full name. Her certificate gets updated
to contain that common name. Alternatively, an LDAP company directory might supply
personal information for that certificate. Since Bob is a user on the same mail server, the
PKI creates a certificate for him. It encrypts Alice’s message using the key in that certificate
and sends it on to the mail server.

• Bob connects to his usual mail server over IMAP4. The same proxy mediates this connection,
and when Bob reads his message from Alice, the proxy automatically decrypts it. Policy can
govern whether this is wholly transparent, or whether the message is further modified to let
Bob know that it was delivered securely.

• In further work with the server, rather than the clientless operation described above, software
on either Alice’s or Bob’s computer could share the key with the server and decrypt the
message locally.

2nd Annual PKI Research Workshop---Pre-Proceedings

34

• Alice could inform the PKI server (through a web browser or other means) that she prefers
managing her secure messages herself. She gives the server a certificate with which it may
encrypt her mail. Note that it is also possible for the server to infer this itself.

There are also opportunities for a portion of the larger PKI to use policies and strategies beyond
the usual. Here are some examples:

• A team of support specialists in an operations center share the same key within their certifi-
cates. This key is changed every month, but all specialists have the same public key so that
a workflow system can route tickets to any given support person.

• A high-security engineering team uses a variation of OpenPGP enhanced to support Perfect
Forward Secrecy [PFS]. Their public encryption keys are essentially ephemeral, and part of
the back end mail system manages the message security with paired FIPS 140 level 4 hardware
security modules, and three-factor authentication on the engineers’ laptops.

3.3 Side-Stepping Revocation

Certificate revocation is the hardest, stickiest, least well-implemented, and arguably most important
part of managing certificates. There are numerous systems where revocation has simply been
ignored and unimplemented.

Just as a Self-Assembling PKI can use an existing PKI, it can use an existing revocation scheme
with CRLs, on-line checks, etc. However, within its own domain, there are pitfalls to avoid, and
benefits to be gained by rethinking the part of certificate life-span where the certificate ceases to
be valid.

There are also known ways to ameliorate, if not eliminate the revocation problem. SPKI [SPKI]
uses the clever mechanism of simply declaring that certificates cannot be revoked. OpenPGP
[OPENPGP] has revocation information travel as part of the certificate itself, with obvious advan-
tages and disadvantages. The most important disadvantage is that it is possible for out-of-date
or hostilely modified certificates to be missing revocation information. Revocation lists provide an
authoritative place to get revocation information, but are vexing in many dimensions. Much work
has been done on ways to eliminate them.

Being an on-line system, but one that should operate without human intervention, the SPKI so-
lution of waving away the problem has many advantages. However, the pro, combined with some
principles [RIVEST] that value new certificates over older ones, along with pushing the respon-
sibility for certificate validity in two directions. First, the party accepting the certificate has the
responsibility to decide if a certificate is good enough, and the party issuing the certificate has the
responsibility to construct a certificate that the acceptor likes.

In the general case, there are potential problems with certificates that are close to expiring, as
well as ones that have excessive life. However, these concerns are ones that any given messenger

2nd Annual PKI Research Workshop---Pre-Proceedings

35

may solve with its own rules. A messenger delivering high-value transactions will be pickier about
certificates than one delivering chit-chat.

For our purposes, a productive and easy-to-deploy framework of the Self-Assembling PKI uses
short-lived certificates. This tends towards the SPKI model, even when the data format of the
certificate is X.509 or OpenPGP. It uses the validity timestamps in these certificates as freshness
markers [STUBBLEBINE]. This way, internally generated certificates presented to the outside
world will have a limited life, and if the keys in the certificates must be truly revoked, any “suicide
notes” also have a limited life. By policy, the nominal life of the certificates managed by PKI
servers range from weeks to minutes.

Additionally, these certificates may be in more detailed states than simply being valid or invalid.
They could be inactive – not presently valid, but able to be re-enabled at any time. Certificates
can be permitted to expire if they are not used, reported on if not used, and this can be part of
the oversight into other infrastructure pieces. For example, if an employee leaves a company and
the IT staff aren’t told about this, inactivity of the user’s certificates can alert the staff to this
fact. Similarly, if a PKI discovers that a user’s account on some server is no longer active, it can
immediately remanufacture that user’s certificate as expired, and alert the PKI administrators of
this inconsistency in the infrastructure.

Certificates could also be revocably revoked – in effect, if not in actual syntax. It is not uncommon,
for example, for an organization to regularly use the same contract staff for short stints. It is also
unusual, but not unheard of for an organization to sack an employee in downsizing, only to hire that
person back as a short-term contractor. As much as this situation might make security architects
flinch, the business reality is that some important decisions don’t simply happen. I might hand
someone back their badge for three months. If I do, I need to hand them back their certificates as
part of that “badge.” The messenger metaphor is the idea that the system must work as well as
possible. It is the idea that the mail must go through, the show must go on.

Reality thus gives us many reasons for remanufacturing certificates with short lives. Not only does
it allow us to finesse many problems of revocation, these short-lived certificates in a flexible PKI
make it possible to create adaptive solutions to real-world problems.

3.4 Certificate Trust and Search

We discussed some of the features of certificate use and search above when we discussed format
agnosticism. However, much of the new thinking in Self-Assembling PKI takes place in the use of
certificates.

Let us invoke again the messenger metaphor. The PKI, acting as a messenger for the user, makes
a delivery to someplace else. Let us assume that the recipient has a suitable certificate, we merely
have to find it. Secondarily, we need to differentiate between members of a set of certificates with
varying validity. Which one(s) of those will we use? This is of course, again, a matter of policy,
but policies need to be simple to create and understand. Fortunately, there are a number of simple
ways to get flexible and simple search, validity, and trust systems.

2nd Annual PKI Research Workshop---Pre-Proceedings

36

Trust policy and search policy are closely related, but not the same. Search policy states where to
look and in what order, trust policy states what to do with certificates as they are found. In many
cases, this difference is moot – the messenger might look in an LDAP directory attached to a CA
it considers authoritative. On the other hand, it might also have a local cache of authoritative and
merely reasonable certificates.

There are basic mechanisms that the messenger can use as part of its overall trust policy. These
relate to types of trust models.

3.4.1 Hierarchical Trust

Hierarchical trust is typical CA trust. A certificate is valid if it descends from a chain of certifi-
cates from some trusted root. Most certificate systems, including X.509 and OpenPGP allow for
hierarchical trust. For example, a VeriSign Class 3 certificate is valid or not within the context of
a hierarchical trust model. A reasonable policy might include that a VeriSign Class 3 certificate is
not only valid, but authoritative, by which we mean that certificate search stops when finding an
authoritative certificate.

3.4.2 Cumulative Trust

Cumulative trust is the typical PGP Web Of Trust. In this model, a certificate is valid if some
collection of authorities all agree on a certification. Of all trust models, it is the least directly
applicable to a robot messenger, because it relies on human judgment. However, there are two
ways it fits neatly into the Self-Assembling PKI.

The most direct is that if the sender uses the web of trust to consider a certificate valid, the
messenger can use that human’s ruleset to consider a certificate valid or authoritative.

However, if the messenger’s policy states that (for example) a VeriSign Class 1 certificate is valid,
but not authoritative, this is a form of cumulative trust. The messenger will use that certificate if
no better one is found, but it keeps looking for a certificate that is more authoritative.

3.4.3 Direct Trust

Direct trust is extensively used by humans who use OpenPGP-based or S/MIME-based systems,
but not very much by machine-driven systems. In direct trust, we consider a certificate to be valid
because we got it (or a reference to it) from the entity it represents. For example, many people
print their OpenPGP key fingerprint on their business cards. This is a form of distributing direct
trust. In other cases, users email each other certificates and trust them based upon that direct
transfer of the certificate from user to user.

Years ago, when I met Carl Ellison for the first time, he gave me a business card with a PGP key

2nd Annual PKI Research Workshop---Pre-Proceedings

37

fingerprint. Now, nearly a decade later, with many changes of jobs and keys, I still consider his
OpenPGP certificates valid based upon the direct trust from that long-lost business card.

Typically, machine-driven systems do not use direct trust, but it is a key mechanism for the Self-
Assembling PKI. The messenger uses a number of rules in its policy. One of those rules is to ask
the recipient’s Internet domain for a suitable certificate.

There are a number of mechanisms that the messenger can use to ask the recipient’s domain for
a certificate. LDAP directories, DNS, HTTP-based certificate servers, or even queries via SMTP
extensions.

Whatever the mechanism, the robot messenger mimics what a human messenger would do. It goes
to the address of the recipient and talks to entities there. If the domain has a certificate for the
recipient, it may use direct trust to consider the certificate valid or authoritative independent of
any other mechanisms.

This policy has obvious limitations. Domains and DNS can be spoofed, although DNSsec, SSL/TLS
server certificates, or IPsec certificates can all easily strengthen this. On the other hand, it is
relatively easy to use those security mechanisms to enhance the security of coöperating domains
such as business partners, so that each entity’s PKI transparently and dynamically interoperates
with the other one. Furthermore, as these other security systems build the strength of the overall
Internet infrastructure, the security of the Self-Assembling PKI increases, and even with no DNSsec
etc., it’s a vast improvement on sending messages in the clear.

3.4.4 Local Trust Policies

It is also worth mentioning that any given domain and set of messengers can design their part of
the PKI with other small tweaks and policies.

4 Look Before You Leap

Clausewitz said that no battle plan survives contact with the enemy. Similarly, no security policy
survives contact with the actual users. Consequently, it is imperative to be able to test policies
before they’re implemented. A component in the PKI can be left on its own to do things such as
create certificates, but before it actually uses them it should be possible to test to see what should
be happening.

This is a vital feature of the Self-Assembling PKI which we call “learn mode.” Its goal is to speed
deployment, and people will deploy slower what they understand less. Consequently, it improves
the overall security of the whole system to help administrator understand what they are installing
and be able to stay informed while it runs.

Learn mode also permits the first contact a change in policy has with the live network to be benign.

2nd Annual PKI Research Workshop---Pre-Proceedings

38

Many policies sound good, but have obvious or inobvious drawbacks. There is perhaps not a person
using email who has not thought aloud, “Hmmm, if all incoming email had to be signed, then I
wouldn’t be getting all that spam.” Few organizations can actually live with such a policy. Getting
a report on exactly how many important messages would have been bounced by such a policy could
be an eye-opener. Administrators smile at the thought of being able to produce a report proving
just how silly a policy change would be.

5 Bootstrapping the PKI

Here is an example of how a Self-Assembling PKI might be integrated into an existing messaging
infrastructure.

Consider an organization, a.com, that installs a Self-Assembling PKI, implemented as proxy server
between the domain’s users and their existing email server, using SSL between it and the users.

The proxy server observes connections between the users and the email server as it proxies them.
When it sees an authenticated connection, it checks its certificate database for a certificate for that
user. If one does not exist, it generates a key and creates a certificate, storing it in the database.
The information in that certificate is updated with other information in proxied messages. For
example, an authenticated SMTP message contains the common name of the user in message.

Once the user’s certificate has been created, incoming mail for that user can be encrypted. The
certificate can also be published in a directory or given to other servers.

This same simple process continues for all the users on this server.

The proxy server also updates the validity dates on the certificates it creates, keeping the ones in
use with valid dates.

6 Handling Outside Users

The last problem that any PKI designed for improving deployment needs to address is how to
communicate with people who are not part of the PKI at all. Ideally, there are mechanisms in the
system to handle this, as it helps the PKI to grow even further.

When the robot messenger cannot find a certificate for the recipient, it has a number of policy
options. Least interesting, it can send the message anyway, in plain text. Only slightly less
interesting, it could bounce the message back to the sender (this is one of those policies that is
tempting, and cries out for being used just for the amusement or education value).

Beyond these two simple, obviously inadequate policies, the messenger has two more sophisticated
options:

2nd Annual PKI Research Workshop---Pre-Proceedings

39

6.1 Smart Trailers

A number of systems that add in security enhancements to messaging, such as automatic virus
scanners, frequently add a trailer to the message stating that it has been scanned. Similar to that
is a policy that called the smart trailer. A smart trailer says something similar to:

Do you know that email messages are as visible as postcards? This message was
delivered in the clear for anyone to see, but could have been sent securely.
If this concerns you, click this url to find out how you can have your email
delivered to you fully encrypted: <https://sapki.xyz.tld/secure-delivery.html>

The specified URL points back to one of the messenger servers, which explains how the PKI works,
gives references to available software of all sorts, and provides a form into which a certificate may
be placed. This certificate then becomes part of PKI and the next message to that person will be
encrypted and formatted accordingly.

6.2 Boomerang Mail

Boomerang mail is a procedure for securely delivering a message and attachments to someone
outside the PKI. If the messenger’s policy calls for a boomerang message, it stores the actual
message in a secure spot, and sends to the recipient a separate message similar to this:

Date: Mon, 6 Jan 2003 18:25:58 -0800
From: Jon Callas <jon@pgp.com>
To: Important Person <vip@host.tld>
Subject:Important Secure Message

Jon Callas would like to send you an important message that should not be
delivered in plain text. You may receive this message securely through your
web browser. Simply click this link to receive it and follow the directions:

<https://boomerang.pgp.com/AVERYLONGURLSYNTHESIZEDFROMASECUREHASHFUNCTION>

The URL in the boomerang message allows the recipient to retrieve their message and any attach-
ments. It also has links to the same information that a smart trailer points to, with the same options
to supply a certificate, or even merely a password for further boomerang messages. Depending on
the enthusiasm of the implementors, it may even have a webmail system with it.

There is, however, one last detail that must be solved. How do recipients authenticate themselves
to the messenger to receive their message?

The simplest, yet least secure mechanism is one that we call “first time good.” This mechanism has
no password and simply relies on the fact that the vast majority of email is not read or intercepted

2nd Annual PKI Research Workshop---Pre-Proceedings

40

in transit. Like all policies, there are situations where this is adequate, and situations where it is
not.

A more secure mechanism not only sends the boomerang message to recipient, but a second message
to the sender. This extra message send to the sender contains a one-time, synthesized password
that the recipient will need to retrieve their message. How that password gets to the recipient is
left as an exercise for the sender, but phone calls, SMS, and carrier pigeons are all options. We call
this “out-of-band authentication.”

In either case, however, the recipient can specify a password to use for further messages, or give
the messenger a certificate to use in the future. In some cases, the web server may even have
downloadable software to further help spread the PKI.

7 Risks and Limitations

There are, as mentioned above a number of tradeoffs in this system to achieve its goal of widespread
deployment.

• The authentication to the PKI and its systems is relatively weak; typically, it is merely the
password that a user normally uses to authenticate the message system. While it’s possible
that this could be augmented with stronger authentication, the vast majority authentications
are made with nothing stronger than SSL.

• The certificates and keys used by the messengers are held by them, perhaps with the users as
well, but are nonetheless not entirely under the users’ control. Depending on the implemen-
tation, these may be protected with key-management hardware, but they may be used in a
completely software system.

• The certificates in such a PKI are thus necessarily low-valued. Perhaps this is more of an
observation than anything more, but the CAs in such a PKI should note that these certificates
have a weak semantic meaning. It would be a mistake to use them, in purchases of real estate,
for example.

• This system provides no help to its users to assuring they are sending a message to the right
person. In the so-called “John Wilson Problem,” an organization has several members all
named John Wilson, and they commonly receive each others’ email. The Self-Assembling PKI
dutifully, securely delivers mis-addressed messages to the wrong person. It is also vulnerable
to weaknesses within the Internet infrastructure such as spoofed domains and hosts.

Nonetheless, in spite of these drawbacks, we are augmenting a system that would otherwise deliver
messages in plaintext with the same authentication. There is a risk that the users of the system
may believe it to be more secure than it is, but in the world of message security, we are not faced
with message systems unimplemented because of security concerns. We are instead faced with
message systems that are deployed without security. Even worse, there are many cases of users

2nd Annual PKI Research Workshop---Pre-Proceedings

41

migrating to less secure systems such as email on handhelds and instant message systems because
of the convenience and utility of these systems. [IM1, IM2]

8 Conclusion

The Self-Assembling PKI is a collection of technologies, strategies, and policies with a goal toward
spreading deployment of secure messaging. It also exploits a shift in metaphor from a telephone
model to a postal model. This new metaphor gives a new way of examining the issues of creating
a PKI that inspires us to create the PKI in such a way that it is easy to use, easy to deploy, and
easy to maintain.

2nd Annual PKI Research Workshop---Pre-Proceedings

42

References

[CHADWICK] Chadwick, D.W. Deficiencies in LDAP When Used to Support PKI.
Communications of the ACM, March 2003, pages 99–104.

[GARTNER] Graff, J. The Gartner Group, private communication.

[GUTMANN] Gutmann, P., PKI: It’s Not Dead, Just Resting IEEE Computer,
August 2002, pages 41–49.

[IM1] Festa, P. Business: IM is getting out of control ZDNet UK, 26 April
2001, http://news.zdnet.co.uk/story/0,,t269-s2085865,00.html

[IM2] Hu, J., IM: From fad to big business and beyond CNet News.com, 13
March 2002, http://zdnet.com.com/2100-1104-992391.html

[JOHNNY] Whitten, A., Tygar, J.D., Why Johnny Can’t Encrypt: A Usability
Evaluation of PGP 5.0 Usenix Security Symposium, 1999.

[OPENPGP] Callas, J., Donnerhacke, L., Finney, H., Thayer, R. OpenPGP Message
Format. RFC 2440, November 1998, http://www.ietf.org/rfc/rfc2440.txt

[PFS] Back, A., Brown, I., Laurie, B., Forward Secrecy Extensions to
OpenPGP November 2000, http://www.apache-ssl.org/openpgp-pfs.txt

[PGPUSE] PGP Corporation internal survey of its own organizational customers,
2002–2003.

[RIVEST] Rivest, R., Can We Eliminate Certificate Revocation Lists? Proceedings
of Financial Cryptography ’98; Springer Lecture Notes in Computer
Science No. 1465 (Rafael Hirschfeld, ed.), February 1998, pages 178–183.

[SPKI] Ellison, C., SPKI Requirements. RFC 2692, September 1999,
http://www.ietf.org/rfc/rfc2692.txt

Ellison, C., Frantz, B., Lampson, B., Rivest, R., SPKI Certificate
Theory. RFC 2693, September 1999, http://www.ietf.org/rfc/rfc2693.txt

[STUBBLEBINE] Stubblebine, S. Recent-Secure Authentication: Enforcing Revocation in
Distributed Systems Proceedings of the1995 IEEE Symposium on
Research in Security and Privacy, Oakland, May, 1995, pp. 224-234.,
http://www.stubblebine.com/95oak.pdf

2nd Annual PKI Research Workshop---Pre-Proceedings

43

Intrusion-Tolerant Password-Enabled PKI§

Xunhua Wang

Commonwealth Information Security Center &

Department of Computer Science

James Madison University

Harrisonburg, VA 22807 USA

wangxx@jmu.edu

Abstract

Password-enabled PKI facilitates the private key
management by integrating easy-to-use passwords
into PKI. In the first PKI research workshop,
Sandhu et al. categorized password-enabled PKI
schemes as virtual soft tokens and virtual smart-
cards [26]. Compared to the conventional PKI,
password-enabled PKI introduces a security-critical
server where large number of password-related cre-
dentials are stored. The compromise of this server
will render these password-based credentials suscep-
tible to the dictionary attack and, thus, damage
the security of numerous private keys. In this arti-
cle, using multiple servers, we propose an intrusion-
tolerant virtual soft token scheme and an intrusion-
tolerant virtual smartcard scheme. In our schemes,
compromising up to a threshold number of these
servers will not help an attacker mount a dictio-
nary attack and, compared to previous work, our
schemes can still function in the presence of some
server failures. The multiple servers introduced in
our intrusion-tolerant password-enabled PKI can be
easily managed and PKI users can roam with human
memorable passwords.

Keywords: Password-enabled PKI, Intrusion Tol-
erance, Virtual Soft Token, Virtual Smartcard

1 Introduction

In the conventional public key infrastructure (PKI),
the private key of a public/private key pair is held

§This research is supported in part by a grant from
the Virginia Commonwealth Technology Research Fund (SE
2001-1) through the Commonwealth Information Security
Center, James Madison University.

by an end user (for digital signature or decryption)
while the public key is certified as a digital certifi-
cate by a trusted third party. Ideally, the private key
is stored in a smart card and should never leave the
card when it is used. The user is capable of roam-
ing easily with the smart card. However, PKI-based
smartcards have not happened in the real world yet.
Passwords, on the other hand, are commonly used
for authentication in our daily lives and support user
roaming very well. For instance, people have been
using passwords for remote authentication over the
Internet. To integrate passwords’ convenience into
PKI, two different approaches, called virtual soft
token and virtual smartcard, have been proposed
[25, 21, 26].

In the virtual soft token PKI [25, 21], a password is
used to encrypt the private key of a public/private
key pair and the encrypted private key is stored
on a server. With his password, a user can re-
motely authenticate himself to the server, establish
an authenticated and cryptographically strong ses-
sion key (thus, a secure connection) with the server,
download the encrypted private key via the secure
channel, decrypt it and use the private key as in
the conventional PKI activities. The first step of
this approach authenticates a user before he can
download a password-encrypted private key and the
second step establishes a session key to protect the
subsequent downloading of the password-encrypted
private key since it is vulnerable to the dictionary
attack [24]. These two steps can be accomplished
by a password-authenticated key exchange (PAKE)
protocol [2, 18, 31], in which a client (user) with a
password and a server storing the related password
verification data (PVD) can authenticate each other
and establish a cryptographically strong session key
to protect subsequent communication.

In the virtual smartcard PKI [26], an end user’s pri-

2nd Annual PKI Research Workshop---Pre-Proceedings

44

http://www.cs.jmu.edu/users/wangxx/

vate key is split into two parts, a human memo-
rizable password and a secret component. The end
user holds the password and the secret component
is stored on a server. Let (N, e) be a RSA public
key and d is the corresponding private key (d× e =
1 mod φ(N) and φ is the Euler function). In [26], d

is split into a password-derived value d1 and another
value d2, d = d1 × d2 mod φ(N), and d2 is stored
on a server. Note that md = (md1)d2 mod N =
(md2)d1 mod N . To perform a cryptographic oper-
ation (digital signature or decryption) on a message
m by the user’s private key, the end user first au-
thenticates himself to the server using the password
and establishes an authenticated session key (thus,
a secure connection) with the server. (Again, this
can be accomplished by a PAKE protocol.) After
securely receiving m from the user, the server ap-
plies the secret component, d2, to m to get a partial
result c2 = md2 mod N . c2 is then passed back to
the user through the secure channel. In the end, the
user derives d1 from his password and computes the
final result as c = cd1

2 = md2×d1 = md mod N . Note
that, in the above process, the overall value of the
private key, d, is never reconstructed on the client
nor on the server. Both the virtual soft token and
virtual smartcard allow a user to roam with a mem-
orizable password solely and digitally sign a message
(with a long-term private key) at a new location.

The problem. People tend to choose easily mem-
orizable passwords (from a dictionary) and thus,
password-based systems are notoriously vulnera-
ble to the dictionary attack [24], in which an at-
tacker does not brute-force all possible passwords
but rather work on a much smaller dictionary of
likely passwords ∗. Compared to the conventional
PKI, password-enabled PKI introduces a security-
critical server where both password-verification data
(PVD) and password-related credentials (password-
encrypted private keys in the virtual soft token
PKI and secret components in the virtual smart-
card PKI) are stored. This makes it subject to
the server compromise-based dictionary attack : af-
ter breaking into this server and stealing the pass-
word verification data and password-based creden-
tials, an attacker can mount dictionary attacks to
find the password and recover the private key.

For the virtual soft token, if the server is compro-
mised and the password-encrypted private key is

∗For a specific user, his password may not always fall
within an attacker’s dictionary. But an alarmingly high
fraction of the actual passwords match passwords in a con-
structed dictionary [20].

stolen, an attacker can guess a password, use it
to decrypt the stolen credential and verify the cor-
rectness of the guessing by checking the decrypt-
ing result with the corresponding public key ((N, e)
for RSA). If an attacker also steals the password-
verification data, the attack will be simpler: the
attacker can simply guess a likely password, com-
pute the corresponding PVD and compare it against
the stolen PVD. If he observes a match, then he
finds the password and it can be used to decrypt
the stolen password-encrypted private keys.

As for the virtual smartcard PKI, if the server
is compromised and d2 is stolen, an attacker can
simply guess a likely password, derive d′

1 from it,
pick a random m (1 < m ≤ (N − 1)), com-
pute c′ = md′

1
×d2 mod N , and verify the correct-

ness of the guessing by checking if m = c′
e

mod N

holds. In this case, an attacker can mount dic-
tionary attacks against thousands, if not millions,
of users’ password-protected private keys stored on
the corrupted server. If an attacker also steals the
password-verification data (PVD), the attack will be
simpler: the attacker can simply guess a likely pass-
word, compute the corresponding PVD and com-
pare it against the stolen PVD. If he observes a
match, then he finds the password, which can be
used with the stolen d2 to recover the private key.
It is worth noting that, compared to the virtual soft
token PKI, the dictionary attack against the virtual
smartcard PKI is more subtle. An attacker does not
need d2 to mount an off-line dictionary attack and
md2 for any public message m will be sufficient: if
an attacker obtains the value of c2 = md2 mod N

for some m, he can simply guess a likely password,

derive d′
1 from it, compute c′ = c

d′

1

2 mod N , and
verify the correctness of the guessing by checking if
m = c′

e
mod N holds.

Proactive password checking mitigates the dictio-
nary attack problem but it does not fully solve it.
Wu [32] showed that a proactive password check-
ing system still allows about 8.28% of its pass-
words susceptible to the dictionary attack. Con-
sidering the large number of password-verification
data and password-related credentials stored on the
server, this server compromise-based dictionary at-
tack could be large-scale and catastrophic. We ar-
gue that intense monitoring of the server may not
be sufficient and server compromise (by outside at-
tackers, inside attackers or through the mistakes of
honest insiders) seems inevitable. For instance, an
attacker might gain the root privilege of the server
by exploiting bugs in server software (for instance,

2nd Annual PKI Research Workshop---Pre-Proceedings

45

through bugs [6, 7] in the Wu-FTP ftp server, bug
[10] in the Apache web server, bug [8] in Microsoft
IIS web server, and bug [9] in Kerberos server). It
is our belief that, even though people have worked
hard to fix these known bugs, root privilege-leaking
bugs will not disappear since new bugs are being
discovered continuously.

To avoid this large-scale dictionary attack, it makes
sense to distribute the functionality of one server to
multiple servers to tolerate intrusions [13]. Sandhu
et al. [26] observed that a multiple-server scheme
may degrade operational quality and is vulnerable
to the common-mode failures — once an attacker
knows how to break one server, likelihood of suc-
cess on the other is quite significant in practice. In
this paper, we believe that the common-mode fail-
ure can be significantly mitigated by the system di-
versity [14] — including both hardware diversity,
operating system diversity and application software
diversity — and breaking into one server will not
necessarily increase an attacker’s chance to break
another server with diverse systems (hardware, op-
erating system and software). In this way, intro-
ducing multiple servers using different hardware and
software and distributing a secret component among
these servers, if done properly, will significantly im-
prove the security against the server compromise-
based dictionary attack.

The main results. The contribution of this paper
includes an intrusion-tolerant virtual soft token PKI
scheme and an intrusion-tolerant virtual smartcard
PKI scheme.

In our virtual soft token scheme, a password-
encrypted private key, together with the password-
verification data, is shared among n servers (n > 1).
Compared to the multiple-server virtual soft token
scheme given in [16], our intrusion-tolerant virtual
soft token PKI scheme is threshold: any t (t ≤ n)
or more of these servers can collectively authenti-
cate a user (using the shared PVD) and let the user
securely download his password-encrypted private
key shares without reconstructing the shared

PVD at any single location and the shared

password-encrypted private key on any sin-

gle server. Any subset of size less than t of
these n servers can not reconstruct either the shared
password-encrypted private key or the shared PVD,
hence tolerating intrusions against the servers.

In our virtual smartcard PKI scheme, the secret
component of a private key, together with the

password-verification data, is shared among the n

servers. Any t (t ≤ n) or more of these servers
can collectively authenticate a user (via the shared
PVD) and help the authenticated user securely per-
form a digital signature without reconstructing

the shared secret component and the shared

PVD at any single location. Corruption of any
less than t of these servers will not help an attacker
to get the secret component to mount a dictionary
attack.

The key idea behind our intrusion-tolerant vir-
tual soft token PKI is the application of an
intrusion-tolerant password-authenticated key ex-
change (PAKE) protocol and the idea behind our
intrusion-tolerant virtual smartcard PKI is the com-
position of an intrusion-tolerant PAKE with a
password-adapted threshold cryptography scheme.

This article is organized as follows. Section 2 re-
views some related work and Section 3 describes two
building blocks for our intrusion-tolerant password-
enabled PKI schemes. In Section 4 we present an
intrusion-tolerant virtual soft token scheme and an
intrusion-tolerant smartcard scheme, both of which
are secure against the server compromise-based dic-
tionary attack. Section 5 discusses some operational
issues. Concluding remarks are given in Section 6.

2 Related Work

The concept of password-authenticated key ex-
change (PAKE) protocol was first developed in [2]
and then studied in [3, 18, 31, 5, 1]. Perlman and
Kaufman [25] applied the PAKE protocols and pro-
posed the idea of virtual soft token. To resist the
server compromise-based dictionary attack, Ford
and Kaliski [16] proposed the first multiple-server
approach for the virtual soft token PKI. However, it
requires all of the multiple servers present when the
user retrieves the distributively stored credential.
This significantly degrades the availability of the re-
sulting system — if one server goes down, the service
provided will not be available. Jablon [19] improved
the scheme of [16] but it still retains the all-server-
present requirement. MacKenzie et al. [23] proposed
the first threshold PAKE and, in our earlier work
[30], we also proposed a threshold PAKE, which is
used in this article to build our intrusion-tolerant
password-enabled PKI.

2nd Annual PKI Research Workshop---Pre-Proceedings

46

Kwon [21] proposed a virtual soft token scheme
where multiple servers are used. Compared to our
intrusion-tolerant virtual soft token, the scheme of
[21] used the non-threshold RSA given in [4] and
thus, required all server to be available when a user
retrieves its private keys.

To build the virtual smartcard scheme, Sandhu et al.
[26] used a password-adapted 2-out-of-2 distributed
RSA digital signature scheme given in [4], which
is sequential and non-threshold. In contrast, in
this article, we adapt the threshold RSA scheme
proposed in [28] and use it to build the intrusion-
tolerant virtual smartcard.

3 The Building Blocks

As stated earlier, we use an intrusion-tolerant
password-authenticated key exchange (PAKE) pro-
tocol and a password-adapted threshold RSA as
building blocks in our constructions of intrusion-
tolerant password-enabled PKI. The intrusion-
tolerant PAKE shares a PVD among multiple
servers and is used in both the intrusion-tolerant
virtual soft token scheme and the intrusion-tolerant
virtual smartcard scheme. The password-adapted
threshold RSA, on the other hand, shares a secret
component among multiple servers and is used in
the intrusion-tolerant virtual smartcard scheme. In
this section, we will give the details of these two
building blocks.

In the remainder of this paper, n is used to denote
the number of the multiple servers. These n servers
are numbered from 1 to n and are called server 1,
2, . . . , n. We assume that there exist secure con-
nections between these n servers, which can be im-
plemented in Secure Socket Layer (SSL) [15]. Let
N̂ be a safe prime, N̂ = 2q̂ + 1 where q̂ is also a
prime. ĝ is an element of finite field FN̂ with order

q̂. (N̂ , q̂, ĝ) are system parameters for a PAKE (see
the Appendix). For a set S, a ∈R S means that
element a is randomly and uniformly selected from
S. |S| denotes the cardinality (the size) of S. For
two integers a1 and a2, [a1, a2] denotes the set of
integers x satisfying a ≤ x ≤ b. gcd(a1, a2) denotes
the greatest common divisor of a1 and a2.

3.1 An intrusion-tolerant PAKE

In a PAKE, a user possesses a password and the
server stores a related password verification data
(PVD). Using what they have, the user and the
server can perform a password-authenticated key
exchange protocol and establish an authenticated
(and cryptographically strong) session key, which
can be used to protect subsequent communication
between the user and the server†.

However, since the password-verification data stored
on the server is derived from a password using a pub-
licly known function, if an attacker manages to com-
promise the server and steal the PVD, he can still
mount an off-line dictionary attack by just comput-
ing PVDs value with all likely passwords and com-
paring them with the stolen PVD. (If he observes a
match, then the correct password is found.) The
intrusion-tolerant PAKE developed in our earlier
work [30] can be used to improve security against
this attack, in which a PVD is shared among these
multiple servers and is never reconstructed during a
PAKE running. Each user of the intrusion tolerant
PAKE registers himself with the servers in the user
enrollment phase, during which the user’s PVD, x,
is shared, using a (t, n)-Shamir secret sharing [27]‡,

among the n servers. Let x
(t,n)
←→ (x1, x2, . . . , xn)

denote the secret sharing and each server i has
PVD share xi. Then, the user can remotely au-
thenticate himself to Γ, a subset of these multiple
servers, |Γ| ≥ t, and establish a session with each of
them without reconstructing the shared PVD. Any
attacker who has compromised less than t servers
will get no information about the shared PVD and,
thus, cannot mount a dictionary attack. These
servers can proactively update their PVD shares
while keeping the shared PVD unchanged to fur-
ther enhance their security. A user can also change
his password as in normal password-based systems.
The details of this intrusion-tolerant PAKE of [30]

† Just as passwords are always subject to the dictionary
attack, a PAKE is subject to network-based dictionary at-
tacks, including eavesdropping-based dictionary attack and
active dictionary-based protocol attacks. Existing PAKE
protocols such as EKE [2], SPEKE [18], SRP [31], provide
either heuristic or provable security against network-based
dictionary attacks.

‡A (t, n)-Shamir secret sharing splits a secret x into n

secret shares xi, 1 ≤ i ≤ n, such that any t or more of these
secret shares can be used to reconstruct x while any less than
t secret shares could not. Shamir secret sharing is perfect in
that any less than t secret shares leak no information about
x.

2nd Annual PKI Research Workshop---Pre-Proceedings

47

is summarized in the appendix of this paper.

3.2 A password-adapted threshold RSA

Threshold cryptography researches on how to share
a (cryptographically strong) private key among mul-
tiple parties and how a subset of these parties can
perform a cryptographic computation without re-
constructing the shared private key [11, 12]. Here,
we integrate password into the threshold RSA given
in [28] to obtain a password-adapted threshold RSA
scheme and then, use it to build an intrusion-
tolerant virtual smartcard. The password-adapted
threshold RSA scheme is given below.

The key generation. A user picks his password
p̂ and a value d1 is derived from p̂ using a public
function (the PBKDF2 function of [22] can be used
for this purpose). Let ∆ = 1 × 2 × . . . × n = n! (n
is the number of servers). (N, e) is the user’s RSA
public key where N = p×q; p, q are two primes; e is
a prime, 4∆ < e < φ(N), φ(N) = (p−1)×(q−1). d

is the user’s overall RSA private key, 1 < d < φ(N).
d × e = 1 mod φ(N). d is split into d1 and d2 and
d2 is computed as follows: 1 < d2 < φ(N), d1 +
d2 = d mod φ(N). d2 is further shared among the n

servers as follows: let a0 = d2, ai ∈R [0, φ(N)−1] for

1 ≤ i ≤ (t− 1); define f(x) =
∑t−1

i=0 aix
i mod φ(N);

then, one can compute d2i = f(i) mod φ(N) for 1 ≤
i ≤ n and server i is assigned d2i, 1 ≤ i ≤ n.

Observation. In the above key generation process,
p and q are ordinary primes, as opposed to the safe
primes in [28]. d2 is picked as (d − d1) mod φ(N)
for efficiency reasons. In this way, the user and
the servers can perform the cryptographic compu-
tations in parallel. One can also compute d2 as
d1 × d2 = d mod φ(N), as did in [26]. In this case,
the computations of the user and the servers are
sequential.

Digital signature. Let Γ be the subset of the
servers who will help a user digitally sign a message
m, |Γ| ≥ t. Let a, b be integers satisfying 4∆a+eb =
1, which can be computed by the extended GCD
algorithm [29]. The user derives d1 from his pass-
word and computes c1 = m4∆d1 mod N . In parallel,
each server j ∈ Γ computes c2j = m2d2j mod N and
sends c2j to the user.

After receiving all c2j , the user computes
c2 =

∏
j∈Γ c2j

2λj,Γ mod N , where λj,Γ = ∆ ×
∏

k∈Γ,k 6=j
k

k−j
. He then combines c2 and c1 into

ω = c2 × c1 mod N and computes y as y = (ωa ×
mb) mod N . Note that ω = m4∆d mod N and
ye mod N = m4∆dae+be = m4∆a+be = m mod N .
That is, y is the digital signature of m by the pri-
vate key d.

4 Intrusion-tolerant Password-

enabled PKI

4.1 Intrusion-tolerant virtual soft token

Just as a virtual soft token is the composition of
a PAKE and a secure download of the password-
encrypted private key, an intrusion-tolerant virtual
soft token scheme is implemented as the composi-
tion of an intrusion-tolerant PAKE and multiple se-
cure downloads of the password-encrypted private
key shares. In an intrusion-tolerant virtual soft to-
ken scheme, for each user, his PVD is shared among
the n servers using a (t, n)-Shamir secret sharing
over finite field Fq̂. The user’s password-encrypted
private key is also shared among the same n servers
using a (t, n)-Shamir secret sharing.

When a user needs to use his private key, he first
runs the intrusion-tolerant PAKE protocol with
Γ, a subset of these multiple servers, |Γ| ≥ t,
Γ ⊆ {1, 2, ..., . . . , n} (see Section 3.1 and the Ap-
pendix section for more details). Afterward the
user will have one authenticated session key (thus,
one secure connection) with each of the servers in
Γ. Then, these subset of servers will send their
password-encrypted private key shares to the user
(via the secure connections). The user reconstructs
the password-encrypted private key, decrypts it with
the password and uses the private key as in the con-
ventional PKI.

Remark. In the above virtual soft token scheme,
neither the shared PVD nor the password-encrypted
private key is reconstructed at any single server.
The minimal number of servers required for a user
login is (2t− 1), t ≤ n.

2nd Annual PKI Research Workshop---Pre-Proceedings

48

4.1.1 The parameter selection

In the above intrusion-tolerant virtual soft token,
both the PVD and the password-encrypted private
key are shared among the multiple servers. The
sharing of PVD is performed in the finite field Fq̂.
The sharing of the password-encrypted private key
can be operated in another finite field Fq̄ where q̄

is another prime. Note that the size of d is in the
same order as the size of N and, the size of the
encryption of d by a password (say, using the PKCS
5 standard [22]) will not increase significantly.
(If PKCS #5 is used to encrypt the private key, the
salt and iteration count can be simply replicated to
each server. And only the encryption of d is shared).
Thus, the size of q̄ should be no less than the size
of N . Another option is to use q̂ as q̄. If this is the
case, q̂ should be no less than N .

4.2 Intrusion-tolerant virtual smart-
card PKI

Just as a virtual smartcard [26] is the composition of
a PAKE and a password-adapted non-threshold dis-
tributed RSA, our intrusion-tolerant virtual smart-
card scheme is the composition of an intrusion-
tolerant PAKE and a password-adapted threshold
RSA. In the intrusion-tolerant virtual smartcard
scheme, a user’s PVD (related to password p̂) is
shared among the n servers using a (t, n)-Shamir
secret sharing scheme. The user’s RSA private key
d is split as a password-derived value d1 (derived
from password p̂) and d2. d2 is further shared as

d2
(t,n)
←→ (d21, d22, . . . , d2n). In addition to its PVD

share, a server, i, 1 ≤ i ≤ n, also holds d2i.

When a roaming user wants to digitally sign a mes-
sage, m, he first runs the intrusion-tolerant PAKE
protocol with Γ, a subset of the multiple servers,
|Γ| ≥ t, Γ ⊆ {1, 2, . . . , n}, and establishes an au-
thenticated session key (thus, a secure connection)
with each of them. Then, the user sends m, via the
secure connections, to server j, j ∈ Γ. Server j com-
putes c2j = m2d2j mod N and sends it back to the
user through the secure channel. The user computes
ω and y as described in Section 3.2, where y is the
digital signature of m by the user’s private key d.

Remark. In the above virtual smartcard scheme,
none of the shared PVD, d2 and md2 is recon-
structed at any single server. The minimal number

of servers required for a user login is (2t− 1), t ≤ n.

5 Some Operational Considerations

Operational quality is a big concern for the
intrusion-tolerant password-enabled PKI since in-
troducing multiple servers increases the operational
complexity [26]. However, we can automate the
management to minimize the manual management
overhead.

5.1 The user enrollment

Compared to the virtual soft token [25, 26], at the
user enrollment phase, our intrusion-tolerant vir-
tual soft token scheme introduces one additional
step: the share generations of the user’s PVD and
password-encrypted private key and the share distri-
bution to the multiple servers. This additional step
can be fully automated by a management server,
which performs the Shamir secret sharing on the
PVD and the password-encrypted private key and,
then securely sends, via SSL, these shares to the
multiple servers.

Similarly, compared to the virtual smartcard [26],
at the user enrollment phase, our intrusion-tolerant
virtual smartcard also introduces one additional
step: the share generations of the user’s PVD and
his secret component (d2) and the share distribution
to the multiple servers. We can also automate this
step by using a management server, which performs
the Shamir secret sharing on the PVD and the se-
cret components and, securely sends, via SSL, these
shares to the multiple servers.

Thus, our intrusion-tolerant password-enabled PKI
schemes do not bring much operational overhead to
the user enrollment stage.

5.2 User authentication

In the intrusion-tolerant password-enabled PKI
schemes, when a user interacts with the servers
to use his private key, he just needs to type in
his password and all other steps are automati-
cally performed by programs. Thus, our intrusion-

2nd Annual PKI Research Workshop---Pre-Proceedings

49

tolerant password-enabled PKI schemes do not in-
crease user’s operational complexity.

5.3 Password change

In a password-enabled PKI, a user may want to
change his password while keeping his long-term pri-
vate key unchanged.

In the intrusion-tolerant virtual soft token PKI,
a change in the password requires the update of
the corresponding PVD shares and the update of
the password-encrypted private key shares (the pri-
vate key remains unchanged but its encrypted form
by the password should be updated accordingly).
The intrusion-tolerant PAKE used in this article
(see Section 3.1) allows a user to securely change
his password and update the corresponding PVD
shares stored on each server. This naturally en-
ables the password change in our intrusion-tolerant
virtual soft token: a user first runs the intrusion-
tolerant PAKE protocol, securely downloads the
password-encrypted private key shares, reconstructs
the password-encrypted private key, decrypts it with
the old password, re-encrypts it with the new pass-
word, generates a (t, n)-Shamir secret shares and
securely uploads these new shares to the multiple
servers respectively; then, he can run the intrusion-
tolerant PAKE password change protocol given in
[30] to update the PVD shares stored on each server.

In a virtual smartcard PKI, the change of a user’s
password causes the change of d1 and thus, requires
the update of the secret component, d2, since d re-
mains unchanged and d1 + d2 = d mod φ(N). As
φ(N) is unknown to the user and the server, the
change of d2 is difficult unless the shared d is recon-
structed and φ(N) is recovered. Technically, after
authenticating himself to the server and establishing
a session key, a user can securely download d2 from
the server, reconstruct d and recover φ(N), com-
pute the new d2 (from the new d1 and the recovered
φ(N)), and update this new d2 to the server. How-
ever, this process is computation-intensive and looks
awkward. Indeed, in the only virtual smartcard PKI
scheme proposed in [26], password change is not
discussed. This difficulty remains in our intrusion-
tolerant virtual smartcard PKI and is the topic of
our future research.

6 Conclusion

Password-enabled PKI, including the virtual soft to-
kens and virtual smartcards, facilitates the private
key management by integrating easy-to-use pass-
words into PKI. However, compared to the con-
ventional PKI, password-enabled PKI introduces
a security-critical server where large number of
password-related credentials are stored. The com-
promise of this server will render these password-
based credentials susceptible to the dictionary at-
tack and, thus, damage the security of numerous
private keys.

To address this attack, using multiple servers, we
proposed an intrusion-tolerant virtual soft token
PKI scheme and an intrusion-tolerant virtual smart-
card PKI scheme. In our schemes, compromis-
ing up to a threshold number of these servers will
not help an attacker mount the dictionary attack
and the intrusion-tolerant password-enabled PKI
schemes can still function in the presence of some
server failures. Compared to previous work, our vir-
tual soft token is threshold and does not require all
servers when a user needs his private key. We de-
signed our virtual soft token PKI by compositing an
intrusion-tolerant PAKE with a secret sharing. Our
intrusion-tolerant virtual smartcard PKI is achieved
through the composition of an intrusion-tolerant
PAKE with the password-adapted threshold RSA.
The multiple servers introduced in our intrusion-
tolerant password-enabled PKI can be easily man-
aged and PKI users can roam with human memo-
rable passwords.

Acknowledgement

The author is indebted to Samuel Redwine for the
discussions and Hua Lin for reviewing the earlier
drafts of this paper. The author also wishes to thank
the anonymous reviewers for suggestions to improve
this article.

References

[1] M. Bellare, D. Pointcheval, and P. Rogaway.
Authenticated key exchange secure against dic-
tionary attacks. In B. Preneel, editor, Advances

2nd Annual PKI Research Workshop---Pre-Proceedings

50

in Cryptology - EUROCRYPT 2000, volume
1807 of Lecture Notes in Computer Science,
pages 139–155, Bruges, Belgium, May 2000.

[2] S. Bellovin and M. Merritt. Encrypted key
exchange: password–based protocols secure
against dictionary attacks. In Proceedings of
the 1992 IEEE Computer Society Symposium
on Research in Security and Privacy, pages 72–
84, 1992.

[3] S. M. Bellovin and M. Merritt. Augmented
encrypted key exchange: a password–based
protocol secure against dictionary attacks and
password file compromise. In Proceedings of the
1st ACM Conference on Computer and Com-
munications Security, pages 244–250, 1993.

[4] C. Boyd. Digital multisignatures. In H. Beker
and F. Piper, editors, Cryptography and coding,
pages 241–246. Clarendon Press, Royal Agri-
cultural College, Cirencester, December 15–17
1989.

[5] V. Boyko, P. MacKenzie, and S. Patel. Prov-
ably secure password-authenticated key ex-
change using Diffie-Hellman. In B. Preneel, ed-
itor, Advances in Cryptology - EUROCRYPT
2000, volume 1807 of Lecture Notes in Com-
puter Science, pages 156–171, Bruges, Belgium,
May 2000.

[6] CERT. CERT advisory CA-1999-13 mul-
tiple vulnerabilities in WU-FTPD. Avail-
able from http://www.cert.org/advisories/CA-
1999-13.html, October 19 1999.

[7] CERT. CERT advisory CA-2001-33 mul-
tiple vulnerabilities in WU-FTPD. Avail-
able from http://www.cert.org/advisories/CA-
2001-33.html, November 29 2001.

[8] CERT. CERT advisory CA-2002-09 multi-
ple vulnerabilities in Microsoft IIS. Avail-
able at http://www.cert.org/advisories/CA-
2002-09.html, April 11 2002.

[9] CERT. CERT advisory CA-2002-
29 buffer overflow in Kerberos ad-
ministration daemon. Available at
http://www.cert.org/advisories/CA-2002-
29.html, October 25 2002.

[10] CERT. Vulnerability note VU#124003
apache HTTP server on Win32 sys-
tems does not securely handle input
passed to CGI programs. Available at

http://www.kb.cert.org/vuls/id/124003, April
11 2002.

[11] Y. Desmedt. Society and group oriented cryp-
tography : a new concept. In Advances in Cryp-
tology, Proc. of Crypto ’87, pages 120–127, Au-
gust 16–20 1988.

[12] Y. Desmedt. Threshold cryptography. Euro-
pean Trans. on Telecommunications, 5(4):449–
457, July-August 1994. (Invited paper).

[13] Y. Deswarte, L. Blain, and J.-C. Fabre. Intru-
sion tolerance in distributed computer systems.
In Proceedings of the IEEE Symposium on Re-
search in Security and Privacy, pages 110–122,
May 1991.

[14] Y. Deswarte, K. Kanoun, and J.-C. Laprie. Di-
versity against accidental and deliberate faults.
In Proceedings of the Computer Security, De-
pendability and Assurance: From Needs to So-
lutions, pages 171–181, 1998.

[15] T. Dierks and C. Allen. The TLS protocol ver-
sion 1.0. Internet RFC 2246, January 1999.

[16] W. Ford and B. Kaliski, Jr. Server–assisted
generation of a strong secret from a password.
In Proceedings of the 9th IEEE International
Workshops on Enabling Technologies: Infras-
tructure for Collaborative Enterprises(WET
ICE 2000), pages 176–180, Gaithersburg, MD,
USA, June 14–16 2000.

[17] R. Gennaro, S. Jarecki, H. Krawczyk, and
T. Rabin. Robust threshold DSS signatures.
Information and Computation, 164(1):54–84,
2001.

[18] D. P. Jablon. Strong password–only authenti-
cated key exchange. ACM SIGCOMM Com-
puter Communication Review, 26(5):5–26, Oc-
tober 1996.

[19] D. P. Jablon. Password authentication us-
ing multiple servers. In D. Naccache, editor,
Progress in Cryptology - CT-RSA 2001 Pro-
ceedings of the Cryptographers’ Track at RSA
Conference, volume 2020 of Lecture Notes in
Computer Science, pages 344–360, San Fran-
cisco, CA, USA, April 8–12 2001. Springer-
Verlag.

[20] D. Klein. Foiling the cracker: A survey of, and
improvements to, password security. In Pro-
ceedings of the UNIX Security Workshop II,
August 1990.

2nd Annual PKI Research Workshop---Pre-Proceedings

51

[21] T. Kwon. Virtual software tokens - a practi-
cal way to secure PKI roaming. In G. Davida,
Y. Frankel, and O. Rees, editors, Proceedings
of the Infrastructure Security (InfraSec), vol-
ume 2437 of Lecture Notes in Computer Sci-
ence, pages 288–302. Springer-Verlag, 2002.

[22] R. Laboratories. PKCS #5 v2.0 password-
based cryptography standard. Available from
http://www.rsasecurity.com/rsalabs/pkcs/pkcs-
5/, March 1999.

[23] P. MacKenzie, T. Shrimpton, and M. Jakobs-
son. Threshold password-authenticated key ex-
change (extended abstract). In M. Yung, ed-
itor, Advanced in Crypto: – CRYPTO 2002,
volume 2442 of Lecture Notes in Computer Sci-
ence, pages 385–400. Springer-Verlag, August
2002.

[24] R. Morris and K. Thompson. Password secu-
rity: a case history. Communications of the
ACM, 22(11):594–597, November 1979.

[25] R. Perlman and C. Kaufman. Secure password-
based protocol for downloading a private key.
In Proceedings of the ISOC Network and Dis-
tributed Systems Security Symposium, 1999.

[26] R. Sandhu, M. Bellare, and R. Ganesan. Pass-
word enabled PKI: Virtual smartcards vs. vir-
tual soft tokens. In Proceedings of the 1st
Annual PKI Research Workshop, pages 89–96,
April 2002.

[27] A. Shamir. How to share a secret. Commun.
ACM, 22(11):612–613, November 1979.

[28] V. Shoup. Practical threshold signatures. In
Advance in Cryptology – EUROCRYPT 2000,
pages 207–220, May 2000.

[29] D. R. Stinson. Cryptography: Theory and Prac-
tice. CRC, Boca Raton, 1st edition, 1995.

[30] X. Wang. A Distributed Password-
Authenticated Key Exchange Protocol Secure
Against Server Compromise-Based Dictionary
Attacks. Department of Computer Science,
James Madison University, Harrisonburg, VA,
USA, January 2003.

[31] T. Wu. The secure remote password proto-
col. In Proceedings of the 1998 Network and
Distributed System Security Symposium, pages
97–111, 1998.

[32] T. Wu. A real-world analysis of Kerberos pass-
word security. In Proceedings of the 1999 Net-
work and Distributed System Security Sympo-
sium, 1999.

APPENDIX

In this article, the intrusion-tolerant PAKE protocol
given in [30] is used as a building block. Let N̂ be a
safe prime, N̂ = 2q̂ + 1 where q̂ is also a prime. ĝ is
an element of finite field FN̂ with order q̂. (N̂ , q̂, ĝ)
are the system parameters. H denotes a secure hash

function such as SHA-1. We use (τ1, τ2, . . . , τn)
(t,n)
−→

τ to denote the fact that a value, τ , is reconstructed
from t or more shares τi, 1 ≤ i ≤ n.

For this protocol, Table 1 summarizes the password-
authenticated key exchange data flow between a
user and a particular server, i, 1 ≤ i ≤ n, where
server i stores the user’s PVD share xi. At the end
of this protocol, the user and server i will share a
cryptographically strong session key K. This proto-
col can be repeated between the user and any other
server so that the user can share one session with
each of the participating servers.

A user shows his ID, I, in the first step, to which
server i responds with the user’s salt, s. Server i

also passes this ID I to a threshold number or more
servers (so that they can locate the PVD share for
this user). In step 2, the user computes x and l. In
step 3, with the assistance of a threshold number or
more servers, server i computes a value B (see the
following paragraph for details) and passes it back to
the user. In this step, the user picks a ∈R [1, q̂− 1],
computes A and sends it to server i, which in turns
passes A to the participating servers. In step 4, the
user checks if the received B satisfies B = 0 mod N̂

and will quit if this is the case. Otherwise, the user
computes a value Sc using the given formula and
server i uses the subset of the servers to compute
value Ss (see the following paragraph for details).
Note that Sc = Ss and this value is denoted as S.
Step 5 and 6 are used to verify that the user and
server i share a common value S. The authenticated
session key, K, is derived from S in step 7.

The server-side computation of step 3 Let Γ
be the set of participating servers, Γ ⊆ {1, 2, . . . , n},

2nd Annual PKI Research Workshop---Pre-Proceedings

52

Client Server i Server 1 Server 2 . . . Server n

1
I
→ (lookup s) (lookup x1) (lookup x2) (lookup xn)

2 x = H(s, I, p̂)
s
←

l = x−1 mod q̂

3 A = ĝal mod q̂ mod N̂
A
→ Collectively generate shares of b ∈R Fq̂ and
B
← collectively compute B = ĝbx mod q̂ mod N̂

4 S = Bal mod q̂ mod N̂ Collectively compute S = Abx mod q̂ mod N̂

5 M1 = H(A,B, S)
M1→ (verify M1)

6 (verify M2)
M2← M2 = H(A, M1, S)

7 K = H(S) K = H(S)

Table 1: Intrusion-tolerant PAKE

|Γ| ≥ t. B is computed by the participating servers
as follows:

1. Using a Joint-Shamir-RSS [17], the partici-

pating servers generate (b1, b2, . . . , bn)
(2t-1,n)
←→

b mod q̂, where b is a random value unknown

to any individual server and each server j,
j ∈ Γ, has share bj .

2. Each participating server j, j ∈ Γ, com-
putes dj = bj × xj mod q̂, Bj = ĝdj mod

N̂ , and sends Bj to server i. Note that

(d1, d2, . . . , dn)
(2t-1,n)
←→ d = b × x mod q̂ and

(B1, B2, . . . , Bn)
(2t-1,n)
←→ ĝbx mod q̂ mod N̂ .

3. Using the Lagrange interpolation formula in
the exponent [17], server i first computes B

as follows: (B1, B2, . . . , Bn)
(2t-1,n)
−→ B mod N̂ .

(Note that, B = ĝbx mod q̂ mod N̂ .) Then,
server i sends B back to the user in step 3.

(2t − 1) servers are needed to perform the above
steps.

The server-side computation of step 4 The
computation of step 4 proceeds as follows:

1. Each participating server checks if A = 0 mod
N̂ . They will abort if it is. Otherwise, they
check if Aq̂ = 1 mod N̂ . They will abort the
computation if it does not hold. Otherwise,
they will continue.

2. Each participating server j, j ∈ Γ, com-
putes Sj = Adj mod N̂ , and sends Sj to

server i. Note that (S1, S2, . . . , Sn)
(2t-1,n)
←→

Abx mod q̂ mod N̂ .

3. Using the Lagrange interpolation formula in the
exponent [17], server i computes S as follows:

(S1, S2, . . . , Sn)
(2t-1,n)
−→ S mod N̂ . Note that

S = Abx mod q̂ mod N̂ .

2nd Annual PKI Research Workshop---Pre-Proceedings

53

Decentralization Methods of Certification Authority Using the

Digital Signature Schemes

Satoshi KOGA ∗ and Kouichi SAKURAI †

∗ Dept. of Electrical Engineering and Computer Science,
Kyushu University, Japan

satoshi@tcslab.csce.kyushu-u.ac.jp
† Faculty of Information Science and Electrical Engineering,

Kyushu University, Japan
sakurai@csce.kyushu-u.ac.jp

Abstract.

A Public Key Infrastructure (PKI) is the one of the
important techniques to support secure e-commerce
and digital communications on networks. Many PKI
trust models have been proposed and are widely
used for various purposes.

The trust model that one Certification Authority
(CA) issues all certificates is the simplest one. It is
called a single CA model. In this model the certifi-
cate verification process is very simple, however it is
attended with a danger of the high ratio of exposure
CA’s private key. While a subordinated hierarchical
model which is constructed by the multiple CAs can
mitigate that risk. For this reason, the distributed
CA model like the subordinated hierarchical model
is needed in the real world.

This paper discusses the advantages and dis-
advantages of the general distributed CA models.
Especially we investigate in two points: (1) the
effects in case that the CA’s private key is com-
promised and (2) the certificate path processing.
Then we present the new distributed CA models
which the certification path is shorter than one
of a subordinated hierarchical model by using
a forward-secure digital signature scheme and a
key-insulated digital signature scheme.

Keyword:
Public Key Infrastructure, Trust Model, Forward-
Secure Digital Signature Scheme, Key-Insulated
Digital Signature Scheme

1. Introduction

1.1 Background and Motivation

The third trusted party is called Certification Au-
thority (CA) in Public Key Infrastructure (PKI).
The CA guarantees by issuing certificates which link
public key to identity information. These certifi-
cates are signed by CA’s private key and certificate
verifiers can verify it using CA’s public key. In this
way, trust relationships between the certificate users
are established.

In PKI, the simplest trust model is a single CA
model which one CA issues all certificates. Cer-
tificate verifiers can check all certificates as well as
the certificate revocation information by using CA’s
public key. Like this, the construction and valida-
tion of certification path are very efficient and easy
in this model.

However, the problems in this model are pointed
out from the viewpoints of security and system [1, 3].
The main problem is that all certificates are affected
in case of compromise of CA’s private key. If CA’s

2nd Annual PKI Research Workshop---Pre-Proceedings

54

private key is exposed, the CA keys should be re-
voked, and a new certificate must be issued and
distributed to all certificate users. Moreover, any
subordinate certificates and keys that were suspect
should need to be replaced and the certificate users
have to run through the registration process once
again. These operations take as much time and ef-
fort as the number of certificate users and conse-
quently the entire trust model may collapse [1].

In order to improve this problem, certificate users
need to be partitioned and assigned to separate CAs,
so compromise of one CA’s private key will not affect
the certificates issued by the others. In practical,
it is necessary to construct a distributed CA model
using the multiple CAs and one of the distributed
CA models which has the hierarchical structure, is
called a subordinated hierarchical model.

But, in comparison with a single CA model, a sub-
ordinated hierarchical model is less efficient in the
point of the certificate verification process because
certification path is longer. When certificate veri-
fiers check the certification path, they need to get
and verify the certificates on that path. In addition,
they have to get and verify revocation information
about the certificates by issued the CA.

1.2 Certification Path Processing

In order to validate a certificate, a certification path
between the certificate and the trust anchor must be
established. Moreover, every certificate within that
path must be checked. This process is referred to as
certificate path processing [4].

In general, certification path processing consists
of two phases [2, 5]: (1) path construction and (2)
path validation described as follows.

(1) path construction
Valid paths begin with certificates issued by a

trust anchor. First, a verifier should discover a path
leading from the certificate that is being validated
to trust anchor that a verifier trust, it is called
certification path. The next step is that verifiers
need to obtain the certificates on path.

(2) path validation
Verifiers have to check that each certificate in the

path is satisfied the following things [4].

1. The certificate must contain a cryptographi-
cally valid signature. Namely, certificate veri-
fier can verify that the certificate contents have
not been tampered, by using public key of is-
suer.

2. By checking the validity period, the certificate
must be current.

3. The certificate must not have been revoked.

Thus, the verification process of the certificate
is the burden when the certification path length is
long.

1.3 Our Contribution

In this paper, we discuss the advantages and dis-
advantages of the general distributed CA models
and suggest the decentralization methods absorbing
these advantages. Our goal is to mitigate the burden
of certificate verifiers. In short, we try to construct
the distributed CA model which certification path
length is short. Our methods are realized using the
digital signature schemes: (1) a forward-secure digi-
tal signature scheme [6] and (2) a key-Insulated dig-
ital signature scheme [12]. These signature schemes
are usually used generating and updating the user’s
keys. The idea of our methods is that the multi-
ple CA’s private keys are generating by using these
signature scheme.

We use these signature schemes to construct a dis-
tributed CA model which the certification path is
short. In brief, the multiple key pairs (a public key
and private key) are generated using these schemes
and assigned the distributed CAs. This model en-
ables to mitigate the damage caused by CA’s pri-
vate key exposures because the distributed CAs is-
sue the certificates to users. Moreover the verifiers
can check all certificates using one public key (Root
CA’s public key), so the burden of certification path
processing is mitigated.

2nd Annual PKI Research Workshop---Pre-Proceedings

55

1.4 Organization of Our Paper

In section 2, we explain the PKI trust models and
consider the general distributed CA models. Then
we also discuss the advantages and disadvantages of
these models. In section 3, we refer to our decentral-
ization methods and concluding remarks are made
in section 4.

2. PKI Trust Models

By using multiple CAs, the trust relationships be-
tween CAs are built. This model is called PKI trust
model. In real world, many kinds of trust models
exist and are utilized according to various environ-
ments.

2.1 A Single CA Model

This model is the simplest trust model and consists
of a single CA which one CA issues all certificates
(Figure 1). Because of simple structure, this model
has advantage that certification path processing is
very easy. However, this model has the following
problems.

Root CA

user user user user

Figure 1: A Single CA Model

(problems)

1. Since only one CA issues all certificates, the
burden of CA system become heavy in propor-
tion to the number of certificate users.

2. When CA’s private key is compromised, all cer-
tificate users are affected.

3. If the company locations are separate widely,
this model is inconvenient to issue the certifi-
cates to all users.

2.2 Distributed CA Models

Taking into account the problems in a single CA
model, the trust model that consists of multiple sep-
arate CAs is needed in the real world. We call this
model a distributed CA model. Since the certificate
users are assigned to multiple CAs, the load of sys-
tem can be mitigated in this model. We try to con-
struct the distributed CA models which has n CAs
(Figure 2).

CA 1 CA 2 CA n

user user user user user user

Figure 2: A Distributed CA Model

2.2.1 A Method of Using Cross-Certification

In Figure2, verifiers who trust one CA can not verify
the certificates issued by the others, because certi-
fication path cannot be established. So we try to
establish the trust relationships between CAs using
cross-certification. The X.509 specification [4] de-
fines a cross-certification in this way: ”Two CAs
exchange information used in establishing a cross-
certificate. A cross-certificate is a certificate issued
by one CA to another CA which contains a CA sig-
nature key used for issuing certificates.” We show
the distributed model using cross-certification in
Figure 3.

1. compromise of CA’s private key
When one CA’s private key is exposed, certificate

users who trust that CA are affected. However
certificate users who trust the others are not
affected, so the damage caused by the CA’s private

2nd Annual PKI Research Workshop---Pre-Proceedings

56

CA 1 CA 2 CA n

user user user user user user

Figure 3: A distributed CA model using cross-
certification

key exposures can be minimized.

2. certification path processing
In this model, certification path processing is not

efficient. For example, when a verifier who trust
CA1 verify the certificate issued by CAn, the certi-
fication path length is n. That is, a verifier should
check n certificates in the certification path.

As another method, every CA directly issues the
cross-certificate to every other CA. This model is
called a fully connected mesh (Figure 4). In this
case, however, the number of cross-certification links
required can be calculated as n · (n− 1), where n is
the number of CAs [1].

In general, discovering a optimal certification
path is a very complex problem in case of using a
lot of cross-certifications [2, 5].

CA 2

CA 4 CA 5

CA 3

CA 1

CA 6

Figure 4: A Fully Connected Mesh (n=6)

2.2.2 A Subordinated Hierarchical Model

In this model, multiple CAs are formed the hierar-
chical structure with a Root CA at the top (Figure
5). This model has the following features [1].

In this model, only superior CA issues certificates
to their subordinates and subordinate CAs do not
certify their superiors. As the Root CA in this
model is the single trust anchor, there is no other
CA that can certify the Root CA. Root CA creates
a self-signed certificate for itself and distributes it
to all certificate users.

Root CA

Intermediate
CA

Intermediate
CA

user

Leaf
CA

user user user user

Leaf
CA

Leaf
CA

Figure 5: A Subordinated Hierarchical Model

1. compromise of CA’s private key
When Root CA’s private key is compromised, all

certificates are affected. However, compromise of
one intermediate CA’s private key does not affect
the certificates issued by the others in the same
depth of hierarchy.

Compromise of Root CA’s private key affected
all certificates, as we mentioned above. This is the
same problem as a single CA model. But in a single
CA model, it increases the risk of exposing private
key because all certificate requests go directly to
one CA. While the danger of Root CA’s private key
disclosure can be mitigated in subordinated hierar-
chical model, since Root CA may issue certificates
to its subordinates (Intermediated CAs). Therefore
the Root CA’s private key is used very infrequently

2nd Annual PKI Research Workshop---Pre-Proceedings

57

and the Root CA can spend most of its operation
life offline, with its private key securely locked away
[1].

2. certification path processing
The path construction in a subordinated hierar-

chical model is relatively simple. The certification
path is leading the path from Root CA to the cer-
tificate that is verified.

But the path validation is less efficient than one of
in a single CA model. Namely, the certificate path
length is longer than one of a single CA model. In a
single CA model, certificate path length is only one,
while in subordinated hierarchical model, it becomes
longer in proportion to depth of hierarchy. There-
fore the number of certificate that verifier need to
check is increasing.

3. Our Proposal Methods

Distributed CA models using general methods have
the problem that the certification path length is
long, so the load of verifier become heavy. In this
section, we suggest the decentralization methods
of CA. Using these methods, we realized the dis-
tributed CA models which the certification path
length is short. We use two signature schemes: (1)
forward-secure signature scheme (FSS) and (2) key-
insulated signature scheme(KIS).

3.1 A decentralization method of using FSS

3.1.1 An overview of FSS

A lot of the digital signature schemes have been
proposed, but they provide no security guarantees
in case private keys (secret keys) are exposed. In
many cases, it is easier to obtain a private key from
a stolen device than to break the computational as-
sumption on which the security of the system is
based. If the private key is compromised, any mes-
sage can be forged, so the leakage of the private key
is quite realistic threat.

In order to minimize the damage caused by pri-
vate key exposures, the notion of forward security
for digital signatures was initially proposed by An-
derson [7]. The basic idea is to extend a standard

digital signature algorithm with a key update algo-
rithm. The user’s private key can be change fre-
quently (for example, day by day) , while the pub-
lic key stays the same (Figure 6). The notion of
forward-security is that if the exposure of the pri-
vate key at some time-period t, the attacker cannot
forge signatures that belong to previous time peri-
ods. Bellare and Miner initially formalized forward-
secure digital signature scheme [6]. Several forward-
secure digital signature schemes have been proposed
[8, 9, 10].

We notice these features and propose decentral-
ization methods of CA. First, we introduce the
scheme [1] as follows.

���

����� ���	� ���	

�
����� ����� ������� ����� �
����� �����

��� �"!$#�%�&�' � (*)+��,
- �/.0�1!�21�3(4� ��5
)+��,6�87
#4����� �����

Figure 6: Forward-Secure Signature Scheme

(Definition)
p, q :prime number satisfying p ≡ q ≡ 3 (mod 4).
T :the number of time-period
SKj :the private key at time-period j (0 ≤ j ≤ T).
PK :the fixed public key for verification signature
H :one-way hash function and output length is l-bit
l :security parameter
k :security parameter
M :message
ZN :the set of integers {0, ..., N − 1}(= Z/NZ)
Z∗N :the set of integers
z ∈ {0, ..., N − 1} : gcd(z, N) = 1(= (Z/NZ)∗)

(a) Key Generation Algorithm

2nd Annual PKI Research Workshop---Pre-Proceedings

58

(1)p, q (≡ 3 (mod 4))
(2)N ← pq
(3)i = 1, ..., l;

Si
R←− Z∗N

Ui ← S2(T+1)

i mod N
(4)SK0 ← (N, T, 0, S1,0, ..., Sl,0)

PK ← (N,T, U1, ..., Ul)

The signer generates key pair by running the
above key generation algorithm, which takes as
input the security parameter k determining the size
of N , the number l of points in the keys, and the
number T of time-period over which the scheme is
to operate. The factor p, q of N are deleted once
the key generation process is complete, so that they
are not available to an attacker that might later
break into the system on which the private key is
stored.

(b) Key Update Algorithm

SKj−1 = (N,T, j − 1, S1,j−1, ..., Sl,j−1)
For i = 1, ..., l do

Si,j ← S2
i,j−1 mod N

SKj ← (N,T, j, S1,j , ..., Sl,j)
Return SKj

Once key update algorithm are performed, the
signer deletes the private key SKj−1. This algo-
rithm uses squaring modulo N and it is one-way
function when factorization of N is unknown, it is
computationally infeasible to derive SKj−1 from
SKj .

(c) Signing Generation Algorithm

SKj = (N, T, j, S1,j , ..., Sl,j)
(1)R R←− Z∗N
(2)Y ← R2(T+1−j)

mod N
(3)c1...cl ← H(j, Y, M)

Z ← R ·Πl
i=1S

ci
i,j mod N

(4)〈j, (Y, Z)〉

Signer generates the signature on message M by
using signing generation algorithm.

(d) Signing Verification Algorithm

(1)PK = (N,T, U1, ..., Ul)
(2)c1...cl ← H(j, Y, M)
(3)Z2(T+1−j) ?= Y ·Πl

i=1U
ci
i mod N

Verifiers check the signature which is sent to
signer, by using the fixed public key. Any time-
period j, the signature can be verified by using PK.
Verifiers check the signatures by signing verification
algorithm at time-period j. If (3) is hold, verifier
can certain the validity of the signature.

3.1.2 Decentralization processes

The processes of our method are as follows:

(1) Generate the key pair of Root CA

Let (PK, SK0) be the key pair of the Root CA
and they are generated by key generation algorithm
(section 3.1.1) . The Root CA creates a self-signed
certificate itself and distributes this certificate to all
certificate users.

In case the exposure of SK0, all certificates
are affected as well as a single CA model and a
subordinated hierarchical model. So, this private
key must be stored very carefully. Some methods
that the risk of exposure private key is mitigated
are proposed [13].

(2) Update the private key

By key update algorithm (section 3.1.1), SK0 is
updated as follow and in result n private keys are
generated.

SK0 → SK1 → SK2 →, ...,→ SKn

In scheme [1], once update process is finished, the
signer deletes previous private key. In our method,
however, multiple private keys that are generated
by update algorithm are stored securely in the

2nd Annual PKI Research Workshop---Pre-Proceedings

59

separate place.

(3) Decentralization of CA

In our method, multiple private keys that are
generated by update algorithm are assigned to
CA1, ..., CAn. That is, CAi has the private key
SKi and stores it securely.

(4) Issue the certificate to users

Certificate users determine which CAs delegates
authoring of certificates issuing to them. This
decision is depended on situations. CAi issues
certificates signed own private key SKi.

(5) Certificate Revocation

Occasionally, certificates are revoked for various
reasons. For example, when user’s private key is
exposed, or user’s personal information is changed
and so on. In case that the certificates need to be re-
voked, certificate users must notify this point time,
at which the certificate is invalid, to the CA which
issued this certificate. The CA receives this notifi-
cation, and publishes certificate users that the cer-
tificate has been revoked. As the typical publishing
method is the distribution of Certificate Revocation
List (CRL).

In our method, using the same publishing meth-
ods, the CA publishes a CRL. This CRL contains
the information on revoked certificate and signed
by issuer.

1. certification path processing
Figure 7 shows our model in case of n = 3. Cer-

tificate verifiers must verify the validity of issuer’s
signature contained the certificate. In our model,
the verifiers who trust a Root CA can check all cer-
tificates by using the Root CA’s public key. In other
word, the certification path length is only one. In
order to verify information on the revoked certifi-
cate which is issued at time-period j, verifiers need
to get CRL which is issued by the CAj . Now let
CRLi be the CRL issued by CAi. CRLi contains
signature of CAi. In our model, any CRLi can be

(PK, SK0)

Root CA

SK1

SK2

SK3

User

CA1

CA3

CA2

User

User

User

Figure 7: A Distributed CA Model Using FSS

verified by the Root CA’s public key.
In this way, the length of certificate path is

shorter than one of a subordinated hierarchical
model, so the burden of verifier is able to mitigate.

2. compromise of CA’s private key
Now, we consider in case of compromise private

key SKi, except for SK0. In our model, it is compu-
tationally difficult for attackers to know SKj(j < i).
Consequently, when SKi is compromised, it is not
affect to certificates that are issued by CAk(k < i).

Now, we consider the subordinated hierarchical
model that certificate users are divided equally (just
like the binary tree structure). #(U) denotes the
number of certificates issued by the leaf CAs in
subordinated hierarchical model. At this time, the
number of certificates affected is at most #(U)/2
when compromise of private key SKi(i 6= 0).

In our model, #(U) denotes the number of cer-
tificates issued by CAi. And #(Cert0) denotes the
number of certificates issued by Root CA. The small
number of #(Cert0) is better, taking into account
the risk of exposing the Root CA’s private key. Con-
sequently, the maximum number of affected certifi-
cate is near #(U) when the private key of interme-
diate CAj(j 6= 0) is compromised.

These two model’s structures are different. The

2nd Annual PKI Research Workshop---Pre-Proceedings

60

structure of subordinated hierarchical model is like
the binary tree, while structure of our model is like
the linear list. Therefore in the former, the num-
ber of certificate affected is at most a half. While
in our model, only one new private key is generated
from one private key using key update algorithm in
scheme [6]. Consequently in our model, we can not
generate private keys which are mutually indepen-
dent like a hierarchical model.

3.2 Improved Method Using FSS

In this section, we proposed the trust model like hi-
erarchical structure using FSS. When one CA’s pri-
vate key is exposed, the attacker can not forge cer-
tificates which are issued by another CAs. In order
to realize this model, we generate multiple private
keys and assign them to the multiple CAs. A CA
has the multiple private keys and issues the certifi-
cate which contains the multiple signatures signed
by these multiple private keys.

3.2.1 Decentralization processes

Let n be the number of private key that Root CA
has.

1. Generation of key-pairs

Using key generation algorithm of scheme
[1], we create n key-pairs (public keys
and private keys) and we denote them
(PK,SK0), ..., (PKn, SKn

0). These key-pairs
are Root CA’s. Then Root CA issues self-
signed certificates, which are signed by each
own private keys, to all certificate users.

As well as before methods, when all multiple
private keys of Root CA are compromised, all
certificates are affected. So these private keys
must be stored securely.

2. Update the private keys

We assume to T < n. Using key update al-
gorithm, multiple private keys of Root CA are
updated in time and new private keys are gen-
erated as follows.

SK0,1 → SK1,1 → · · · → SKT,1

SK0,2 → SK1,2 → · · · → SKT,2

...
SK0,n → SK1,n → · · · → SKT,n

n new private keys are created each time-period
and total number of private key is T × n.

3. Decentralization of CA

We assume that {CA1, ..., CAn} are the sep-
arate intermediate CAs. First, we divide all
private keys into the number of CAi and dis-
tributed to each CAi. We choose one private
key from each time-period j and the same op-
eration is performed from time-period 1 to T .

In result, each CAi has T private keys.

4. Issuance of certificates

In this method, a certificate contains multiple
signatures by multiple private keys. An at-
tacker needs to know all of T private keys in
order to succeed in forgery of signature.

 (PK1, SK0,1) (PK2, SK0,2) (PK3, SK0,3)

SK1,1

SK2,3

SK3,2

SK1,2

SK2,1

SK3,3

SK1,3

SK2,2

SK3,1

User

Root CA

CA2 CA3CA1

User User User User

Figure 8: Our Model Like A Hierarchy Structure

2nd Annual PKI Research Workshop---Pre-Proceedings

61

1. compromise of CA’s private keys
Figure 8 shows our model in case of n = 3, T = 3.

We consider when the private key of intermediate
CA is compromised. Suppose that an attacker suc-
ceeds in getting the multiple private keys of CA1.
(SK1,1, SK2,3, SK3,2) Using key update algorithm,
other private keys can be derived as the following.

SK1,1 → SK2,1 → SK3,1

SK2,3 → SK3,3

However, because of the one-way function, an at-
tacker can not derive SK1,2, SK1,3, SK2,2, so an at-
tacker cannot forge the certificates by issued CA2

and CA3.
From above evaluation, when one CA’s multiple

private keys are exposed, the other CA’s multiple
private keys can not be perfectly derived. Therefore,
an attacker can not forge certificate which are issued
by the others.

This model is like the hierarchical structure and
can minimize the effect caused by exposing the
CA’s private keys.

2. certification path processing
In this model, the certificate contains multiple sig-

natures as many as multiple private keys. When the
verifier checks it, they use the corresponding multi-
ple public keys, which are Root CA’s public keys.
Only the case all of signature is valid, the verifier
may certain the validity of this certificate. More-
over, verifier can verify any CRLi using multiple
public keys of Root CA.

3.3 A decentralization method of using KIS

3.3.1 An overview of KIS

A key-insulated cryptography is the different means
in order to minimize the damage caused by the pri-
vate key exposures [11]. The notion of key-insulated
security is that if the exposure of the private key at
time-period j, the attackers can not derive the pri-
vate keys any other time-period.

A key-insulated signature scheme (KIS) is pro-
posed by Y.Dodis et al [12]. Signature computation
is frequently performed on insecure device, so the

private key is likely to be exposed. KIS is one
way to mitigate the damage done when this occur.
The private key stored on an insecure device is
refreshed at discrete time periods via interaction
with a physically secure device which stores a
”master key”. As well as a forward-secure signature
scheme, public key remains fixed and the signatures
in any time periods can be verified by fixed public
key. The attackers who obtain the private key,
they can not forge signature for any of remaining
time-period. We introduce the scheme [12] as follow.

(Difinition)
PK :a public key
SK∗ :a master key stored physically secure device.
SKi :the private key of time-period i.
SK ′

i,j :a partial key.

1. Gen: key generation algorithm
(PK, SK∗, SK0)← Gen(1k, N)
This algorithm take as input a security param-
eter 1k and the total number of time period N .
It returns a public key PK, a master key SK∗,
and an initial key SK0.

2. Upd∗ :device key-update algorithm
SK ′

i,j ← Upd∗(i, j, SK∗)
This algorithm take as input i, j for time period
and the master key SK∗. It returns a partial
private key SK ′

i,j .

3. Upd :user key-update algorithm
SKj ← Upd(i, j, SKi, SK ′

i,j)
This algorithm is taking as input i, j, a private
key SKi, and a partial key SK ′

i,j . It returns
the private key SKj for time period j.

4. Sig :signing algorithm
〈i, s〉 ← SigSKi(i,M)
This algorithm is taking as input i, a message
M , and a private key SKi. It returns a signa-
ture 〈i, s〉 consisting of the time period i and a
signature s.

5. V rfy :verification algorithm
V rfyPK(M, 〈i, s〉)
This algorithm is taking as input the public key

2nd Annual PKI Research Workshop---Pre-Proceedings

62

PK, a message M , and a pair 〈i, s〉. It returns
a bit b, where b = 1 means the signature is
accepted. If V rfyPK(M, 〈i, s〉) = 1, we say
that 〈i, s〉 is a valid signature of M for period
i.

3.3.2 Decentralization processes

We try to construct a distributed CA model using
KIS. Decentralization processes are the same as
using FSS(Section 3.1.2). However a master key
SK∗ must be stored on a physically secure device.
First, multiple private key are generated using KIS
and assigned multiple separate CAs. All processes
are finished, then a master key may be deleted.

1. compromise of CA’s private key
If a CA’s private key is exposed, the attackers

can not derive another CA’s private keys. So
certificate issued by another CA are not affected
and this model realizes to minimize the affluence
when CA’s private key is compromised.

2. certification path processing
As we explain section 3.3, all signatures in any

time-period can be verified by a fixed public key. In
this model, all certificates can be verified by Root
CA’s public key. That is, certification path length
is only one, so the load of certificate verifiers can
be mitigated.

In comparison with the method using FSS, the
method of using KIS can minimize the damage
caused by compromise of CA’s private key. But
there is no external device in FSS, while the physi-
cally secure device is needed in KIS.

4. Conclusion

First, we discuss the advantages and disadvantages
of the distributed CA models. We propose the de-
centralization methods absorbing these advantages
by using FSS and KIS. FSS and KIS have the fea-
tures that any signature can be check by fixed pub-
lic key. We utilize this feature and construct the

trust models that CA is decentralized and certifica-
tion path is very short. In our model, verifiers may
not verify the multiple certificates, so the burden of
verification processing is mitigated.

References

[1] A. Nash, W. Duane, C. Joseph and D. Brink,
PKI - Implementing and Managing E-Security,
Osborne Media Group, 2001.

[2] C. Adams, S. Lloyd, Understanding Public-
Key Infrastructure: Concepts, Standards,
and Deployment Considerations, MACMILLAN
TECHNICAL PUBLISHING , 2000.

[3] R. Perlman, An Overview of PKI Trust Models,
IEEE Network, 13(6), 38-43, 1999.

[4] Internet X.509 Public Key Infrastructure Cer-
tificate and CRL profile, RFC3280, 2002.4.

[5] Steve Lloyd, Understanding Certification Path
Construction, PKI Forum, Sep 2002.

[6] M. Bellar and Sara K. Miner, A Forward-
Secure Digital Signature Scheme, Crypto 99 Pro-
ceedings, Lecture Notes in Computer Science.
Springer-Verlag, Vol. 1666, 1999.

[7] R. Anderson, Two remarks on public-key cryp-
tology, Sep. 2000, Relevant material presented
by the author in an invited lecture at the Fourth
ACM Conference on Computer and Communica-
tions Security (Apr. 1997).

[8] H. Krawczyk, Simple Forward-Secure Signatures
From Any Signature Scheme, In 7th ACN Con-
ference on Computer and Communications Se-
curity, 2000.

[9] M. Abdalla, L. Reyzin, A New Forward-
Secure Signature Forward-Secure Digital Signa-
ture Scheme, Advanced in Cryptology - Asi-
acrypt 2000, Lecture Notes in Computer Science,
vol. 1976, pp. 116-129, Springer-Verlag, 2000.

2nd Annual PKI Research Workshop---Pre-Proceedings

63

[10] T. Malkin, D. Micciancio, and S. Miner, Effi-
cient Generic Forward-Secure Signatures With
An Unbounded Number Of Time Periods, In
Advances in Cryptology - EUROCRYPTO’02,
Lecture Notes in Computer Science. Springer-
Verlag. Vol. 2332, 2002.

[11] Yevgeniy Dodis, Jonathan Katz, Shouhuai Xu
and Moti Yung, Key-Insulated Public Key Cryp-
tosystems, EUROCRYPT 2002, Lecture Notes
in Computer Science, Vol. 2332, pp. 65-82,
Springer-Verlag, 2002.

[12] Yevgeniy Dodis, Jonathan Katz, Shouhuai Xu
and Moti Yung, Strong Key-Insulated Signature
Schemes, International Workshop on Practice
and Theory in Public Key Cryptography (PKC
2003), Lecture Notes in Computer Science, Vol.
2567, pp.130-144, Springer-Verlag, 2003.

[13] A. Herzberg, M. Jakobsson, S. Jarecki, H.
Krawczyk, Proactive Public Key and Signature
Systems, Dec 1996.

2nd Annual PKI Research Workshop---Pre-Proceedings

64

MOCA : Mobile Certificate Authority for Wireless Ad Hoc
Networks

Seung Yi, Robin Kravets
Department of Computer Science

University of Illinois at Urbana-Champaign
Urbana, IL 61801�

seungyi,rhk � @cs.uiuc.edu

Keywords : PKI, Key Management, Security, MANET, Ad Hoc Networks, Threshold Cryptography

Abstract

PKI has been recognized as one of the most effective tools for providing security for dynamic networks. However,
providing such an infrastructure in ad hoc wireless networks is a challenging task due to their infrastructure-less
nature. In this paper, we present these challenges in detail, identify the requirements for such solutions, and propose
a practical PKI service for ad hoc networks. We employ threshold cryptography to distribute the CA functionality
over specially selected nodes based on the security and the physical characteristics of nodes. The selected nodes that
collectively provide PKI functionality are called MOCA (MObile Certificate Authority)s. Using these MOCAs, we
present an efficient and effective communication protocol for correspondence with MOCAs for certification services.
Results from our simulations verify the effectiveness and the efficiency of our approach.

1 Introduction

Since its birth more than two decades ago [20], public key cryptography has been recognized as one of the most
effective mechanisms for providing fundamental security services including authentication, digital signatures and
encryption. The effective management of digital certificates is a key factor for the successful wide-spread deployment
of public key cryptography. PKI (Public Key Infrastructure), an infrastructure for managing digital certificates, was
introduced exactly for this purpose [19]. The most important component of PKI is the CA (Certificate Authority), the
trusted entity in the system that vouches for the validity of digital certificates. The success of PKI depends on the
security and availability of the CA to the principals in a system (or the nodes in a network) since a principal must be
able to correspond with the CA to get a certificate, check the status of another principal’s certificate, acquire another
principal’s certificate, and so on. PKI has been deployed for wired networks [3, 1] and some infrastructure-based
wireless networks [9]. Since good connectivity can be assumed in these networks, the main thrust of research in such
environments has focused on the security of the CA and the scalability of the CA to handle a large number of requests.

However, it is unclear if such approaches can be extended to ad hoc networks. A wireless ad hoc network or a
mobile ad hoc network (MANET) [13] is a network where a set of mobile devices communicate among themselves
using wireless transmission without the support of fixed or stationary infrastructure. Due to its infrastructure-less
nature, an ad hoc network can be deployed very fast at a relatively low cost enabling communication when it is not
possible or too expensive to deploy a support infrastructure. A wide range of military and commercial applications
have been proposed for ad hoc networks. For example, a unit of soldiers moving in the battlefield cannot afford to
set up a base station every time they proceed to a new area. Similarly, setting up a communication infrastructure
for a casual and spontaneous conference meeting among a small number of people cannot be justified financially.
Additionally, ad hoc networks can be the perfect tool for a disaster recovery or emergency situation when the existing
communication infrastructure is either destroyed or disabled. A large portion of research in ad hoc networks has
focused on routing, medium access control and power management and only recently researchers have started looking
at security issues in ad hoc networks.

2nd Annual PKI Research Workshop---Pre-Proceedings

65

Connectivity, which was assumed to be good in previous PKI solutions, is not easy to maintain in ad hoc networks.
On the contrary, maintaining connectivity is one of the main challenges, since the inherent infrastructure-less nature of
ad hoc networks inhibits guaranteeing any kind of connectivity. Another serious problem present in ad hoc networks is
the increased physical vulnerability of the nodes themselves. Considering that many ad hoc networks will be deployed
with mobile nodes [12], the possibility of the nodes being captured or compromised in a hostile environment is higher
than in wired networks with stationary hosts. Mobile nodes in infrastructure-based wireless networks have the same
vulnerability, but they can rely on the infrastructure for detection of compromised nodes, help with recovery and
storage of sensitive information. Since there is no stable entity in an ad hoc network, ad hoc nodes cannot enjoy such
conveniences.

Several proposed solutions for providing PKI for ad hoc networks address the increased vulnerability of the mo-
bile nodes by employing techniques to distribute the CA functionality across multiple nodes, generally using threshold
cryptography [21, 15]. These approaches also increase the availability of the CA. While these approaches share some
similarities with the MOCA framework, they are either conceptual [21], not targeted for ad hoc networks [22], or
vulnerable against attacks [15]. The MOCA framework provides a practical and secure key management framework
for ad hoc networks with communication support that considers the dynamic nature of connectivity in ad hoc commu-
nication.

We identify two main challenges in distributing the CA functionality over multiple nodes. The first challenge is
picking a set of nodes to collectively provide the CA service. The second and equally important challenge is how to
provide efficient and effective communication between the mobile nodes and the CA nodes, even in dynamic networks
with possible compromises or temporary network partitions.

To this end, we present the MOCA (MObile Certificate Authority) framework. A MOCA is a mobile node within
an ad hoc network selected to provide distributed CA functionality. A network operator chooses MOCAs based on an
observation of heterogeneity among mobile nodes, typically physically more secure, computationally more powerful,
or more trustworthy nodes. MOCA nodes use threshold cryptography to share the responsibility and provide CA
services with strong security and high availability. Client nodes are equipped with MP (MOCA certification Protocol)
that enables contacting sufficient MOCAs in an efficient and effective way. We demonstrate the effectiveness of our
protocol with extensive simulations. Based on simulation results, we also provide certain insights into how to configure
such security services for ad hoc networks.

The remainder of this paper is organized as follows. In Section 2, we define important metrics for designing key
management frameworks for ad hoc networks and use these metrics to evaluate some existing research. In Section 3
and 4, our approach using MOCAs is presented and Section 5 presents simulation results from our implementation.
Section 6 suggests some possible extensions of this work and we conclude in Section 7.

2 Key Management for Ad Hoc Networks

Any successful key management framework for ad hoc networks requires fault tolerance, security, and availability.
These terms are sometimes used interchangeably, mainly because they are not independent of each other. To avoid
confusion, we clearly define these terms and apply them to some existing approaches for evaluation.

Fault Tolerance: The main concern of fault tolerance is the capability to maintain correct operation in the presence
of faulty nodes. We restrict the definition of faulty nodes to observable faults. If a node is malfunctioning
and other nodes can observe such malfunctions, a certain level of recovery is possible. We employ intelligent
replication using threshold cryptography to provide tolerance of faulty nodes.

Security: Acting as the trust anchor for the whole network, the MOCA framework should be secure against malicious
nodes or adversaries. While it may not be possible to be resistant to all levels of attacks, there should be a clear
threshold of attacks a system can withstand while operating normally. MOCA nodes are selected based on their
node characteristics and they form a distributed CA to resist adversaries.

Availability: Traditionally, the term availability has been used in conjunction with fault tolerance. But in ad hoc
networks availability is also highly dependent on the connectivity of the network. In wired networks, if there
are no faulty or compromised nodes, the system is by definition available for clients since connectivity is not
a problem. In ad hoc networks, even when there are no faulty or compromised nodes, clients may not be

2nd Annual PKI Research Workshop---Pre-Proceedings

66

able to contact the desired services due to inconsistent connectivity. We provide a set of efficient and effective
communication protocols for clients to contact MOCAs to address availability.

The simplest approach to providing CA functionality in an ad hoc network is to assign a single node to be the CA.
The success of this scheme depends on that single CA node. This approach is not fault tolerant, since failure of one
node breaks the system. Similarly this approach is highly vulnerable, since an adversary need only compromise one
node to acquire the secret key. Finally, given the expected mobility and unpredictability of ad hoc networks, it may
be possible that nodes will not be able to reach the CA in a timely fashion, making availability very unpredictable.
Therefore, a single CA cannot effectively service a whole ad hoc network.

Robustness, which is missing in the single CA scheme, can be achieved by replicating a fully functional CA on r
different nodes. With r replicas, the system can withstand (r - 1) failures because the CA service is available as long
as there is at least one operational CA. Availability has also been improved since a client node has a better chance of
reaching one of r CAs to get service. Unfortunately, the system has become more vulnerable. An adversary need only
compromise one of the r CA nodes to acquire the secret key and so compromise the whole system. Therefore, using
replicated CAs is not a viable solution in ad hoc networks. The problem of using replicated CAs stems from the fact
that each replica has full knowledge of the system secret.

Zhou and Haas first proposed to use threshold cryptography to securely distribute the CA’s private key over multiple
nodes to form a collective CA service [21]. Using k out of n secret sharing [4] can provide a good level of fault tolerance
and security. They address the problem clearly and present conceptual design issues, but do not address the problem
of availability in their work. The authors continued their work in COCA, which is a distributed CA approach using
threshold cryptography [22], designed to serve networks like the Internet. Again, connectivity between clients and the
distributed CAs was not a concern.

Kong and others address availability by making all M nodes in the network share CA functionality [15]. A client
need only contact k out of M nodes to get a certification service. Assuming there are k nodes in a client’s one hop
neighborhood, the client can get a certification service cheaply by using a one-hop broadcast for the request. While
this solution addresses availability and fault tolerance, it compromises the security of the system. In general, the gap
between k and n in secret sharing schemes defines the security of the system. k can be chosen between 1 and n in any
secret sharing scheme. As k approaches n, thus closing the gap between k and n, the system becomes more secure
because an adversary needs to compromise at least k nodes to collapse the system. But if k is too large, the system
becomes less available to clients and also less tolerant to faults. When k approaches 1, making the gap larger, the
effect is reversed and the system becomes more available but also less secure. Kong chose to keep k relatively small to
address the availability problem and ended up with a vulnerable system where any adversary need only compromise a
small number of nodes in the network to collapse the service.

Another notable scheme is proposed by Hubaux and others [10]. In their scheme, there is no concept of a CA.
Every node acts as its own CA, similar to the PGP “Web of Trust” model. The main difference between PGP and their
scheme is that there is no longer a well-known certificate directory where all certificates are stored. Rather, every user
in the system carries a part of the certificate directory. In PGP, when two users wish to authenticate each other, they
must search the certificate directory for a chain of certificates that links both users. In Hubuax’s scheme, this problem
is transformed into finding an intersecting point between the certificate chains carried by each user. Hubaux proposed
a shortcut-hunter algorithm for this problem. While their approach is practical for the totally self organizing networks
they aimed at, it has the inherent problem of no definite trust anchor like the CA in other CA-based PKI approaches.
Therefore, it is not meaningful to evaluate this scheme using our framework.

3 MOCA

In this section, we present a practical key management framework for ad hoc networks. We first discuss the impact
of heterogeneity among mobile nodes in a given ad hoc network and how it can be exploited to help choosing the
MOCA nodes better. Then, we describe the details of MOCA framework and present a set of parameters to tune our
framework.

2nd Annual PKI Research Workshop---Pre-Proceedings

67

3.1 Heterogeneity within an Ad Hoc Network

Most research in ad hoc networking has implicitly treated all nodes as identical in many respects, including power,
transmission range, computational capacity, and security. We contend that mobile nodes in many ad hoc networks will
be heterogeneous in many respects, especially in terms of their security and that any security service or framework
should utilize this environmental information. For example, consider a battlefield scenario with a military unit con-
sisting of infantry soldiers, platoon commanders’ jeeps, company commanders’ command vehicles, artillery vehicles,
transport vehicles, and even tanks. All of these nodes may have different ranks, power, capabilities, transmission
ranges, levels of physical security, and so on. In such a case, it would be wise to pick nodes with higher ranks, more
power, more capabilities to provide any security service to the rest of the network. While it may not be necessary to
exploit this potential heterogeneity to enhance the basic ad hoc routing itself, certainly this heterogeneity can be used
to make the network more secure by endowing ”better” nodes with more sensitive information.

Similar situations can be imagined in emergency rescue operations, mining operations, or any other scenarios
where ad hoc networks can play a critical role to facilitate operations. Even in a simple school field trip, it makes more
sense to allow teachers to perform sensitive operations instead of students. In general, knowledge of such heterogeneity
should be used to determine the nodes that will share the responsibility of the CA. For example, the chosen nodes could
be the most physically secure nodes with maximum resources that are least prone to compromises or failure.

It may seem counterintuitive to limit the candidate nodes for MOCAs to a subset of mobile nodes. This decision
puts a limit on the maximum number of MOCAs in the system, which in turn may reduce the level of security and fault
tolerance achieved by the distributed nature of MOCAs. For example, in a 300 node network, an operator may have
the choice of selecting 200 random nodes to support CA functionality. Or the operator may pick 30 nodes with higher
physical security. Blindly comparing the number of MOCAs in the system, the first approach looks better because it
has more MOCAs in the network, improving fault tolerance and availability. But by guaranteeing an adequate level of
security of the 30 MOCAs in the second case, compromising them can be made much harder than compromising the
randomly selected MOCAs in the first case, hence making the second case more secure against adversaries.

It is possible that an ad hoc network does not have enough heterogeneity among the nodes, which may make it
difficult if not impossible to choose MOCAs based on this heterogeneity assumption. In such cases, we can fall back
to random sampling to choose MOCAs. Our protocol still works as designed but the level of security will decrease
since there is no guarantee on the security of each MOCA.

3.2 MOCA Framework

In our framework, n MOCA nodes provide the functionality of a CA to the whole network. Using threshold cryptog-
raphy, these n MOCAs share the CA’s private key and any set of k MOCAs can reconstruct the full CA key.

Threshold cryptography is an application of secret sharing that was first proposed by Shamir [4]. The basic idea
of secret sharing is that it is mathematically possible to divide up a secret to n pieces in such way that anybody who
requires the full secret can collect any k pieces out of those n to reconstruct the full secret. k becomes the threshold
needed to reconstruct the secret. Threshold cryptography applies this technique to the keys for the cryptographic
operations. Frankel and Desmedt [8] proposed to use secret sharing for the private key of public key cryptography
and Shoup proposed a way to generate a digital signature from key pieces without reconstructing the full key at any
point [18].

With a naive implementation, the CA’s private key gets reconstructed per request at the client. To prevent this,
we use threshold digital signatures [18]. Any client requiring a certification service must contact at least k MOCAs
with its request. The contacted MOCAs each generate a partial signature over the received data and send it instead of
sending their key share. The client needs to collect at least k such partial signatures to reconstruct the full signature
and successfully receive the certification service.

Maintaining information on revoked certificates is one of the key tasks of the CA and this topic has received much
attention in recent years [5]. In the MOCA framework, we use the simple certificate revocation list (CRL) approach
and we plan to investigate a more adequate means of certificate revocation in ad hoc networks in the future. In the
current framework, again k or more MOCAs must agree to revoke a certificate. Each MOCA generates a revocation
certificate that contains which certificate to revoke and signs it with its key share. Then, each MOCA broadcasts the
partially signed revocation certificate. Any node that collects k or more such partially signed revocation certificates
can reconstruct the full revocation certificate. The list of revoked certificates or the CRL can be maintained by any
node in the network since revocation certificates are not secrets but public information. The CRL can be stored at each

2nd Annual PKI Research Workshop---Pre-Proceedings

68

node, the MOCAs, or at a set of specially designated nodes. To avoid false revocation, unless the MOCA framework is
compromised, it is not possible to forge a revocation certificate with a valid signature on it. In the MOCA framework,
the partial revocation certificates are distributed to all nodes in the ad hoc network via a network-wide flood. While
this imposes significant overhead on the network, we would expect a revocation to be a rather infrequent event and
the cost would be amortized over time. In our current work, we are considering techniques to provide more efficient
support for revocation.

3.3 Tuning Threshold Cryptography

The shape of a MOCA framework is determined by the total number of nodes in the network, the number of MOCAs,
and the threshold value for secret reconstruction. Although the total number of nodes in the network, M, can change
dynamically over time, it is not a tunable parameter. The number of MOCAs, n, is determined by the characteristics
of nodes in the network, such as physical security or processing capability and it is also not tunable. In this system, n
defines the limits of the system as an upper bound for k, the minimum number of MOCAs a client must contact to get
certification services.

Given M and n, the last parameter k, the threshold for secret recovery, is indeed a tunable parameter. Once k has
been chosen and the system is deployed, it is expensive to change k. Therefore it is important to understand the effects
of varying k on a given system.

k can be chosen between 1 (a single CA for the whole network) and n (a client needs to contact all MOCAs in the
system to get certification services). Setting k to a higher value has the effect of making the system more secure against
possible adversaries since k is the number of MOCAs an adversary needs to compromise to collapse the system. But at
the same time, a higher k value can cause more communication overhead for clients since any client needs to contact at
least k MOCAs to get certification services. Therefore, the threshold k should be chosen to balance the two conflicting
requirements. It is clear that no one value will fit all systems. Our goal is to provide some guidelines for choosing an
appropriate k. To make our protocol more adaptive to varying network configurations, we introduce additional tunable
parameters in Section 5.

4 MOCA Certification Protocol

In this section, we describe a key aspect for successful PKI in ad hoc networks: communication. The choice of which
and how many MOCAs to contact must be made in coordination with the communication protocol used to access the
MOCAs. Even after MOCAs have been selected and deployed in the system, it is useless if clients cannot contact
them and receive services. The communication pattern between a client and k or more MOCA servers is one-to-many-
to-one1, which means that a client needs to contact at least k MOCAs and receive at least k replies. To provide an
effective and efficient way of achieving this goal, we propose MP (MOCA certification Protocol).

In MP, a client that requires certification services sends Certification Request (CREQ) packets. Any MOCA that
receives a CREQ responds with a Certification Reply (CREP) packet containing its partial signature. The client waits
a fixed period of time for k such CREPs. When the client collects k valid CREPs, the client can reconstruct the full
signature and the certification request succeeds. If too few CREPs are received, the client’s CREQ timer expires and
the certification request fails. On failure, the client can retry or proceed without the certification service.

The CREQ and CREP messages are similar to Route Request (RREQ) and Route Reply (RREP) messages in on-
demand ad hoc routing protocols like AODV [7] and DSR [11]. The management of routing information is also similar
to these protocols. As a CREQ packet passes through a node, a reverse path to the sender is established. These reverse
paths are coupled with timers and maintained long enough for a returning CREP packet to be able to travel back to
the sender. If no CREP is returned within the time-out period, the reverse path entry in the routing table expires and
is purged. If a CREP traverses back through the previously set-up reverse path to the sender, the routing table entries
are refreshed and the bidirectional path remains in the routing table for potential reuse. This similarity to on-demand
routing presents a potential for our certification protocol and the existing on-demand routing protocols to benefit from
each other by sharing routing information.

1We term this pattern of communication “Manycast”.

2nd Annual PKI Research Workshop---Pre-Proceedings

69

4.1 Flooding

The simplest means of reliable data dissemination, flooding, can be used to reach all MOCAs in the network [17].
As shown in previous results, while this flooding approach is effective, it generates a large amount of traffic. First,
the overhead generated from a network-wide CREQ flood is large. Second, since a client has no way to limit the
dissemination of a CREQ, all the MOCAs that receive a copy of the CREQ respond with a CREP and the client
receives more responses than it actually needs to reconstruct the full signature. Any partial signatures beyond the
required k are discarded and waste networking and processing resources.

4.2 Unicast-based Optimization

To reduce the amount of overhead from flooding while maintaining an acceptable level of service, we introduce � -
unicast, where the client can use multiple unicast connections to replace flooding if the client has sufficient routes
to MOCAs in its routing cache. � in the name represents the sufficient number of cached routes to MOCAs to use
unicast instead of flooding. If this sufficiency is achieved, � -unicast sends multiple unicast CREQs instead of flooding
the network with CREQs. � -unicast does not initiate any form of route discovery as in on-demand ad hoc routing
protocols where a network is usually flooded with route discovery packets. Instead, � -unicast only utilizes the existing
information in the route cache. Blind use of unicast with insufficient cached routes can result in service failure, which
in turn causes another round of flooding. To prevent such a situation, our protocol uses flooding when there are not
enough routes cached.

The definition of sufficiency is tightly coupled to the value of k, but is also highly dependent on the state of the
network. If the network is very stable with low mobility, having just k cached routes may be sufficient since the
client can expect to receive all k replies back. If the the network is highly mobile and routes are unstable, sending
out exactly k unicast CREQs is dangerous since even one loss of a CREQ or a CREP results in the failure of the
whole certification request. In this situation, the node should send out additional CREQs to increase the probability of
success. The number of additional CREQs is defined by � , a marginal safety value used to increase the success ratio
of � -unicast. � is node specific and can be determined based on the node’s perception of the network status. How a
node will perceive the status of the network is out of the scope of this paper and is an active topic of research. The
sum of the crypto threshold k and the safety margin � is the unicast threshold, � , hence the name � -unicast.

Our previous work showed that a client often has a moderate number of cached routes to MOCAs under reasonable
certification traffic in the network [17]. A result given in [17] shows that under a mobility of 10 second pause time
and 10 m � s maximum speed, clients have cached routes to 45% of the MOCAs on average. One interesting question
is how to choose among the MOCAs cached in the routing table. If there are only � cached routes, the client needs
to contact every one. But if there are more than � routes in the cache, the choice of which ones to use can affect
performance. We define three different schemes:

1. Random MOCAs - Choose � random MOCAs with cached routes.

2. Closest MOCAs - Choose � MOCAs with smallest hop counts in the cache. Intuitively, this approach has the
benefit of the shortest response time and the smallest packet overhead since the CREQ packets travel the least
distance.

3. Freshest MOCAs - Choose � MOCAs with the freshest cache entries. The most recently added or updated
entries should not be stale, especially under high mobility. By choosing the freshest MOCAs, the client should
be able to minimize the risk of failure under high mobility.

We provide simulation results for these certification protocols in the next section.

5 Evaluation

The focus of our evaluation of the MOCA framework is effectiveness and efficiency (or cost). Effectiveness is mea-
sured using the success ratio of certification requests. For flooding based protocols, success ratio is defined as the total
number of received CREPs. For unicast-based optimizations, every CREQ that receives k or more CREPs is counted

2nd Annual PKI Research Workshop---Pre-Proceedings

70

as a successful certification request and success ratio is defined as:
���������
	���
�����������	�������������	������������� !����
�"��#	�$���	#���&%

���������
	���
��'��
��� !����	������������� !����
�"��#	�$���	#���&%

The cost of a certification protocol can be evaluated using the two metrics: packet overhead and additional communi-
cation delay caused by the certification process. The simulations demonstrate that our approach is practical for ad hoc
networks providing adequate service availability without incurring prohibitive overhead.

For all simulations, there are three parameters that can be tuned according to the network configuration.

(Time-out Threshold) -) is used by a client to decide how long to wait for certification replies after sending out
a certification request. Larger) values can increase the possibility of success since the node waits longer for
the CREPs to come back. But if there are not enough CREPs on their way back, the certification request will
eventually fail and larger) values can cause the node to wait needlessly. If) is set too small, even when there
are enough CREPs on their way back to the client, the client gives up too soon, discarding the CREPs on the
way.

(Crypto Threshold k - k is the minimum number of CREPs required for a client to reconstruct the MOCA’s full
signature and render the certification request successful. If k is set low, a client only needs to collect a small
number of k partial signatures to continue. Thus the success ratio increases and the packet overhead decreases,
but at the same time an adversary only needs to compromise a small number of k MOCAs to compromise the
framework. High k values can make attacks difficult, but the burden on clients and the cost in terms of packet
overhead also increases since a client needs to contact a large number of MOCAs for any certification request.

(Unicast Threshold � - The unicast threshold � is the sum of the crypto threshold k and the margin value � .
Larger � values make the framework more robust but limit optimizations because clients must have � instead
of k cached routes to use the unicast-based approaches. Also a larger � value generates more overhead. When

� -unicast is used, a larger � results in more unicast requests and replies. Also a larger � increases � , which
reduces the probability of � -unicast being used and results in more flooding. Setting � to a low value makes it
easier for a client to use unicast-based approaches, but may cause an excessive amount of certification failure
due to the loss of too many CREQs or CREPs in the process.

By evaluating the results of the simulations, we provide some insight into how to configure the MOCA networks
to achieve efficiency and availability at the same time.

5.1 Simulation Set-Up

We implemented our certification protocols in the ns-2 network simulator [2]. We test our protocol under two hypo-
thetical scenarios. Consider a 1km by 1km battlefield with 150 or 300 friendly units including foot soldiers, jeeps,
humvees, tanks and command vehicles. 30 MOCAs are deployed in both cases. 30 MOCAs represent 20% and 10%
of the total nodes, which we believe to provide a reasonable number of MOCAs to support the ad hoc network. Each
simulation is run for 10 minutes. One thing to note is that this scenario can be applied to other situations like a school
field trip or a rescue operation. Although we use military examples to maintain consistency throughout the paper,
none of our simulation factors depends on anything specific to military scenarios. Table 1 shows detailed simulation
parameters.

We assume that any node that wishes to communicate with any other node in the network must first contact the
MOCAs to either get the peer’s certificate or to check the revocation status of the peer’s certificate it acquired pre-
viously. The certification request pattern for the 150-node scenarios uses 100 non-MOCA nodes, each making 10
certification requests randomly distributed through the simulation timeline, for a total of 1000 certification requests.
For the 300-node scenarios, 200 non-MOCA nodes make 10 certification requests each, adding up to a total of 2000
certification requests. Each requesting node makes one request per minute on average during the course of simulation.
This is roughly 100 or 200 requests per minute and we believe that this is a reasonable number if not too pessimistic.
Assuming each certification request precedes initiation of a new secure communication, starting one secure communi-
cation session per node per minute should be more than adequate for ordinary mobile nodes. Node movement follows
the random waypoint mobility model implemented in the CMU Monarch extension [6] with pause times of 0 and 10

2nd Annual PKI Research Workshop---Pre-Proceedings

71

Total Number of Mobile Nodes 150 or 300
Number of MOCAs 30 or 50
Area of Network 1000m x 1000m
Total Simulation Time 600 seconds
Number of Certification Requests 10 requests each from 100 or 200 non-MOCAs
Node Pause Time 0, 10 seconds
Node Max. Speed 0, 1, 5, 10, 20 ms

Table 1: Simulation Parameters

seconds and maximum speeds of 0, 1, 5, 10 and 20 ms. Our simulation results show consistent results over different
pause times, speed patterns and also number of MOCAs. Therefore in this section we only present the results for 0
second pause time, 10 m/s maximum speed and 30 MOCAs. Each line in Figures 1, 2, and 3 represents an average of
three different runs with different mobility scenarios.

5.2 Flooding vs. Unicast

0

50

100

150

200

250

300

350

0 5 10 15 20 25 30

O
cc

ur
en

ce
s

No. of CREPs Received

Static Network
pause=10s,speed=1m/s
pause=10s,speed=5m/s

pause=10s,speed=10m/s
pause=10s,speed=20m/s
pause=0s,speed=10m/s
pause=0s,speed=20m/s

Figure 1: Flooding-based Certification Protocol

To evaluate the effects of employing unicast-based optimization, we first present results from a pure flooding-
based approach. Figure 1 shows the number of CREPs received per CREQ under varying mobility. Under a stationary
network, represented by the solid line, the flooding-based approach works very well. Almost all CREQs reach all 30
MOCAs and most CREPs make their way back to the client. The reason some of the CREPs get lost (there are many
occurrences of nodes receiving 25 to 29 CREPs) is due to temporary network contention caused by the reverse packet
storming effect generated by multiple CREPs traveling back to the client at almost the same time. As can be observed
from the graph, a value of 15 or 20 for k can result in more than a 90% success ratio under all mobility scenarios and
proves that flooding is indeed a very effective means of eliciting responses in ad hoc networks. More details on the
flooding-base certification protocol can be found in [17].

Figure 2 shows the results from the Closest-Unicast approach with varying values of the unicast threshold � , with
one line for the flooding-based approach for comparison. Consistent with the previous figure, the flooding line has a
very high peak around 30, which is the number of MOCAs in the network. Each Closest-Unicast line has two peaks:
one at � and another at 30. The peak around � shows that unicast is being used and works well.

Table 2 presents the total number of requests made as well as the number of requests using flooding and unicast.
Note that the use of unicast CREQs decreases with higher � values, causing the height of unicast peaks in Figure 2 to

2nd Annual PKI Research Workshop---Pre-Proceedings

72

0

20

40

60

80

100

120

140

160

180

200

0 5 10 15 20 25 30

O
cc

ur
en

ce
s

No. of CREPs Received

Flooding
beta=5
beta=10
beta=15
beta=20
beta=25

Figure 2: A Unicast-based Certification Protocol with varying � (using Close-unicast)

Table 2: Effect of � on Usage of Unicast
� 5 10 15 20 25 Flooding

Use of Unicast CREQs 337 241 200 172 128 0
Use of Flooding CREQs 663 759 800 828 872 1000

Total No. of CREQs 1000 1000 1000 1000 1000 1000

decrease as � increases. For higher � values, it is more likely that not enough routes to MOCAs will be cached, hence
unicast-based optimization is used less often.

Figure 3 presents a comparison of the three unicast-based approaches. The unicast threshold � is set to 15, which
can be translated into ������� with ���	� or �
����� with �
��� . We can observe that Closest-Unicast performs
best with unicast CREQs. Closest-Unicast also induces the least overhead among the three unicast-based approaches
as shown in the next subsection. For the rest of this section, we use Closest-Unicast as our example except when
providing a comparison between different unicast approaches.

5.3 Packet Overhead

We evaluate communication overhead, as measured by the total number of control packets used for certification ser-
vices. Table 3 shows the overhead from flooding and various unicast-based approaches under varying unicast thresh-
olds, � . Generally, unicast-based approaches save 5 to 20 percent of control packet overhead. As the node chooses
unicast more aggressively with lower � , the savings are increased. Note that when � is 20 or 25, there is little im-
provement over flooding. In these cases, � is very high and unicast is not used often since many nodes do not have
enough cached routes to MOCAs. This causes most certification requests to fall back to flooding, generating a similar
amount of overhead as in flooding. Also, the amount of traffic generated by � unicast CREQs increases as � increases,
adding more overhead. In a more reasonable scenario of ��� 15 or less, unicast-based approaches save between 15 to
30 percent as compared to flooding. Setting � as low as possible results in the best improvements in overhead but has
the adverse effect of implicitly lowering the upper bound of crypto threshold k to a very small number, endangering
the security of the whole framework as described in Section 2.

2nd Annual PKI Research Workshop---Pre-Proceedings

73

0

20

40

60

80

100

120

140

160

180

200

0 5 10 15 20 25 30

O
cc

ur
re

nc
es

No. of CREPs Received

Flooding
Random-Unicast
Closest-Unicast

Freshest-Unicast

Figure 3: Comparison among Unicast-based Optimizations, � = 15

5.4 Certification Delay

The most frequent use of a certification service is to acquire the communicating peer’s public key certificate. The
delay to get the certification service is added to the start-up latency of any secure communication relying on PKI.

0

5000

10000

15000

20000

25000

30000

0 0.2 0.4 0.6 0.8 1

N
o.

 o
f C

R
E

P
s

R
ec

ei
ve

d

Time (sec)

Flooding
beta=25
beta=20
beta=15
beta=10
beta=5

Figure 4: No. of CREPs received over the course of time, using Closest-Unicast

Figure 4 shows the distribution of arrival times of CREP packets with the Closest-Unicast approach with varying
� under a moderate mobility pattern of 0 pause time and 10 ms maximum speed. Also, a line for flooding is presented
for comparison. Over all cases, the lines flatten out quite quickly, indicating that a client can expect to receive most
pending CREPs within 0.3 seconds from the time of certification request. If the client does not collect enough CREPs
within that time, the chances are very slim that enough CREPs are in in-flight to arrive later and fulfill the certification
request. Based on a appropriately chosen time-out threshold) , a client can operate efficiently without wasting time.
To clarify the choice of 0.3 seconds, Figure 5 shows a normalized view of Figure 4. The choice between flooding
and unicast-based optimizations or the choice between different � values does not affect the timing behavior. This
indicates that only the density of MOCA nodes affects timing behavior. If MOCAs are densely deployed, a client has

2nd Annual PKI Research Workshop---Pre-Proceedings

74

Table 3: Packet Overhead, n = 30
Number of Packets CREQ CREP Total Ratio to Flooding (%)

Flooding 119642 77959 197601 100

Random-Unicast
� = 5 84230 54337 138567 70.1

� = 10 97132 61920 159052 80.5
� = 15 105599 67276 172875 87.5
� = 20 110217 69903 180120 91.2
� = 25 114805 73321 188126 95.2

Closest-Unicast
� = 5 83174 54492 137666 69.7

� = 10 96781 62258 159039 80.5
� = 15 103749 66626 170375 86.2
� = 20 108543 68821 177364 89.8
� = 25 113859 73204 187063 94.7

Freshest-Unicast
� = 5 85668 54966 140634 71.2

� = 10 97578 62470 160049 81.0
� = 15 105818 67285 173103 87.6
� = 20 111637 70619 182256 95.2
� = 25 114807 73454 188261 95.3

a better chance to discover enough MOCAs faster.
To get a better understanding of this graph, Figures 6 and 7 show a more detailed look at two of the lines from

Figure 4.
Figure 6 shows the success ratios for different) and k for the flooding line in Figure 4. When) � 0.1 seconds,

the success ratio drops rapidly as k increases. As) increases, the success ratios with higher k values approach a stable
value. These results support the choice of 0.3 sec for) . Similar trends can be observed from Figure 7 for Closest-
Unicast. The success ratios of higher k values stabilize faster than in Figure 6. For example, the success ratios do not
change very much after 0.2 seconds, because the MOCAs are chosen based on the hop count in Closest-Unicast and
the CREPs will arrive earlier from the close MOCAs.

One thing noticeable from the two detailed looks at the success ratio is that � plays an important role in determining
the success ratio within a given) . For example, the set of leftmost data points in Figure 6 represents the success
ratio with) set to 0.1 seconds. Each point in the set represents the success ratio under varying values of k. For
example, when k = 1, which is practically a replicated CA case, the success ratio within 0.1 seconds is almost 98%.
In comparison, when k is set to 10, the success ratio within the same time-out threshold drops down to little less than
70%. The same general trend can be observed over all sets in Figure 6 and also with the unicast-based approach in
Figure 7.

These detailed graphs can be helpful when deciding an adequate) for a given k. For example, if k is set to 15 out
of 30 MOCAs for a network using Closest-Unicast,) can be chosen to be 0.2 seconds to maintain higher than 90%
success ratio.

6 Future Work

Our future work is in two directions. First, we are planning to optimize the current certification protocol to be more
efficient and adaptable. Second, we are investigating possible extensions of our framework to address the network
partition problem and to integrate with other security services for ad hoc networks.

Our current � -unicast approach only exploits information in the local routing cache of a client. One potential
extension is to let a node browse into neighboring nodes’ routing tables. For example, a node may have one or two

2nd Annual PKI Research Workshop---Pre-Proceedings

75

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

F
ra

ct
io

n
of

 C
R

E
P

s
R

ec
ei

ve
d

Time (sec)

Flooding
beta=25
beta=20
beta=15
beta=10
beta=5

Figure 5: No. of CREPs received over the course of time, Normalized, using Closest-Unicast

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

F
ra

ct
io

n
of

 C
R

E
P

s
R

ec
ei

ve
d

Time (sec)

k = 1
k = 2
k = 3
k = 5

k = 10
k = 15
k = 20
k = 25
k = 30

Figure 6: Success Ratio with Flooding

2nd Annual PKI Research Workshop---Pre-Proceedings

76

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

F
ra

ct
io

n
of

 C
R

E
P

s
R

ec
ei

ve
d

Time (sec)

k = 1
k = 2
k = 3
k = 5
k = 6

k = 10
k = 15

Figure 7: Success Ratio with Closest-Unicast

cached routes short of � and will have to fall back to flooding. If the node can peek at a neighbor’s routing tables and
find new cached routes, it can enable � -unicast and avoid flooding. The potential overhead from this approach would
be the extra communication required between neighbors to exchange the information in routing tables. Whether the
benefit would surpass the overhead is an interesting question to investigate.

All unicast-based approaches in our current protocol do not take into account the direction of CREQs. For an
extreme case, all the MOCAs picked by our unicast approach could reside on one side of the network from the
requesting node. Then it is possible that all the CREQs are sent into one direction sharing the same next hop nodes,
potentially causing unnecessary contention that leads to a failure or at least delayed responses. One possible solution
for such a situation is to utilize the next hop field in the cached routing table entries. For example, by selecting a set
of MOCAs with all different next hops, we can expect to have a spatial load balancing effect in that each CREQ will
go out in different directions.

Another interesting direction we plan to investigate is dynamic adjustment of the time-out threshold) . As pre-
sented in Section 5,) can be selected based on the MOCA density in the neighborhood, which is likely to change
as the nodes move around in the network. We plan to investigate the mechanisms to adjust) to reflect the updated
perception of the new neighborhood, hence reducing the certification delay to a minimum.

While we have designed a PKI framework that provides balanced support for security and availability, we cannot
avoid the inherent problem of ad hoc networks: unstable connectivity. In a pathological case, if the network is
partitioned and there are less than k MOCAs available in a partition, it is simply not possible to get a certification
service. Although we do not expect to see this kind of problematic situation too often or for too long a time period,
if this happens our approach became powerless. To provide certification support for such scenarios, we are currently
developing an extension of the MOCA by introducing a hybrid approach of MOCA and the PGP “Web of Trust”
model. In the extended MOCA (EMOCA) framework, any node certified by k MOCAs will have the capability to act
as a delegate of MOCAs to authenticate and issue certificates to new nodes or yet uncertified nodes in the network.
If a node wishes to get a certificate but cannot reach enough MOCAs, it can then contact any nearby certified nodes
and request a temporary certificate. Any already certified node can issue a temporary certificate based on its own
authentication of the new node. This temporary certificate carries relatively small confidence compared to the one
issued by MOCAs but still can be used as a temporary means for confirmed identity. Conceptually, a certificate issued
by MOCAs can be considered as the voucher for confirmed identity by trusted entities (i.e. MOCAs). A temporary
certificate serves a similar goal but with a smaller confidence value since the vouching entity is not a trusted entity
but only a confirmed member of a network. In our preliminary investigation, we have discovered several interesting
features of this hybrid approach and are currently studying the interaction between MOCAs and the delegates and their
effects on performance and security.

There are many interesting and promising security services and applications that can be deployed in ad hoc net-

2nd Annual PKI Research Workshop---Pre-Proceedings

77

works using the support of PKI. For example, some secure ad hoc routing protocols that assume the existence of PKI
support can readily utilize our framework [16, 14]. However, it is yet unclear how these different security services and
applications will fit with each other. We plan to study how our approach can be integrated with other security services
or applications and what kind of effects will occur.

7 Conclusion

In this paper, we present a practical key management framework for ad hoc wireless networks. We clarify the ne-
cessity and the problem of providing a PKI framework for ad hoc networks and identify the requirements for such a
framework. Based on our observation of the potential heterogeneity among mobile nodes, we provide an intelligent
way to pick a set of CA nodes. These selected secure nodes are called MOCAs and share the responsibility of col-
lectively providing the CA functionality for an ad hoc network using threshold cryptography. To minimize the usage
of scarce resources in mobile nodes, we develop a set of efficient and effective communication protocols for mobile
nodes to correspond with MOCAs and receive certification services. Our simulation results show the effectiveness of
our approach and we provide some insights into the configuration of such security services in ad hoc networks.

References

[1] Thawte, Inc. Company homepage available at http://www.thawte.com/.

[2] The Network Simulator - NS-2. Available at http://www.isi.edu/nsnam/ns/.

[3] VeriSign, Inc. Company homepage available at http://www.verisign.com/.

[4] A. Shamir. How to Share a Secret. Communications of the ACM, 1979.

[5] A. Arnes. Public key certificate revocation schemes. Available at http://citeseer.nj.nec.com/arnes00public.html.

[6] J. Broch, D. A. Maltz, D. B. Johnson, Y. Hu, and J. Jetcheva. A Performance Comparison of Multi-Hop Wireless
Ad Hoc Network Routing Protocols. In Proceedings of IEEE/ACM MOBICOM 98.

[7] C. E. Perkins and E. M. Royer. Ad-hoc On-Demand Distance Vector Routing. In The Second IEEE Workshop
on Mobile Computing Systems and Applications, New Orleans, LA, USA, February 1999.

[8] Y. Frankel and Y. G. Desmedt. Parallel Reliable Threshold Multisignature. Technical Report TR-92-04-02, Univ.
of Wisconsin–Milwaukee, 1992.

[9] Janne Gustafsson, Janne Lassila, and et al. Pki-security in mobile business - case: Sonera smarttrust. Available
at citeseer.nj.nec.com/466933.html.

[10] J.-P. Hubaux, L. Buttyan, and S. Capkun. The quest for security in mobile ad hoc networks. In Proceeding of the
ACM Symposium on Mobile Ad Hoc Networking and Computing (MobiHOC 01), 2001.

[11] J. Broch and D. B. Johnson. The Dynamic Source Routing Protocol for Mobile Ad Hoc Networks. IETF Internet
Draft, October 1999.

[12] J. Macker and M. Corson. Mobile ad hoc networking and the IETF. Mobile Computing and Communications
Review, 1998.

[13] J. Macker and S. Corson. Mobile Ad-hoc Networks (MANET) Charter. IETF Working Group.

[14] K. Sanzgiri and B. Dahill and B. Levine and C. Shields and E. Belding-Royer. A Secure Routing Protocol for Ad
Hoc Networks. In Proceedings of 2002 IEEE International Conference on Network Protocols (ICNP), November
2002.

[15] J. Kong, P. Zerfos, H. Luo, S. Lu, and L. Zhang. Providing Robust and Ubiquitous Security Support for Mobile
Ad-Hoc Networks. In Proceedings of ICNP ’01.

2nd Annual PKI Research Workshop---Pre-Proceedings

78

[16] M. Zapata. Secure Ad Hoc On-Demand Distance Vector (SAODV) Routing. IETF MANET Mailing
List, Message-ID:3BC17B40.BBF52E09@nokia.com, Available at ftp://manet.itd.nrl.navy.mil/pub/manet/2001-
10.mail, October 8 2001.

[17] S. Yi and R. Kravets. Practical PKI for Ad Hoc Wireless Networks. Technical Report UIUCDCS-R-2002-
2273/UILU-ENG-2002-1717, University of Illinois at Urbana-Champaign, May 2002.

[18] V. Shoup. Practical Threshold Signatures. In Theory and Application of Cryptographic Techniques, pages 207–
220, 2000.

[19] Sthephen Kent and Tim Polk. IETF Public-Key Infrastructure Working Group Charter. Available at
http://www.ietf.org/html.charters/pkix-charter.html.

[20] W. Diffie and M.E. Hellman. New Directions in Cryptography. IEEE Transactions on Information Theory, 1976.

[21] L. Zhou and Z. J. Haas. Securing Ad Hoc Networks. IEEE Network Magazine, November 1999.

[22] L. Zhou, F. Schneider, and R. van Renesse. Coca: A secure distributed on-line certification authority. Technical
Report, Cornell University.

2nd Annual PKI Research Workshop---Pre-Proceedings

79

Mediating Between Strangers:

A Trust Management Based Approach

Joachim Biskup Yücel Karabulut

Fachbereich Informatik, Universität Dortmund, D-44221 Dortmund, Germany

{biskup,karabulu}@ls6.informatik.uni-dortmund.de

Abstract

Data sources in i-mediation, following property-based security policies,
aim at supporting a wide range of potential clients, which are in general
unknown in advance and may belong to heterogeneous and autonomous
security domains. This raises the challenge how remote and autonomous
entities can agree on a common understanding of certified properties, and
other issues related to these properties (e.g. encoding formats). This pa-
per proposes solutions that are based on secure i-mediation and a hybrid
PKI model, which unifies X.509 and SPKI. We present a mediation func-
tionality, called f-mediation. Secure f -mediation assists entities in finding
partners for i-mediation and providing them with appropriate certificates
and credentials. Thereby, among others, f -mediation deals with delega-
tion and conversion of free properties into capability-like bound proper-
ties. An extension to the agent communication language KQML is used
to implement the interactions among software agents in an instance of the
f -mediation.

1 Introduction

In [3], we proposed a secure mediation approach considering the dynamics and
conflicting interests of mediation participants. In a global computing infrastruc-
ture like the Internet, entities (strangers) need to reason about the trustworthi-
ness of other entities in order to make autonomous security decisions. Based on
this fact, in contrast to traditional (identity-based) access control mechanisms
which operate under a closed world assumption, we followed a PKI-based ap-
proach in order to achieve the security goals with respect to confidentiality and
authenticity. Our approach to secure mediation is based on evidences of clients’
eligibility rather than user authentication and access control based on user iden-
tities. More precisely, we argued for basing the enforcement of these security
goals on certified personal authorization attributes (e.g. organizational mem-
bership, security clearance) rather than on identification. In order to focus on
the major mediation functionalities and to keep the design of secure mediation
manageable, we assumed that the mediation participants agree on a common

2nd Annual PKI Research Workshop---Pre-Proceedings

80

understanding of personal authorization attributes, credential formats, and the
certification policies under which the credentials are issued.

This paper is concerned with solutions to challenges which arise when we re-
move this assumption. We consider the following situation: Information sources
may supply their information for purchase as well as for collaboration. While
doing this, they may aim at determining a wide range of potential clients which
could be interested in requesting specific services of the sources and which are
qualified in terms of evidences of their eligibility.

What is the problem? Whatever data a source has to offer, it may aim at
supporting a wide range of potential clients, which are in general unknown in
advance and may belong to heterogeneous and autonomous security domains.
Why is the problem a problem? The conceptual challenge arising in this sit-
uation concerns how remote and autonomous entities can agree on a common
understanding of personal authorization attributes and other issues related to
these attributes (e.g. credential formats). On the one hand, personal authoriza-
tion attributes are assigned to clients in their autonomously operating security
domains, in principle without knowing their later usage. On the other hand,
sources independently define their security policies in terms of these attributes.
What is the solution? In such situations the sources wish to be assisted to de-
termine potentially eligible clients. To reach potentially eligible clients, a source
could use a specific mediator which could mediate between a source’s property-
based security policy and clients’ personal authorization attributes which have
been asserted by some trusted parties. Why is the solution a solution? Elec-
tronic business transactions will involve asserted commitments, properties, etc.
from many parties and the participants of such transactions will, in general, not
be in a position to understand or manage everything that is involved. To reach
potentially eligible clients, which might belong to remote security domains, the
sources will need to trust mediating agents having the required domain expertise
as well as the relationships with the potential clients.

As a concrete solution, we propose an additional mediation functionality,
called entity finding mediation, f -mediation for short. F -mediation employs our
hybrid PKI model [4] and our authorization model [3]. In order to prove the key
ideas of f -mediation, we extended KQML1 [12] and developed an agent-oriented
and KQML-based prototype implementation [18, 19].

2 Secure I-Mediation

In mediated information systems [26], a client seeking information and various
autonomous sources holding potentially useful data, are brought together by
a third kind of independent components, called mediators. Mediation is re-
quired to deal with heterogeneity and the autonomy of the sources, not only
from the functional point of view but also with respect to all aspects of secu-
rity, such as confidentiality and authenticity. The design of our approach of
secure mediation [3] is shortly outlined as follows: A client proves his eligibility

1KQML stands for Knowledge Query and Manipulation Language.

2nd Annual PKI Research Workshop---Pre-Proceedings

81

to see a piece of information by a collection of so-called personal authorization
attributes assigned by appropriate trusted authorities. Such assignments are
encoded within digitally signed digital credentials2. An information source al-
ways receives a mediated request to deliver some information together with a
set of credentials stemming from the pertinent client. Then the source decides
on the permission of the request by evaluating the credentials and the contained
personal authorization attributes with respect to its confidentiality policy. In
case of an allowance, the returned data is encrypted with the public keys found
in the credentials on which the permission decision has been based. Thus the
returned data can only be decrypted by that client who has proven his eligibility
by showing an appropriate collection of personal authorization attributes.

In such scenarios, the mediation participants appear in the following roles: A
client is characterized by her properties (i.e. assigned by some trusted author-
ities) and seeks for information. Each heterogeneous and autonomous source

offers data and follows a security policy expressed in terms of characterizing
properties. A mediator has two major functions: a) From the functional point
of view, the main role of a mediator is to retrieve, homogenize and assemble
data from any sources the mediator may find worthwhile to contact. b) From
the security point of view, the mediator contacts only the sources, whose se-
curity policies match a client’s characterizing properties. Thus, seen from the
client, a mediator acts as a kind of filter put in front of the sources. We call such
a mediator an information integrating mediator, i-mediator for short, and the
process of mediation i-mediation [3, 18]. The owner of an i-mediator may want
to maintain data owned by the i-mediator himself. Thus, an i-mediator can
nearly be treated like a source. As it is a source, an i-mediator may also want
to protect its data with respect to confidentiality by following a property-based
security policy.

3 Hybrid PKI Model Revisited

Most of the works, e.g., [21, 15, 27, 23, 7, 20], investigating the application of
certificate/credential-based access control treat current PKI models [1, 11, 5, 6]
as competing technologies, even some consider them as dueling theologies [2].
We take a different position. In many real-world scenarios, trust relationships
consist of hierarchies, trust networks, and combinations of two. Therefore, we
argue that a trust management infrastructure for a dynamic computing envi-
ronment has to use and to link existing PKI models.

In a distributed system, neither the entities themselves nor their properties
are directly visible to other entities. An entity uses the matching public parts of
its key pairs as visible surrogates for itself. From the perspective of the visible
virtual views, these surrogates are called principals. A property assignment to
an entity in the (real) world is presumably_captured_by a digital document in
the visible virtual world. Such a document is called a certificate or a credential,

2In the present paper, we would prefer to call the document a certificate in the sense of
Section 3.

2nd Annual PKI Research Workshop---Pre-Proceedings

82

Individual Computer

Content

Type

Validity

Subject ResponsibleAgent Signature

Property
1..*0..*

+meaning

1..*

+description

0..*

 described_by

Document

11

11

11

11 11 11

PublicEncryptionKey

Principal

1

+key

1

specified_by

PropertyAssignment

1..*

+property

1..*

uses

10..* 10..*

presumably_captured_by

PrivateDecryptionKey
11 11

matches

PublicVerificationKey
1

+key 1

specified_by

Entity

1

1..*

1

1..*

enjoys

1

1..*

1

1..*

assigns

1

1

1

1owns

decrypts_with

PrivateSigningKey
11 11

matches

1
1

1
1owns

signs_with

Visible Virtual Views Hidden (Real) World

Figure 1: Property assignment: hidden (real) world and visible virtual views

depending on the details explained below. As a consequence, security policies
and permission decisions of an entity as a resource owner are solely grounded
on the locally available visible view on the global (real) world. This sketched
exposition is visualized by Figure 1.

We distinguish two kinds of characterizing properties. A free property is
intended to express some feature of an entity by itself (e.g. personal data, a
technical detail, a skill, an ability). A bound property is intended to express
some relationship between a client entity and another entity which might act as
a server (e.g. a ticket, a capability, a role). While enjoying a free property usually
does not entail a guarantee to get the permission for a specific service, enjoying
a bound property entails the promise to get a specific service as expressed in
the relationship. The assignment of a characterizing property to entities is
regulated by corresponding administrative properties (e.g. delegatee, licensor)
for the characterizing property which must be hold by the entities as responsible
issuers.

2nd Annual PKI Research Workshop---Pre-Proceedings

83

Following and extending the basic approach of X.509 [1], free properties and
the corresponding certificates3 are handled by trusted authorities using licencing
(as shown on the left side of the upper part of Figure 2). The crucial point here
is that in general the issuer and the holder of the certificate are different from
the entity which afterwards inspects the certificate.

Naturally, it should be possible for any entity, as owner of its resources, to
define his own vocabulary for bound properties, to grant corresponding digital
documents, and even, to express his trust in delegatees, each of which is enti-
tled to assign a specific bound property (defined in the owner’s vocabulary) to
other entities. Following and extending the basic approach of SPKI [11], bound
properties and the corresponding credentials are handled by owners of services
using delegation (as shown on the right side of the lower part of Figure 2).

We are mainly interested in the analysis of how an entity can exploit its free
properties in order to acquire bound properties or administrative properties for
bound properties. Our hybrid PKI model suggests protocols which follow a
property conversion policy. A property conversion policy specifies which set of

free properties an entity has to enjoy in order to obtain a bound property or a

corresponding administrative property assignment.

The middle part of Figure 2 visualizes the situation. The entity on the right
is the grantor following a property conversion policy. The entity in the center
requests a promise for a permission, i.e., a bound property. The grantor, after
verifying the submitted free property-certificates with the supporting licences,
applies his conversion policy on the free properties extracted from the submitted
certificates, and finally, if all checks have been successfully completed, grants
a bound property-credential where the subject (grantee) is the same as in the
submitted free property-certificates. Figure 2 visualizes an instance of the hybrid
PKI model linking previous PKI models.

4 Secure F-Mediation

4.1 Requirements

As stated in Section 1, information sources may supply their information for pur-
chase as well as for collaboration. In the former case, the motivation of a source
might be to broaden its potential customer base. In the latter case, a source’s
main motivation might be to broaden its potential collaborators base by shar-
ing its resources with the locally eligible users of the potential remote partner-
organizations. Then, a source’s security policy can be based on the clients’ char-
acterizing properties which are related to the clients’ organizational activities
and responsibilities (e.g. organizational role membership or group membership)
within the corresponding organizations to which the clients belong. The in-
tended high level functionality common to both cases is finding potential clients
and stimulating them to access resources. Accordingly, a mediator assisting the

3In contrast to X.509 attribute certificates, a certificate in our model is not associated with
any identity certificate.

2nd Annual PKI Research Workshop---Pre-Proceedings

84

(sub-)authority /

licensee /

trusted (super-)authority
as licensor

trustee or

licensor

licensee or

issuer
and

delegator /
delegatee

delegator and
owner as

verifier of bound property

licence-certificate
issue

licence-certificate
issue

challenge for holder’s key

issue
free property-certificate

with licences

response

show free properties
request bound property and

delegation-credential

delegation-credential

grant
bound property-credential

grant

grant

verification loop
to trusted authority

holder of free property

grantee of bound property delegatee
grantor of bound property /

and
verifier of free property

show bound properties
request access and

with delegations challenge

grantee’s

response

for

key

Figure 2: Outline of an instance of the hybrid model for a PKI

sources for this functionality has the following major functions: a) From the
functional point of view, the main role of a mediator is to seek out an entity B

for another entity D and stimulate B to contact D. b) From the security point
of view, the mediator acts as a broker between independently operating security
domains of the mediation participants by mapping the properties of an entity
B on the property vocabulary and the security requirements of the other entity
D. We call such a mediator an entity finding mediator, f-mediator for short.
The process of mediation using f -mediators is called f-mediation.

We consider the following example scenario motivating our design and im-
plementation of the f-mediation functionality. Autonomously operating forensic
institutions of European countries offer anonymous forensic data about sex of-
fenders, and a fictitious i-mediator conducted by the European Union is special-
ized in European forensic institutions. Besides serving spontaneous users, the
i-mediator may also want to share some part of his data with a discretionary
determined kind of users, e.g., the researchers working in US forensic institu-
tions. For this purpose, the i-mediator may follow a security policy specifying
that an entity can be granted the local role “visiting researcher”, if she is a “psy-

2nd Annual PKI Research Workshop---Pre-Proceedings

85

choanalyst” and working in a US forensic institute as a “principal investigator”.
We can hardly assume that the i-mediator, as well as the forensic institutions
abroad, can reach a common understanding about personal attributes and or-
ganizational roles implicitly. To reach his potential clients, the i-mediator could
contact the head of a corresponding FBI unit having the required expertise
about mapping between the properties used in the i-mediator’s security policy
and the properties used in the security domains of the appropriate US forensic
institutions.

The other way round, f -mediators can also be utilized by the clients. In this
case, a client’s motivation might be to determine which qualified sources are
willing to offer him a specific service and then request them. In such scenarios,
the function of a f -mediator is to find the most appropriate sources which, on the
one hand, are qualified according to the client’s requirements and, on the other
hand, may accept clients as potentially eligible entities based on their asserted
characterizing properties. For the sake of simple exposition, in this paper, we
assume that the f -mediators are only utilized by the sources. However, our
design and implementation of f -mediation is flexible enough to realize other
recasted scenarios.

Based on the requirements discussed above and and in Section 1, we present
a general design for secure f -mediation in the following sections.

4.2 Design

4.2.1 Security Requirement

The following fundamental security requirement is considered:
Any authorizer autonomously follows a security policy which ensures that

requested information is delivered only to appropriate requestors. In order to
achieve this goal, requestors have to provide evidence that they are eligible
for requested information, and authorizers have to maintain mechanisms to
inspect such evidence and to decide whether and which information is returned.
Furthermore, an authorizer has to ensure that information is actually usable to
only that requestor which provided the inspected evidence.

4.2.2 Informational Environment

We assume that there exists a trust management infrastructure based on our
hybrid PKI model (see Section 3). This infrastructure provides the basic PKI
functionalitites required for the design of the secure f -mediation. As indicated
in Section 4.2.1, the fundamental security requirement considers entities acting
in two modes, as authorizer and requestor, respectively. However, all entities
should be able to act in any of these modes during their lifetimes. For the
sake of conciseness, for a particular instance of f -mediation, we only consider
the specific entities resource owner, f-mediator, and client acting as follows: the
resource owner only acts as authorizer, the f-mediator might act in both modes,
and the client only acts as requestor.

2nd Annual PKI Research Workshop---Pre-Proceedings

86

4.2.3 Interactions and Basic Protocols

The fundamental security requirement (see Section 4.2.1) has several specific
interpretations, each of which result from (a) appropriately replacing the men-
tioned modes (e.g. authorizer and requestor) by two of the three entities in
an instance of f -mediation (e.g. resource owner, f -mediator, client) or in an
instance of i-mediation (e.g. resource owner, i-mediator, client), respectively,
and (b) specifying the kind of requested information and the kind of needed
evidence. Tables 1 and 2 summarize the most important interpretations for i-
mediation and f -mediation, respectively. These interpretations result from the
concrete interactions among the entities involved.

Inter- authorizer requested requestor needed security

action information evidence policy

I resource source-specific client free confidentiality
owner service properties policy

II resource bound client free property
owner properties properties conversion

policy

Table 1: Instantiations of the fundamental security requirement for direct con-
tact and i-mediation

Inter- authorizer requested requestor needed security

action information evidence policy

III resource administrative f -mediator free delegation
owner property for properties policy

bound property
IV f -mediator bound client free property

properties properties conversion
policy

V resource source-specific client bound reconfirmation
owner service properties policy

Table 2: Instantiations of the fundamental security requirement for f -mediation

In the simplest case, a client contacts directly the source and shows his
certified free properties. In secure i-mediation, as designed in [3] and outlined
in Section 2, an i-mediator is involved. However, concerning the current point
of interest, the i-mediator basically only forwards requests and responses. So
we can consider both situations together.

Interaction I: A client acts as a requestor (possibly assisted by an i-mediator).
A resource owner follows his confidentiality policy (as security policy) to allow
or deny access to content information (source-specific service) based on shown
personal authorization attributes (as evidence in form of specific free properties).

Interaction II: In a degenerated form, a resource owner may be able to deal
with converting free properties into bound properties on his own. Accordingly,
the client (possibly assisted by an i-mediator) applies for a bound property with
respect to a source-specific service directly from the resource owner. The source,

2nd Annual PKI Research Workshop---Pre-Proceedings

87

after verifying the shown free properties, follows his property conversion policy
(as security policy aiming at confidentiality). In the positive case, the resource
owner assigns a bound property to the client and grants a corresponding bound
property-credential, i.e. to express a possibly conditional permission to access a
service.

In more advanced cases, additionally, a f-mediator is involved. The trust-
worthiness of the f -mediator may be determined based on the previous direct
organizational or business relationships or on the recommendations or on the
evidences of f -mediator’s eligibility in terms of certified free properties (e.g. per-
sonal authorization attributes). In the context of this paper, we focus on the
last case, as examined by the following interaction.

Interaction III: A f -mediator acts as a requestor. The f -mediator claims to
be a qualified entity (e.g. the head of a specific FBI unit). He shows his pertinent
certified free properties and requests an administrative property for a bound
property from a resource owner. The source, as the owner of a specific service
and a vocabulary for service-specific bound properties, after verifying the shown
free properties, follows his delegation policy as a special property conversion
policy (as security policy). In case of allowance, the resource owner assigns an
administrative property to the f -mediator and grants a corresponding delegation
credential, the content of which roughly means “can speak for the owner ” (in
the sense of [17]) to assign a specific bound property, i.e. to grant corresponding
bound property-credentials. F -mediation can be transitively organized by using
redelegation of received authorities. A f -mediator (as authorizer) can express
his trust in another f -mediator (as requestor) to speak for the former f -mediator
in turn. For the sake of simplicity, we don’t consider the possible interactions
among f -mediators.

Interaction IV: A client shows his certified free properties and applies for
a bound property from a f -mediator who is acting as an authorizer on behalf
of and in explicit delegation of a resource owner. In order to assign a bound
property and a corresponding credential, the f -mediator performs the steps
carried out by the source during the interaction II.

Interaction V: A resource owner is contacted by a client who requests a
service. The resource owner, after verifying the submitted bound property-
credentials with the supporting delegations, follows something like his “reconfir-
mation policy” for bound properties (as security policy aiming at confidentiality)
to allow or deny access to content information (as source-specific service) based
on shown bound properties.

The security policies applied during the interactions II, III and IV are based
on a property conversion policy of our hybrid PKI model, as outlined in Section
3. The high level functionality common to these interactions is showing free-
property certificates to an authorizer in order to acquire appropriate credentials.
In the following we sketch a protocol for secure credential acquisition

recasting our protocol for secure query answering [3, 18].
We distinguish a preparatory phase and an acquisition phase. In the prepara-

tory phase, requestors and authorizers do not interact yet. A requestor, wishing
to acquire a credential later on, collects his free property-certificates. On de-

2nd Annual PKI Research Workshop---Pre-Proceedings

88

mand and by interaction, the requestor also gets the issue requirements for the
properties to be acquired, i.e. the requestor can ask to be informed about which
free properties are likely to be sufficent to acquire which (bound) (administra-
tive) properties. And an authorizer, entitled to assign (bound) (administrative)
properties later on, defines an appropriate security policy which relates free
properties to the amounts of (bound) (administrative) properties allowed for
assignment. The set of free property-certificates, accepted by a security policy
as input, must belong to a unique requestor or at least a group of requestors
which consciously cooperate. It is not necessary for the authorizer to know the
identity of that requestor.

The acquisition phase is outlined as follows:
1. The requestor sends a request 〈return information, requested (bound) (ad-

ministrative) properties, set of free property-certificates〉 to the authorizer.
2. The authorizer verifies each free property-certificate and determines the

associated free properties.
3. The authorizer evaluates the request by following the pertinent property

conversion policy. The resulting set of properties is the intersection of
the set of requested properties and the largest permitted set of properties
(computed on the basis of the associated free properties).

4. For each of the resulting (bound) (administrative) properties, the autho-
rizer grants a corresponding credential.

5. The signed credentials are sent back following the directions given by the
return information.

By making some minor modifications to the protocol sketched above, we
get a further protocol fulfilling the functionality outlined in the interaction V.
For i-mediation [3], we presented a similar protocol employing free properties
instead of bound properties, as outlined by the interaction I.

4.3 Implementation

We have developed an agent-oriented prototype implementation (which consti-
tutes a testbed) for demonstrating the basic functionality of secure f -mediation
in combination with i-mediation. In order to focus on the implementation of the
basic f -mediation concepts, so far we limited the functionality of an i-mediator
and data sources to an owner’s functionality (see the model of owners and del-
egations in Section 3 and [4]). Figure 3 shows the security architecture of the
implementation, and the structure of the common agent core (see Section 4.3.2).

We have implemented software agents of four kinds according to the activi-
ties of the entities involved in such a composed mediation scenario (see Figure 2):
trusted authority agents representing issuers of free properties and corresponding
administrative properties as trusted authorities and licencees; f-mediator agents

representing verifiers of free properties and grantors of bound properties as dele-
gatees; user agents representing holders of free properties and grantees of bound
properties; i-mediator agents and data source agents representing grantors of ad-
ministrative properties for bound properties, and grantors and verifiers of bound
properties as delegators and owners. In Figure 2, licensees as well delegatees are

2nd Annual PKI Research Workshop---Pre-Proceedings

89

Agent Functional Module

Agent Communication Interface

APROMA ACREMA

GUI Command
Line Tool

Agent Core

ASECKNOB

ATRUMA

A
ge

nt
 H

um
an

 I
nt

er
fa

ce

(KQML / CORBA)

Agent Security Module Agent PKI Framework

KQML Message KQML Message

(Java Object Serialization)

Agent Functional Module

Agent Communication Interface

APROMA ACREMA

GUI Command
Line Tool

Agent Core

ASECKNOB

ATRUMA

A
ge

nt
 H

um
an

 I
nt

er
fa

ce

(KQML / CORBA)

Agent Security Module Agent PKI Framework

KQML Message KQML Message

(Java Object Serialization)

Agent Functional Module

Agent Communication Interface

APROMA ACREMA

GUI Command
Line Tool

Agent Core

ASECKNOB

ATRUMA

A
ge

nt
 H

um
an

 I
nt

er
fa

ce

(KQML / CORBA)

Agent Security Module Agent PKI Framework

KQML Message KQML Message

(Java Object Serialization)

Agent Functional Module

Agent Communication Interface

APROMA ACREMA

GUI Command
Line Tool

Agent Core

ASECKNOB

ATRUMA

A
ge

nt
 H

um
an

 I
nt

er
fa

ce

(KQML / CORBA)

Agent Security Module Agent PKI Framework

KQML Message KQML Message

(Java Object Serialization)

Agent Functional Module

Agent Communication Interface

APROMA ACREMA

GUI
Command
Line Tool

ASECKNOB

ATRUMA

Agent Security Module Agent PKI Framework

KQML Message KQML Message

(Java Object Serialization)

A
ge

nt
 H

um
an

 I
nt

er
fa

ce

(KQML / CORBA)

KQML / CORBA

KQML / CORBA

Agent Core

KQML / CORBA

KQML / CORBA

KQML / CORBA

KQML / CORBA

user

agent

agent

i−mediator

.

trusted authority agents

agent

. .
 .

source

. .
 .

f−mediator agents

Java
Java Keytool

API
C++

API

(JNI)

Java

API
Corba

Engine
(CRENG)

Xerces, Xalan

User Interface

(generic)

PKI Low−Level Core
IBM XML Security Suite

Credential

Java
Java Keytool

API
C++

API

(JNI)

Java

API
Corba

Engine
(CRENG)

Xerces, Xalan

User Interface

(generic)

PKI Low−Level Core
IBM XML Security Suite

Credential

Java
Java Keytool

API
C++

API

(JNI)

Java

API
Corba

Engine
(CRENG)

Xerces, Xalan

User Interface

(generic)

PKI Low−Level Core
IBM XML Security Suite

Credential

Java
Java Keytool

API
C++

API

(JNI)

Java

API
Corba

Engine
(CRENG)

Xerces, Xalan

User Interface

(generic)

PKI Low−Level Core
IBM XML Security Suite

Credential

Java
Java Keytool

API
C++

API

(JNI)

Java

API
Corba

Engine
(CRENG)

Xerces, Xalan

User Interface

(generic)

PKI Low−Level Core
IBM XML Security Suite

Credential

Figure 3: Security architecture

organized transitively, but not further considered in this paper.
For our prototype implementation we primarily focused on three aspects.

The first aspect handles the internal authorization model needed for granting
privileges including credentials to appropriately represented grantees, and for
deciding on the service requests of the requestors. The second aspect is con-
cerned with the structure of the software agents. And the third aspect is related
to the KQML-based communication between the agents. We deal with each of
these aspects in the following sections.

4.3.1 Authorization Model

As common base for all interactions of f -mediation as well as direct contacts
and i-mediation, we need an internal authorization model that provides syntac-
tic means for (a) expressions over free properties as grantees (see interactions I,
II, III, and IV), (b) expressions over bound properties as grantees (see interac-
tion V), (c) expressions over bound properties as privileges (see interactions II

and IV), (d) administrative property for a bound property as privileges (see in-
teraction III), and (e) source-specific services, interpreted as access allowances,
as privileges (see interactions I and V). For this purpose, we employed an ex-
tension of our authorization model designed for i-mediation [3, 18], where an
authorization is an aggregation including a privilege and a grantee.

2nd Annual PKI Research Workshop---Pre-Proceedings

90

4.3.2 The Agent Core

In general, all agents should be able to perform as any of the actors (e.g. grantor,
issuer, etc.) during their lifetime (see Figure 2). To achieve this goal, we
implemented an agent core providing a common core functionality which is
available to all agents. The main features and the structure of the agent core
are reported in [19] and sketched in the following (see Figure 3).

The agent core [18, 19] is implemented in Java and on a Solaris platform.
The agent core consists of following five main modules: The agent security

module has four components. The agent security knowledge base ASECKNOB
maintains a property database, a trust relationships database containing the
public keys of the trusted agents, the certificates and credentials, and a (Horn
clause) rule base that specifies implications among properties. The agent creden-

tial manager ACREMA is programmed to perform the tasks related to issuing
and evaluating XML-encoded certificates and credentials. The agent property

manager APROMA implements a property conversion policy (see Section 3).
The agent trust manager ATRUMA implements the operations needed to store
and to retrieve the information (e.g. public keys) about the trusted agents.
The agent functional module is a kind of scheduler analysing the incom-
ing KQML performatives (see Section 4.3.3) and scheduling the protocol steps
to be executed. The agent human interface is designed as an interface for
the administrators of the agents to use and set up the corresponding agents.
The agent communication interface implements classes and functions for
sending and the reception of CORBA messages wrapping the KQML performa-
tives. The agent PKI framework is a collection of tools providing basic PKI
services.

4.3.3 KQML Extensions

The Knowledge and Query Manipulation Language, KQML [12], is a language
that is designed to support interaction among intelligent software agents. In
a KQML-based agent architecture, the agents communicate by sending certain
kinds of messages, called performatives, to each other. For example, a KQML
performative is the high-level “ask”, which demands the recipient for a query
operation on a knowledge base. KQML is complementary to approaches to
distributed computing, like CORBA, which focus on the transport level.

In the original version of the KQML [12], security issues were not taken
into consideration. The works in [22] and [14] made some changes with respect
to secure communications and PKI related communications. We followed and
extended the approaches of [22, 14] such that they satisfy the requirements of
the composed secure mediation. Thereby, we proposed a new KQML ontology
and recasted some performatives from [22, 14] and added new ones [18]. The
new ontology is called secure mediation PKI, smpki for short, and enables the
agents to know that the KQML performative they received concerns interactions
involving in an instance of the composed secure mediation. We use XML as en-
coding format for the data communicated through performatives. The recasted

2nd Annual PKI Research Workshop---Pre-Proceedings

91

and added performatives are outlined below.

applyDocument This performative has a dual usage. It is used for apply-
ing for free property-certificates from trusted authority agents4 as well as for
applying for bound property-credentials (see interactions II and IV) and for del-
egation credentials (see interaction III). A requestor agent sends the following
recasted performative to a corresponding authorizer agent:

applyDocument :language XML

:ontology smpki

:content <requested properties and principal>

[:certificateChains <free property-certificates and

corresponding licences>]

authChallenge and authResponse: These recasted performatives can be
employed in all interactions discussed in 4.2.3. For the sake of simple exposition
in that section, we omitted the steps corresponding to these performatives. The
performative authChallenge is used by the agents acting as authorizer. Before
issuing a certificate or granting a credential, the issuer or grantor, respectively,
has to challenge5 the claiming requestor to prove that she holds the matching
private key. In our prototype, the proof is accomplished by an appropriate
response (i.e. encoded in a corresponding authResponse performative) which is
generated with the matching private key.

An issuer or a grantor sends the following performative to the requestor
agent acting on behalf of the claiming entity:

authChallenge :language XML

:ontology smpki

:content <nonce>

The content of content in the authChallenge performative contains a ran-
domly generated string which is to be signed by the claiming entity. The claim-
ing entity signs the string received and sends the following performative includ-
ing the signed string to the corresponding agent:

authResponse :language XML

:ontology smpki

:content <signed nonce>

Obviously, also more advanced challenge-response procedures could be ex-
ploited.

issueCredential: This recasted performative is used by the agents to issue
a certificate or a credential. The agent can send the following performative to
other agents which have previously applied for a certificate or a credential by
using the applyDocument performative:

4We omitted this interaction in Section 4.2.3
5In some cases, it might be sufficient for a grantor to evaluate solely the certificate chains

sent by an agent as requestor before granting a credential, since the grantor may only want to
gain assurance, whether the property encoded in the “main document” of a certificate chain is
bound to the public key included in this document. In such cases, a grantor might not need
to apply a challenge-response protocol.

2nd Annual PKI Research Workshop---Pre-Proceedings

92

issueCredential :language XML

:ontology smpki

:content <issued certificate or granted credential

with the corresponding chain of supporting documents>

In addition to using the recasted performatives and standard KQML perfor-
matives (e.g. ask_all, tell, etc.), we designed the following new performative.

reduceCredential: The (so far limited) functionality of an i-mediator agent
and data source agents is to handle the incoming reduceCredential performa-
tives. This performative is designed to be used by user agents in order to apply
for a reduced credential. A user agent may send the following performative to
some receiver:

reduceCredential :language XML

:ontology smpki

:content <chain of credentials>

The parameter content contains a chain of credentials which has been pre-
viously gathered from appropriate agents.

The receiver can immediately reduce the chain and sign the resulting reduced
credential, if he himself is the origin of the chain. Otherwise, the receiver could
still perform the reduction [9], but he cannot properly sign the result. In that
case, the receiver forwards the chain to the origin, who in turn sends back
the properly signed reduction result via the receiver to the user. Though the
receiver, for instance an i-mediator, may not be able to properly sign a reduction
result, he can nevertheless base his own access decisions on it.

5 Comparison and Conclusions

Existing works, which are related to the challenges we tackled in this paper,
are rooted in three research areas: secure mediation, certificate/credential-
based access control, and the employment of KQML for implementing PKI-
based security architectures. Contributions to secure i-mediation [8, 25, 10]
employ either identity-based or security clearance-based authentication and
authorization approaches which appear to be less useful for i-mediation sce-
narios which we consider. To our knowledge, no credential-based secure f -
mediation approach has been proposed to date for establishing interoperability
between the entities of two heterogeneous and autonomous security domains.
The traditional way of accomplishing this task is to build coalitions between
these security domains by committing coalition agreements (e.g. [13]). Such
agreements aim at building common vocabularies and a contractually involved
cross-certification [24]. The main problem opposing the approach of cross-
certification, is that ad-hoc cross-certification between commercial and organi-
zational PKIs is difficult to achieve due to heterogeneous certification policies.
Most of the works, e.g., [21, 15, 16, 27, 23, 7, 20, 13], investigating the appli-
cation of certificate/credential-based access control treat previous PKI models
(discussed in Section 3) as competing approaches and base their work on a sin-

2nd Annual PKI Research Workshop---Pre-Proceedings

93

gle PKI model. Even some of these works abstract from any particular PKI
model (e.g. [13]). In contrast to these works, our proposal is based on a hybrid
PKI model. The KQML extensions [22, 14] propose performatives with respect
to secure communications and PKI related communications. As demonstrated
in Section 4.3.3, our work defines a new ontology, recasts some of their KQML
performatives and add new ones.

There are various topics for future research and development. For instance,
we would like to integrate distributed role-based access control concepts [20],
or negotiations [27, 7] into our approach. Further on, we plan to implement an
advanced prototype which allows us to evaluate the actual performance of our
approach in terms of effectiveness and efficiency.

References

[1] ITU-T recommendation X.509: The directory - public-key and attribute certificate frame-
works, 2000.

[2] Dueling theologies. In 1st Annual PKI Research Workshop, Gaithersburg, Maryland,
USA, Apr. 2002.

[3] C. Altenschmidt, J. Biskup, U. Flegel, and Y. Karabulut. Secure mediation: Require-
ments, design and architecture. Journal of Computer Security. To appear.

[4] J. Biskup and Y. Karabulut. A hybrid PKI model with an application for secure me-
diation. In 16th Annual IFIP WG 11.3 Working Conference on Data and Application
Security, Cambridge, England, July 2002. To appear.

[5] M. Blaze, J. Feigenbaum, and A. Keromytis. The KeyNote trust management system
version 2. RFC 2704, IETF, Sept. 1999.

[6] M. Blaze, J. Feigenbaum, and J. Lacy. Decentralized trust management. In 17th IEEE
Symposium on Security and Privacy, pages 164–173, Los Alamitos, 1996.

[7] P. Bonatti and P. Samarati. Regulating service access and information release on the web.
In Proceedings of the 7th ACM Conference on Computer and Communication Security,
pages 134–143, Athens, Greece, Nov. 2000.

[8] K. S. Candan, S. Jajodia, and V. S. Subrahmanian. Secure mediated databases. In
S. Y. W. Su, editor, 12th, pages 28–37, New Orleans, Louisiana, USA, Feb. - Mar. 1996.
IEEE, IEEE Computer Society Press.

[9] D. Clarke, J.-E. Elien, C. Ellison, M. Fredette, A. Morcos, and R. L. Rivest. Certificate
chain discovery in SPKI/SDSI. Journal of Computer Security, 9(4):285–322, 2001.

[10] S. Dawson, S. Qian, and P. Samarati. Providing security and interoperation of heteroge-
neous systems. Distributed and Parallel Databases, 8(1):119–145, Jan. 2000.

[11] C. Ellison. SPKI/SDSI certificates. http://world.std.com/~cme/html/spki.html, Aug.
2001.

[12] T. Finin, Y. Labrou, and J. Mayfield. KQML as an agent communication language. In
J. M. Bradshaw, editor, Software Agents. MIT Press, Cambridge, 1997. http://www.cs.
umbc.edu/kqml/papers/.

[13] H. M. Gladney. Safe deals between strangers. Technical report, IBM Research Report
RJ 10155, July 1999. http://xxx.lanl.gov/ftp/cs/papers/9908/9908012.pdf.

[14] Q. He, K. P. Sycara, and T. Finin. Personal Security Agent: KQML-Based PKI. In
Proceedings of the 2nd International Conference on Autonomous Agents, pages 377–384.
ACM Press, 1998.

2nd Annual PKI Research Workshop---Pre-Proceedings

94

[15] A. Herzberg and Y. Mass. Relying party credentials framework. In D. Naccache, editor,
Topics in Cryptology - CT-RSA 2001, The Cryptographer’s Track at RSA Conference,
LNCS 2020, pages 328–343, San Francisco, CA, 2001.

[16] A. Herzberg, J. Mihaeli, Y. Mass, D. Naor, and Y. Ravid. Access control meets public
key infrastructure, or: Assigning roles to strangers. In IEEE Symposium on Security and
Privacy, Oakland, USA, May 2000.

[17] J. Howell and D. Kotz. A formal semantics for SPKI. In Proceedings of the 6th European
Symposium on Research in Computer Security (ESORICS 2000), LNCS 1895, pages
140–158, Toulouse, France, Oct. 2000. Springer-Verlag.

[18] Y. Karabulut. Secure Mediation Between Strangers in Cyberspace. PhD thesis, University
of Dortmund, Sept. 2002.

[19] Y. Karabulut. Implementation of an agent-oriented trust management infrastructure
based on a hybrid PKI model. In 1st International Conference on Trust Management,
Heraklion, Crete, Greece, May 2003. To appear.

[20] N. Li, J. C. Mitchell, and W. H. Winsborough. Design of a role-based trust-management
framework. In IEEE Symposium on Security and Privacy, pages 114–130, Berkeley,
California, USA, May 2002.

[21] P. Nikander. An Architecture for Authorization and Delegation in Distributed Object-
Oriented Agent Systems. PhD thesis, Helsinki University of Technology, Mar. 1999.

[22] C. Thirunavukkarasu, T. Finin, and J. Mayfield. Secret agents - a security architecture
for the KQML agent communication language. In 4th International Conference on In-
formation and Knowledge Management - Workshop on Intelligent Information Agents,
Baltimore, Maryland, USA, Dec. 1995.

[23] W. Thompson, W. Johnston, S. Mudumbai, G. Hoo, K. Jackson, and A. Essiari.
Certificate-based access control for widely distributed resources. In Proceedings of the
8th USENIX Security Symposium, Washington D.C., Aug. 1999.

[24] J. Tumbull. Cross-certification and PKI policy networking. http://www.entrust.com/

resources/pdf/cross_certification.pdf, Aug. 2000.

[25] G. Wiederhold, M. Bilello, and C. Donahue. Web implementation of a security mediator
for medical databases. In T. Y. Lin and S. Qian, editors, Database Security, XI: Status
and Prospects, Proceedings of the 11th Annual IFIP WG 11.3 Working Conference on
Database Security, pages 60–72, Lake Tahoe, California, 1998. IFIP, Chapman & Hall.

[26] G. Wiederhold and M. Genesereth. The conceptual basis for mediation. IEEE Expert,
Intelligent Systems and their Applications, 12(5):38–47, Sept.-Oct. 1997.

[27] T. Yu, M. Winslett, and K. Seamons. Supporting structured credentials and sensitive
policies through interoperable strategies for automated trust negotiation. ACM Trans-
actions on Information and System Security, 6(1), Feb. 2003.

2nd Annual PKI Research Workshop---Pre-Proceedings

95

Electronic Signature System with Small Number of Private Keys

Ahto Buldas
ahtbu@cyber.ee

Tallinn Technical University,

Tartu University, and Cybernetica AS

Märt Saarepera
marts@neoteny.com

Independent

Abstract

We propose a simple server-based electronic signa-
ture system in which a small number of common
private keys are used. The motivation of such a sys-
tem is to escape the scalability and complexity prob-
lems that arise if a large-scale Public Key Infrastruc-
ture (PKI) is used. We argue that the assumption of
personal private keys is the main reason for those
problems and high cost of electronic signature sys-
tems. We conclude that elimination of personal pri-
vate keys is justified and further argue that this does
not reduce the security.

1 Introduction

Remembering and proving events of the past is an
important characteristic of the human civilization.
Oral testimonies were used before the literary lan-
guage was invented, and they are still in use today.
Due to increasing complexity of business and pub-
lic relations, people started to use written documents
as external memory. Numerous measures have been
developed to protect the content integrity of written
documents. For example special inks, paper, seals
etc. are used. Further, in order to bind the content
of a document with a person responsible for it, hand-
written signature is used.

Today, written documents as well as all kinds of
data in general are processed, transmitted, and pre-
served in digitized electronic form (mostly referred
to as electronic content). Currently, cryptographic
means are used to protect the integrity of electronic
content and to bind content with persons responsi-
ble for it. Cryptographic checksums computed by
using asymmetric cryptography are often viewed as
electronic analogues of handwritten signatures. Sig-
natures are created by using private keys and verified
by using public keys.

Cryptographers have been studying electronic sig-
nature technologies for decades since the discovery
of one-way functions [4]. Several electronic signa-
ture schemes are (mathematically) proved to be se-
cure under some complexity theoretical assumptions
(see [12] for an overview).

In numerous countries, including the USA, elec-
tronic signatures are legally admissible. Considering
the advantages of electronic data management (cre-
ation, transfer, storage) over the traditional paper-
based one we could expect that there is an obvious
need for electronic signatures in the society. How-
ever, electronic signatures are still not widely used.
In our opinion, it is for two reasons:

(i) Security concerns. Leakage of private keys may
cause unlimited risk, because of the number of
(possibly forged) signatures cannot be limited.

2nd Annual PKI Research Workshop---Pre-Proceedings

96

Secure key management is too complicated for
general public.

(ii) Technical complexity and Cost. Private key
management as well as massive authentic dis-
tribution of public keys is costly.

Rapid growth of a technology where the main con-
cerns are related to security and cost – Internet bank-
ing – suggests that these concerns can be solved for
electronic signatures as well. In the Internet banking,
(a) the risks are always limited (at least to the amount
of money in the user’s account), and (b) existing in-
frastructure (like web browsers) provides simple and
user-friendly interface to customers. Why not to de-
sign an electronic signature system in a similar way?

In most electronic signature systems it is assumed
that private keys are distributed among the users. At
the same time, there are electronic signature systems
that use a very small number of keys. For example,
in the system presented by Asokan et al [2] personal
private keys are eliminated and the signature func-
tion is delegated to a server. The server authenti-
cates clients and creates electronic signatures in their
name by using one single private key. It seems to
be a common opinion that electronic signature sys-
tems where the private keys are distributed among
users are of the highest possible security. We do not
think this opinion is sufficiently argued. Moreover,
we claim that personal private keys are the main rea-
son for high cost and technical complexity of the sys-
tems. Eliminating personal keys may lead to consid-
erably more cost-efficient electronic signature sys-
tems, which in addition may be more secure than the
previous systems.

In this paper, we show (using an elementary risk
analysis methodology) that server-based electronic
signature systems may be as secure as those with
personal private keys. Moreover, in server-based
systems it is easy to restrict the number of signa-
tures, which is a necessary feature to limit risks. In

server-based systems, possible abuses are more easy
to inspect – the server can log all events, while per-
sonal private keys can be abused off-line in an un-
restricted way. Hence, even if each (signed) trans-
action has limited value, an attacker (who abuses a
personal key) can still create large numbers of low-
value transactions.

We propose a new scalable electronic signature
system that uses even a smaller number of keys than
the system of Asokan et al [2]. In our system, the sig-
nature servers themselves use meta-level signature
services to create their signatures so that only few
public (and private) keys are needed for the whole
service. Due to the small number of keys, it is easy to
preserve the validity of signatures in long-term scale.

The paper is organized as follows. In Section 2,
we give a general description of electronic signature
systems and present two special cases: PKI-based
electronic signature, and server-based electronic sig-
nature. We point out their relative advantages and
drawbacks. In Section 3, we analyze the practical
security of electronic signatures, considering both
signer’s and verifier’s view points. In Section 4, we
describe techniques to improve the scalability and
security of electronic signature systems. In Sec-
tion 5, we outline a technically simple and efficient
server-based solution to electronic signatures.

2 Electronic Signature Systems

In the most general setting, an electronic signature 1

is authentic and reliable information that answers the
question ”Who signed What and When?”. In order to
use electronic signatures, one has to organize a sys-
tem that satisfies the following security requirements
from both signer’s and verifier’s view-point:

1We intentionally use the term electronic signature instead of
digital signature, because the latter is mostly used in association
with signature schemes that use asymmetric cryptography.

2nd Annual PKI Research Workshop---Pre-Proceedings

97

(i) Signers are able to sign messages only in their
own name.

(ii) Potential verifier can check the validity of a sig-
nature. The verifier is provided with methods
that ensure that valid signatures cannot be de-
nied or invalidated later.

In the following, we describe two (totally different)
electronic signature systems. The first system has
a maximum number of keys – every user has her
own private (signature) key. The second system has
a minimum number of private keys – there is a sin-
gle private key that is maintained by a server, which
identifies users and creates signatures in their names.
We show what are the security and cost concerns in
these systems for a signer and for a verifier. The
analogies for these two systems in the paper-world
are personal handwritten signature and notarized or
delegated signature. We analyze the history of these
signature systems and the security concerns in both
systems. Massive use of personal handwritten signa-
tures became possible only when literacy became a
common skill. Notarized signatures were used way
before. We claim that considering the ”electronic lit-
eracy” of general public, the society is not yet ready
to use ”personal” electronic signatures. Moreover,
we are not able to imagine how ”electronic literacy”
will become a common skill in the near future.

2.1 PKI-Based Signatures

Each user
�

has a private key ����� , which is assumed
to be under a sole control of

�
, and a public key ��� � ,

an authentic copy of which is assumed to be available
to all potential verifiers. To sign a message � ,

�
ap-

plies a signature function SIG to a pair 	
��� ��� ��
 of
the private key and the message. To verify a digital
signature ��� SIG 	
��� ��� ��
 one has to apply a veri-
fication function VER to a triple 	���� � � � � ��
 , which
returns ����� if the signature is correct.

The mechanism for authentic distribution of pub-
lic keys depends on particular systems. The users
may themselves distribute their keys, which is suit-
able if each user has a small number of communica-
tion partners. An example of such system is PGP
[14]. In order to simplify the distribution of au-
thentic public keys, a trusted party – Certification
Authority ��� – is introduced. As any other user,
also the ��� has its private key ������� and its pub-
lic key ��� ��� . To bind the identity �! � of

�
and

the public key, the ��� issues public-key certificate" � SIG 	
���#��� � 	$�! ��� ��� �
%
 . A complete signature of�
on � consists of two parts: the signature � and the

certificate " . To verify such a signature, one needs to
have an authentic copy of ��� ��� .

For several reasons, we also have to add time to
an electronic signature. In order to prove the time
when the signature was created, another trusted party
– Time Stamping Authority (&(')�) – is introduced
[17]. By a time stamp for a signature � we mean a
signed statement *%�+� SIG 	
����,.-/� � 	0� � *%
%
 , where * is
a time value. Hence, the signature is a triple

SIG 	
��� �1� ��
2 3�4 56
� SIG 	
���#��� � 	$�! �1� ��� �
%
2 3�4 57

�

SIG 	
���#,8-/� � 	0� � *%
%
2 3�4 59 6
� (1)

for the verification of which we need authentic
copies of two public keys ��� ��� and ��� ,.-/� . Note that
the scheme presented above is considerably simpli-
fied compared to its real implementations. However,
the simplified description is completely sufficient for
the goals of this paper.

The installation procedures of private keys, their
protection mechanisms, authentic distribution of
public keys and their status checking mechanisms
make large-scale PKI systems very costly [5]. The
main threat for

�
is that someone abuses her private

key. The main threat for a verifier is that the signa-
ture (1) becomes invalid, which may happen due to

2nd Annual PKI Research Workshop---Pre-Proceedings

98

exposure of the keys ������� � ����,8-/� or due to the cryp-
tographic algorithm SIG becoming insecure. Note
that in practice, the signatures can potentially be de-
nied by alleged signers, which is also a threat for
the verifier. However, considering the highly non-
technical nature of this threat, we do not discuss it
here. For example, there may be several different
ways of solving “fantom withdrawal” cases between
banks and their clients, depending on the contracts
(between banks and clients) and the legal environ-
ment in which the contracts have been made. We
only consider the threats that cause the signature (1)
becoming technically incorrect.

2.2 Server-Based Signatures

We have a single private/public key pair ����� � ��� � in
the system that is maintained by a server � . Every
user has means to authenticate herself to the server,
in order to create electronic signatures. The exact
way how the authentication is performed is not im-
portant. The server maintains a database of signa-
ture events described as triples 	$�! ��� � � *
 . Each
such triple means a statement ” �! � signed � at time
* ”. In order to sign a message � , a user

�
sends �

a request which comprises � (or its cryptographic
digest). After verifying the identity of

�
(e.g. via

password), � creates and stores a triple 	$�! � � � � *%
 ,
where * is the current time. The verification of a sig-
nature is either server-aided or off-line.

In the case of server-aided verification, (a) a ver-
ifier � sends � to � , (b) � makes a query to its
database and finds all triples of the form 	�� � � � ��

and sends all of them to � . From the technical side,
such a scheme is extremely simple and does not re-
quire digital signature schemes at all. Though, it
has been proved by Halevi and Krawczyk [8] that in
password-based authentication protocols (under cer-
tain security assumptions) asymmetric cryptography
is still necessary.

In the case of off-line verification, the server (in-
stead of storing triples in its database) signs a triple
	$�! �1� � � *
 by using its private signature key �����
and communicates the signature

SIG 	
����� � 	$�! �1� � � *%
%
 � (2)

back to
�

. It is not hard to notice that a server-based
signature (2) is much simpler than a PKI-based sig-
nature (1). Both the installation costs at the user side
and the public key distribution costs are lower. The
main threat for

�
is that someone impersonates her

during the identity check procedure, which may be
possible due to a leakage of passwords etc. The
main difference from PKI-based signatures is that
the service provider � itself is able to create signa-
tures without users’ intent. Hence, � must be abso-
lutely trustworthy. In the next subsection, we argue
that trust assumptions in these two systems are only
seemingly different.

2.3 Personal and Delegated Signatures:
Historical Metaphor

In the case of a hand-written signature, the main
skills needed from a person are: (a) knowledge of
written language because the signer has to know
what she is signing for; and (b) understanding and
controlling the functionality of a pen. The signer has
to be convinced that the pen cannot sign anything
by itself, without user’s intent. The ”pens” for elec-
tronic signatures are much more complicated. The
users who really like to have control over their pri-
vate keys must be well educated in electronics, hard-
ware design, operating system design, the software
etc. Even if the signer has all the knowledge nec-
essary to understand electronic signatures, she still
does not know whether the signature device really
behaves as specified. Trapdoors in software and even
in hardware are not just science fiction but are rather

2nd Annual PKI Research Workshop---Pre-Proceedings

99

common practice. Today, the assumption that peo-
ple may have sole control over their private signa-
ture keys is thereby just an illusion, and probably
will stay an illusion in the near future. No single per-
son (and most of the institutions and companies) is
able to control her signature device. At present, the
methods and devices to reliably control private keys
are affordable to very few institutions in the world.
When using electronic signatures, most of us have
to trust technology and hence also the providers of
technology. In this sense, we are in the role of ”illit-
erate” people.

But also illiterate persons can sign documents:
they just write X-s at the bottom of the document
in the presence of a trusted notary who confirms that
the X-s are written intentionally. In the past when
overall literacy was not yet established, numerous
contracts were signed that way. In some sense, any
present-day electronic signature is just a confirma-
tion created by the providers of the technology, who
are in the role of ”notaries”. We cannot eliminate
trust by adding technological security measures (like
providing users with personal private keys) to the
system.

Trust assumptions are only one aspect that affects
security. In order to show that server-based signa-
ture systems are practically not less secure than the
PKI based system, we have to use more precise def-
initions of practical security. In the next section, we
present a practical security analysis that uses a com-
monly accepted method of practical security evalua-
tion – risk analysis.

3 Practical Security of Signature
Systems

Theoretical cryptography focuses on preventing par-
ticular threats. In practical security, the primary goal
is rather to reduce risk. It is possible that preventing a

threat does not reduce the overall risk. In this section,
we first present the basic principles of risk analysis
that are used in later analysis of electronic signature
systems. Then, we analyze and compare the secu-
rity of PKI-based electronic signature systems and
server-based systems. We use the so called attack
tree method[15] that has been successfully used in
several practical security-critical systems.

3.1 Threats, Risks, Attacks

Risk is commonly defined as mathematical expecta-
tion of loss. This definition is, however, somewhat
inconvenient to use when the threats are related to
attacks. The reason is that it is often impossible to
estimate directly the probabilities of attacks. But at-
tacks are the most important threats if we estimate
the security of electronic signature systems.

One of the most methodical approaches to attack
analysis is the attack tree method [15, 18]. An attack
tree is a graph that represents the decision-making
process of a well-informed attacker. The roots of the
tree represent the main threats, which are the main
goals of attackers. Each node represents an attack.
The graph has two types of nodes: AND nodes and
OR nodes. The child nodes of an OR node repre-
sent a list of conditions (sub-attacks) each of which
is sufficient for the attack being successful. The child
nodes of AND node represent a list of conditions
(sub-attacks) each of which is necessary for the at-
tack being successful. The leaves of the tree repre-
sent ”atomic” attacks the costs (and other character-
istics) of which are known.

3.2 Security of Signer

In order to compare the security of PKI-based and
server-based electronic signature systems, we use
a generic model that simultaneously describes both
systems. The model consists of the following parts:

2nd Annual PKI Research Workshop---Pre-Proceedings

100

(1) Client workstation, which is the signer’s inter-
face to the system,

(2) Technology providers that produce or sell all
kinds of technology used in electronic signature
systems,

(3) Signature server that participates in the signa-
ture creation process (not present in PKI-based
signature systems), and

(4) Signature service that runs the signature server
(not present in PKI case).

In a PKI-based system, Client workstation computes
client’s signature by using the private key of the
Client. The key may be stored in the memory of a
workstation or in an IC-card. In a server-based sys-
tem, Client workstation is connected securely to a
Signature server (via a secure SSL connection etc.).
After succesfully authenticating the signer (by using
passwords etc.) the Server creates an electronic sig-
nature in signer’s name.

We assume that attackers’ main goal (root of the
attack tree) is to forge a signature. We consider four
general sub-attacks, each of which is sufficient for
the goal of the attacker:

(a) Attack client workstation - steal the
key/password, insert a Trojan horse, etc.

(b) Bribe an employee of a technology provider -
bribed employees may add vulnerabilities to the
system. Yung and Young [19] proved that trap-
doors can easily be inserted even into crypto-
graphic algorithms.

(c) Bribe an employee of the signature service
provider - bribed employees may add vulnera-
bilities to the system or create forged signatures.

(d) Attack signature server in a technical way - try
to attack the server and abuse the signature key.

Server-based

signature is

forged

(a) Client

workstation

attacked

Service

misbehavior

(d) Signature

server attacked

(b) Employee

of Technology

provider bribed

Workstation

misbehavior

(c) Employee

of Service

provider bribed

PKI-based

signature is

forged

Figure 1: Merged attack trees for PKI- and server-
based signatures.

What we claim is that the components (3) and (4) of
an electronic signature system do not add additional
risks to the system and hence server-based systems
are at least as secure as PKI-based systems. This
claim is a consequence of the following assumptions:

A0: A well-informed attacker always chooses the
easiest (least costly) attack.

A1: It is easier to attack a client workstations than
to attack signature servers: ��� ��� � ���	� �
� ��� � ��� ,
because service providers are commonly more
experienced to protect their computers than
general public. The above is true for the attacks
by outsiders. It may actually be easier for an in-
side attacker to attack the server. However, once
we assume that trusted services may be com-
promised by insiders, we should also agree that
personal keys would not help much. For exam-
ple, if Microsoft on-line client service is com-
promised, it would be able to suitably “update”
client software in almost any networked client
workstation and thereby also to get access to
personal keys. Most of the average-skill users
do not protect their computers enough to pre-

2nd Annual PKI Research Workshop---Pre-Proceedings

101

vent web services from running malicious code
in their computers.

A2: The costs of bribing employees of Technology
providers and of the Signature service are com-
parable: �
� ��� ��� ��� ��� ��� � " � . At first glance, this
assumption may be doubtful – to bribe scientists
and technology experts seems much harder than
to bribe a “minimum wage guy” who guards
the server room. However, the term technol-
ogy provider in this paper has a wider mean-
ing than in common language. For example,
also the shops that sell computers are viewed
as technology providers, because they have an
influence on the behavior of the computers they
sell.

A3: By using security measures of moderate cost
(firewall, etc.) it is possible to make technical
attacks to the signature server more costly than
bribing an employee of the service provider:
��� ��� � " � � �
� ��� � ��� .

These assumptions imply that in a PKI-based system
(where only (a) and (b) are meaningful attacks) as
well as in the server-based system (where all attacks
(a),(b),(c),(d) must be considered) either (a) or (b)
has the lowest possible cost and hence the attacker
always chooses one of them. Thereby, if we have
reasonable cryptographic measures used in the sig-
nature server, and reasonable organizational means
used by the signature service provider, then the at-
tacks (c) and (d) simply do not increase the overall
risk of the system.

3.3 Security of Verifier

The most important threat for the verifier is that an
accepted valid signature becomes invalid. We only
consider the case of off-line verification in both types

 (c) Key sk

S

compromised

 (a) Key sk

A

compromised

 (b) Key sk

TSA

compromised

AND

Server-based

signature

corrupted

 (d)
Cryptographic

algorithm

compromised

 Keys

sk

A

 and sk

TSA

compromised

PKI-based

signature

corrupted

Figure 2: Merged attack trees for signature verifica-
tion.

of systems. We do not consider the attacks that tar-
get verifier’s workstation because these attacks are
equivalent in both types of signature systems. The
most important (threats) attacks to consider are the
following:

(a) Private key ��� � of the signer becomes compro-
mised: either because of attacker or intention-
ally by the signer (in order to escape from lia-
bility).

(b) Private key ����,.-/� of a time-stamping service
becomes compromised.

(c) Private key ��� � of a signature server becomes
compromised.

(d) Cryptographic algorithm becomes compro-
mised.

We assume that the Signer and the ��� have a mu-
tual written contract, which states that the Signer
possesses (and agrees to use) a particular key. This
contract can be used as evidence in later disputes, if
the Signer tries to deny having been related to the
key. Hence, the compromise of ��� key alone does

2nd Annual PKI Research Workshop---Pre-Proceedings

102

not affect the validity of PKI-based electronic signa-
tures, because the certificate is just a copy of a writ-
ten contract.

If we compare a PKI-based signature with a
server-based signature, we notice that the validity
of them relies on the validity of cryptographic al-
gorithms and keys. At first sight, it may seem that
server-based signature is more easily corrupted be-
cause its validity depends on the validity of one sin-
gle key (��� �), while the PKI-based signature be-
comes corrupted only if two keys (��� � and ��� ,.-/�)
are compromised. Note, however, that in most sig-
nature systems, users are allowed to revoke their sig-
nature keys. Once

�
decides to deny her signature,

she may try to make her signature technically invalid
by immediately revoking her key. Hence, also the
validity of PKI-based signature depends on a single
key - ����,.-/� - and hence, from the viewpoint of the
verifier, there is no difference between the security
of the said two signature systems.

4 Techniques to Improve Efficiency
and Security

As shown above, we can reduce the cost of electronic
signatures by eliminating personal private keys and
the related PKI. In this section, we describe some
state of the art techniques to improve the efficiency
and security of electronic signature systems. Batch
signatures [13] is a solution to efficiency and multi-
component signatures increase the security of elec-
tronic signature system. We also discuss the ran-
domly chosen servers approach that was proposed by
Haber et al [7] and observe that in the context of our
electronic signature system this approach is imprac-
tical because of large signature size.

4.1 Batch Signatures

One of the main problems of server-based electronic
signature systems is their low scalability. The rea-
son of the problem is that asymmetric cryptography
is slow. Batch signatures [13] is a method that al-
lows one to sign a multitude of messages at the time
and thereby to speed up the signature process. The
most efficient batch signature scheme [13] is based
on Merkle hash trees [9, 10]. It was first proposed
by Micali [11] but was later ”rediscovered” by sev-
eral researchers [13, 6, 1]. For creating a (Merkle
tree based) batch signature for a list of messages
��� ������� � ��� , a signer first composes the messages
using a Merkle tree [9]. The resulting hash value�

is then signed by an ordinary signature scheme.
Each message ��� is then provided with a pair of (a)
the ordinary signature on

�
, which is common for

all messages, and (b) an authentication path
� � �� � 	0�	� �������#� ���/
 , which proves that �
� took part of

the computation of
�
. If the number of messages

is large, we achieve up to thousand-fold speedup in
computations. It is argued in [13] why this scheme
is as secure as ordinary digital signature schemes.

Batch signatures are not recommended for end
users – the number of signatures is not limited and
hence the risk is indefinite. For service providers,
batch signatures could be the basic mechanism to
achieve scalability.

4.2 Multi-Component Signatures

In a server-based signature scheme the server must
be ultimately trusted. There is no way to prevent the
server from creating signatures in users’ name. One
way of reducing the trust assumption is to use thresh-
old trust. Suppose, we have a multitude of servers� � �������#� �
� , each

� � possessing a private signature
key ��� � with the corresponding private key ��� � . For
signing a message � , a user � authenticates itself to

2nd Annual PKI Research Workshop---Pre-Proceedings

103

all servers and sends � to each server. By a multi-
component signature on a message � given by a
user

�
, we mean a sequence of digital signatures

SIGN
� � � � 	 SIG ������	0� � �! �
 ������� � SIG ����� 	0� � �! �
%
 �

The signature of
�

on � is defined as valid if at
least *��
	 servers have signed 	0� � �! �
 . If the
servers are controlled by independent parties then the
risk of simultaneous misbehavior of these servers is
quite low. In particular, no single server can sign in�

’s name. Different threshold signature schemes are
extensively researched [16].

As shown in Section 3, unconditionally trusted
server is not the hardest security problem for large
majority of users. We can conclude that applying
threshold trust at end user level is hardly practical.
However, multi-component signatures are still use-
ful to the service providers, who are able to guarantee
sufficient level of security in their servers.

Multi-component signatures remain valid even if
one of the (component) signatures is corrupted, be-
cause the other components still protect the authen-
ticity of electronic signature. It the components are
created by using different signature schemes then the
signature resist the breakage of signature schemes.

Another (more complex) approach is to use shared
signature schemes [16]. The key is shared between
a multitude of servers so that only a coalition of *
servers are able to produce a valid signature. The
main advantage of such approach is that only one
ordinary digital signature is produced, and hence,
the size of a signature is smaller than in the multi-
component signature approach. Main drawback of
shared signatures is that they do not withstand the
breakage of a signature scheme. Hence, we prefer
the use of multi-component signatures.

4.3 Randomly Chosen Servers

Haber et al [7] proposed a method how to use smaller
threshold values * , so that the system would still be
relatively secure against attacks performed by ��� *
colluding servers. The main idea is to use a public
pseudo-random function
 , which given as input a
message � outputs a list of * servers the signatures
of whose are necessary for the multi-component sig-
nature on � being valid. Their solution may seem
very attractive but it leads to impractically large sig-
natures.

If there are � servers in total and a set � of � mali-
cious servers try to forge a signature on � . Attacker
chooses slight modifications ��� of � , so that the
meaning of � � stays almost the same (by rewording
sentences or changing numerical values etc.). The
goal of this attack is to find � � such that
 	0� �
��
� . For each ��� , the probability that
 	0���
�� � is� ����� ��� 9 � The probability of success after

�
trials

is ��� ��	�� 	 	�� �
 � . Note that in most cases, there
is no problem to generate a large number of modifi-
cations of � . For example, if there are 30 words in
� that have at least one synonym then the number of
modifications is !#"%$. If we have two numerical val-
ues each having at least one thousand modifications
then we have one million modifications. Hence, one
may first fix the words and numerical values that may
be changed and then use a computer to generate all
combinations � � one at a time and check whether
 	0� �
&� � . Hence, the number

�
of trials must be

sufficiently large. From the assumptions �'�)(� !
and

� �*	�+-, we conclude that * �/.10�243 � $243 � 5 . If one

third of the servers are corrupted (� � � � 	 �76) then
* � ! . . Hence, if

� �8	�+#9%$ � !7:%: then * �<; +
which is clearly impractical. If again * �=	�+ (which
correspond to a reasonable signature size) then an
adversary must try about 	�+?> random modifications,
which is feasible to almost any computer. Hence, for
this method to increase practical security, the size of

2nd Annual PKI Research Workshop---Pre-Proceedings

104

multi-component signature must be few hundred K
bytes. For this reason, we do not use the pseudo-
random choice method in our system.

5 Electronic Signature Service

Our goal is to design a server-based signature system
that is capable of serving billions of clients. The cost
of the system must be much lower than PKI-based
solutions, while the security must be comparable or
better.

As our goal is to minimize the number of private
keys in the system, we use two layers of servers
(Fig. 3). The front-end Proxy servers authenticate
clients and process signature requests. The back-end
Notary servers sign the processed requests.

Each Notary server can serve up to one thousand
Proxy servers. Since we use multi-component sig-
natures, each Proxy uses at least two Notary servers.
Consequently, in a system with few thousand Proxy
servers we need about ten Notary servers. Such a
service would potentially be capable of serving the
whole on-line Internet community. Users of such
system would need just a web browser to sign or ver-
ify messages. User authentication could be carried
out with tools already incorporated in web browsers
(including PKI-based authentication).

As there are about ten key-pairs in total the system
has potentially enough resources to guarantee suffi-
cient protection of private keys. The Public Key In-
frastructure related to authentic distribution of pub-
lic keys is very small and could be efficiently imple-
mented. All keys could be stored in browsers’ code
and hence their use could be completely transparent
to end users. Even if Notary keys are changed an-
nually, all the history of keys would still fit into the
code of web browsers for hundred years.

5.1 Authenticating a User

User authentication is one of the most costly parts
in electronic signature systems. To create a reliable
database for user authentication, we probably need
face to face communication with all clients. Assum-
ing that only 15 minutes is spent for each user, we de-
duce that to create a database for one million users,
we need at least 1300 man months in total. How-
ever, we mostly do not have to start systems from
scratch – there are many client bases already de-
veloped. For example, numerous banks have inter-
net banking systems with several hundred thousands
clients. Though the authentication methods used are
different, it would still be reasonable to reuse the ex-
isting authentication systems rather than built new
ones from the scratch – that would reduce the overall
costs. In server-based electronic signature system,
the use of a variety of different authentication meth-
ods does not affect the simplicity and uniformity of
electronic signatures, because only the result of the
authentication is included into the signature.

5.2 Signing a Message

For signing a message � , a user
�

authenticates it-
self to a Proxy server � and sends � to � . Proxy
server immediately replies with electronic signature,
which can be verified in client’s browser. For users,
electronic signature system is just a web service.

5.3 Creating a Signature

After successful authentication of a user, a Proxy
server composes a signature statement 	0� � �! �
 that
includes the message � to be signed and a represen-
tation of user’s identity. The statement may com-
prise other information, like signature policy, liabil-
ity constraints, time/date, etc. Proxy server does not
sign each signature statement separately, but instead
works in rounds and signs the signature statements

2nd Annual PKI Research Workshop---Pre-Proceedings

105

Client
A ClientClient

Clients of P
Clients of P’

Proxy
server

P’

Proxy
server

P

Notary
server

Nn

Notary
server ...

N1

nsksk1

Figure 3: Main structure of the signature system.

in ”batch mode”. During each round, it collects sig-
nature statements. At the end of a round, Proxy
server computes a cryptographic digest

�
of all state-

ments of this round and sends
�

to � Notary servers� � ������� � � � .
Each Notary server

� � authenticates � and signs
a triple 	 � � �! �� � * �
 , where * � is the current time, and
�! �� is a representation of � ’s identity. Strong cryp-
tographic authentication, like Message Authentica-
tion Codes [12] can be used to make impersonation
of Proxies very difficult. Having received digital sig-
natures SIG � � ��	 � � �! �� � * �/
 , ... , SIG � ��� 	 � � �! �� � * �
 ,
the Proxy � composes complete electronic signa-
tures for all clients who sent their requests during the
round. An electronic signature of

�
on message �

is of the form

� �! ��� � � SIG ��� �#	 � � �! �� � * �/
 ��������� SIG � � � 	 � � �! �� � * �
 � �
(3)

where
�

is authentication path – a set of hash val-
ues which proves that 	0� � �! (�
 participated in the
computation of

�
(the root of Merkle tree [9]).

5.4 Verifying a Signature

To verify a signature (3) one has to possess authen-
tic copies of public keys ��� � �������#� ��� � . Verification
consists of the following steps:

(i) The root of the Merkle tree is recomputed by
using � and the authentication path

�
. If the

recomputed root hash
� � does not coincide with�

then the result of the verification is �����	�
��
 .
Otherwise, the verification continues with the
next step.

(ii) The signatures

SIG � � ��	 � � �! �� � * �/
 ��������� SIG � ��� 	 � � �! �� � * �

are verified using the public keys ��� � ��������� ��� �
and the verification procedure VER. If at least *
of those signatures are valid, then the result of
the verification is ���
��
 . Otherwise, the signa-
ture (3) is �����	�
��
 .

Note that if all authentication procedures are omit-
ted from the signature creation process, we obtain
a time stamp [7] instead of electronic signature.
Hence, the same service can be used to obtain time-
stamps.

Time stamps are needed for long-term preserva-
tion of electronic signatures. In case one of the
component-signatures of � is broken, or if one of the
hash functions (either the function � used to create
the hash of the message or the one used to create
the Merkle tree) used is suspected of getting broken
soon, it is sufficient to take a new and secure hash
function � and obtain a time stamp for a message
	0� � � 	0��
%
 just as described by Haber and Stornetta
[3]. The time stamp is added to the signature in order
to preserve its validity.

2nd Annual PKI Research Workshop---Pre-Proceedings

106

6 Conclusions

Personal private keys do not necessarily mean higher
security. They certainly mean high cost and com-
plexity of electronic signature systems. Elimination
of personal private keys could considerably simplify
the system, and as we have shown, not at the price of
security.

Personal private keys were introduced in order to
solve the problems with trust. We claim that no tech-
nology – personal private keys or any other measure
– can solve problems with trust. Trust relations can-
not be imposed by technology. They evolve in natu-
ral ways.

In some sense, our society is still in the stage of
”electronic illiteracy” – blind trust to technology is
inevitable – and it is hard to see how this situation
will change in the near future. Nevertheless, elec-
tronic signatures could still be used massively. We
have shown that electronic signature service can pro-
vide a sufficiently secure solution to electronic signa-
tures.

We presented an electronic signature system that
is capable of covering the needs for electronic sig-
natures for the whole Internet community. All the
components and primitives we used in our system
are well known. The new system is extremely sim-
plified, but still remains as secure as any other elec-
tronic signature system known to date.

Acknowledgements

We would like to thank Margus Freudenthal, Jaan
Priisalu and Viljar Tulit for fruitful discussions on
practical aspects of security. We are also grateful to
anonymous referees for their helpful comments.

References

[1] Arne Ansper, Ahto Buldas, Meelis Roos and
Jan Willemson. Efficient long-term validation
of digital signatures. In Public Key Cryptog-
raphy - PKC’2001, Cheju Island, Korea. Feb.
13-15, 2001. LNCS 1992, 402-415. Springer-
Verlag, 2001.

[2] A.Asokan, G.Tsudik, M.Waidner. Server-
supported digital signatures. In proceedings of
ESORICS’96, Rome, Italy, Sept. 25-27, 1996.

[3] Dave Bayer, Stuart Haber, W. Scott Stornetta.
Improving the Efficiency and Reliability of
Digital Time-Stamping. In Sequences II: Meth-
ods in Communication, Security, and Computer
Science, eds. R. Capocelli, A. DeSantis, and U.
Vaccaro, pp. 329-334. Springer-Verlag, 1993.

[4] W.Diffie and M.E.Hellman. New directions in
cryptography. IEEE Trans. Inform. Theory, IT-
22, 6, 1976, pp.644-654.

[5] Ford, W. A Public-Key Infrastructure for U.S.
Government Unclassified but Sensitive Appli-
cations. Produced by Nortel and Bell-Northern
Research for NIST, September 1995.

[6] I. Gassko, P. S. Gemmell, and P. MacKen-
zie. Efficient and fresh certification. In In-
ternational Workshop on Practice and The-
ory in Public Key Cryptography – PKC’2000,
LNCS 1751, pp. 342–353, Melbourne, Aus-
tralia, 2000. Springer-Verlag, Berlin Germany.

[7] Stuart Haber, W. Scott Stornetta. How to time-
stamp a digital document. Journal of Cryptol-
ogy, 3(2):99–111, 1991.

[8] S. Halevi and H. Krawczyk. Public-key cryp-
tography and password protocols. In Proceed-

2nd Annual PKI Research Workshop---Pre-Proceedings

107

ings of the Fifth Annual Conference on Com-
puter and Communications Security, pages
122–131, 1998.

[9] Ralph C. Merkle. Protocols for Public Key
Cryptosystems. In Proceedings of the 1980
IEEE Symposium on Security and Privacy, pp.
122-134, 1980.

[10] United States Patent 4,309,569. Ralph Merkle.
Method of providing digital signatures. January
5, 1982.

[11] United States Patent 6,097,811. Silvio Micali.
Tree-based certificate revocation system. Au-
gust 1, 2000.

[12] Alfred J. Menezes, Paul C. van Oorschot, and
Scott A. Vanstone. Handbook of applied cryp-
tography. CRC Press series on discrete mathe-
matics and its applications. CRC Press, 1996.
ISBN 08493 -8523-7.

[13] Chris Pavlovski and Colin Boyd. Efficient
Batch Signature Generation using Tree
Structures. International Workshop on Cryp-
tographic Techniques and E-Commerce –
CrypTEC’99, City University of Hong Kong
Press, pp.70–77.

[14] http://www.pgp.com

[15] Bruce Schneier. Attack Trees: Modeling se-
curity threats Dr. Dobb’s Journal, December
1999.

[16] Victor Shoup. Practical threshold signatures. In
Advances in Cryptology – EUROCRYPT’2000,
LNCS 1807, pp. 207–220. Springer-Verlag,
Berlin, 2000.

[17] RFC 3161. Time-Stamp Protocol

[18] John Viega, Gary McGraw. Building Secure
Software: How to Avoid Security Problems the
Right Way. Addison Wesley Professional, 2001.
ISBN: 0-201-72152-X. (Chapter 6)
http://www.sdmagazine.com
/documents/s=818/sdm0208a/

[19] Adam Young and Moti Yung. Kleptography:
Using Cryptography Against Cryptography. In
Advances in Cryptology – Eurocrypt’97, LNCS
1233, pp. 62–74. Springer-Verlag. ISBN 3-540-
62975-0

2nd Annual PKI Research Workshop---Pre-Proceedings

108

Privacy-enhanced credential services

Alex Iliev
sasho@cs.dartmouth.edu

Sean Smith
sws@cs.dartmouth.edu

April 4, 2003

Abstract

The use of credential directories in PKI and authorization systems such as Shibboleth intro-
duces a new privacy risk: an insider at the directory can learn much about otherwise protected
interactions by observing who makes queries, and what they ask for. Recent advances in Practi-
cal Private Information Retrieval provide promising countermeasures. In this paper, we extend
this technology to solve this new privacy problem, and present a design and preliminary pro-
totype for a LDAP-based credential service that can prevent even an insider from learning
anything more than the fact a query was made. Our preliminary performance analysis suggests
that the complete prototype may be sufficiently robust for academic enterprise settings.

1 Introduction

In this paper, we identify a privacy risk in PKI and other organization-centered authorization sys-
tems; we also offer a design (and partial prototype) of a practical solution.

Hippocrates advised physicians to “first, do no harm.” We would also like to apply this dictum to
the design and deployment of new security infrastructure. While examining whether new technology
solves existing security problems, we should also ask: does it create new ones?

Traditional hierarchical PKI (as well as other authorization schemes) can potentially solve many
problems regarding interaction within and across organizational boundaries. However, an artifact of
this focus on organization is centralization. Advanced cryptography and protocols provide security
and privacy as an organization’s members interact with each other and the world. But making this
all work typically requires the organization to maintain a centralized credential server, that offers
the right tokens and certificates to the participants when they need them.

Although the cryptography they enable can solve security and privacy problems, the existence
of these servers creates new ones: because many interaction with user A require queries to the
credential server, it is possible for the credential server to learn a great deal about these interactions,
by monitoring who is asking for which credentials. Securing interaction against outside adversaries
thus has the unwanted side-effect of enabling attacks on privacy by organizational insiders.

Section 1.1 and Section 1.2 will consider some immediate manifestations of this problem. Sec-
tion 2 outlines the technology that we and others have helped produce, that may address these issues.
Section 3 then explains our design and (not yet complete) prototype that applies this technology
to solve this problem. Section 4 and Section 5 examine whether this design will perform well in
practice. Section 6 concludes with some directions for future work.

2nd Annual PKI Research Workshop---Pre-Proceedings

109

1.1 Certificate Directories

In the standard1 approach to PKI, hierarchies of CAs and users emerge that mirror organizational
hierarchies.

Public-key interaction requires knowing the public key of the other party, and being able to
bind this keyholder to some relevant real-world property (such as identity or role). Within a user
population served by a single root, a public key certificate provides this information; in more complex
hierarchies, a multi-step path of certificates may be necessary.

To provide these certificates, organizations set up directories (typically via LDAP).

Within a population, if Alice wants to send a secret message to Bob, she needs to obtain Bob’s
public key. Typically, she asks a directory for this. If Bob receives a message from Alice and wants
to verify a signature, he needs her certificate. If Alice did not provide this with the message, then
Bob needs to ask the directory; even if Alice did provide it, Bob may wish to check if it’s still valid.

Across different populations, parties may need to ask directories for additional certificates to
construct trust paths. In more general settings, such as trust decisions based on attribute certificates
as well as identity certificates, additional directory queries may be involved.

Consider the privacy implications if the adversary Mallory operates the directory. Alice may be
using encryption on her message because she wants to keep this secret. But because she needs Bob’s
certificate, Mallory knows that Alice is sending a message to Bob. If Bob needs to obtain Alice’s
certificate (or check whether it’s valid), he must ask the directory, so Mallory knows that too. If
Alice and Bob take the precautions of using protected channels for their message, Mallory still learns
of the interaction via the PKI at the end points. Even if Alice and Bob did not take precautions,
the use of PKI lowers the work required for Mallory—rather than monitoring network traffic, she
can just log queries to a directory.

1.2 Shibboleth

Shibboleth is a developing system to facilitate user authorization for access to resources in remote
sites [9]. The user is assumed to have a home site, which can provide information about her. The
resources are located at the target site. The simplified procedure upon receiving a request for some
data, illustrated in Figure 1, is that the SHIRE2 at the target site establishes an opaque handle for
a user, after which the SHAR3 uses this handle to request user attributes from the AA4 at the home
site. The attributes are then used to make an authorization decision.

Because the user handle is opaque to the target site components, they do not learn anything
about the user beyond the attributes given by the AA. This is the main reason why Shibboleth
claims to be privacy sensitive. What is not covered though, is that the home site can learn a lot
about their users’ online activities—which target sites they visit, and in some cases even the exact
URL’s.

For example, say John from Dartmoor College occasionally needs access to http://webofscience.
com/LegalizeIt, salon.com/archives/palestine/, and pop-music-journal.com/sexpistols/,
and these sites require Shibboleth authorization for users of subscribing institutions5. The SHAR at
each web site will ask the AA of Dartmoor for some attributes of John, by passing John’s opaque
session handle (opaque to the sites, not to the AA), and the URL being requested. The URL is

1We note that dissent exists.
2Shibboleth Indexical Reference Establisher
3Shibboleth Attribute Requester
4Attribute Authority
5Perhaps the sites also offer pricey personal subscriptions.

2nd Annual PKI Research Workshop---Pre-Proceedings

110

Handle
Service

request
Handle

Attribute
request
for handle

Attribute
Authority

Handle

SHAR
(Attribute
Requester)

SHIRE
(User

Establisher)
HandleHandle

Attribute

Target SiteHome Site

Figure 1: A simplified view of the Shibboleth procedure. On receiving a request, the target site
establishes a handle for the user, then requests attributes for that handle, and makes an authorization
decision based on the attributes.

passed to the AA so it can decide which attributes to release, based on Attribute Release Policies.
The attributes will likely be non-identifying, like confirmation of institution membership, or age, so
the sites do not receive any personal information about John. The AA at Dartmoor however does
see which sites (including URLs) are asking for attributes for John, and if Mallory at the AA wished
to do so, she could log this information.

2 Background

In this section, we examine some relevant technology which can enable a solution to the server
privacy problem as described above. We note that work by Stefan Brands offers a much more
general solution to privacy concerns in current PKI [4, 5]. Our solutions here are more incremental
and have the potential to be deployed until such time as a more general overhaul of PKI is in place.

2.1 Secure Coprocessors

A secure coprocessor is a small general purpose computer armored to be secure against physical
attack, such that code running on it has some assurance of running unmolested and unobserved [18].
It also includes mechanisms to prove that some given output came from a genuine instance of
some given code running in an untampered coprocessor [12]. The coprocessor is attached to a host
computer. Since the secure coprocessor we use is implemented as a PCI card, we sometimes refer to
a secure coprocessor as a card.

2nd Annual PKI Research Workshop---Pre-Proceedings

111

2.2 Private Information Retrieval

The problem of private information retrieval considers how a user can obtain a particular record from
a large set a server offers, without the server learning anything about which record was requested.
Simply encrypting the records does not solve the problem; the server can still learn popularity of
individual records, correspondence between requests, and (if the server colludes with a user) can
learn what any given record decrypts to.

Theoretical computer scientists developed many algorithms (e.g., [7, 6]) through which users,
servers, and sometimes other parties could carry out computation and achieve PIR.

2.3 Practical PIR

Smith and Safford [14] then proposed the problem of practical PIR: using existing systems, can we
provide PIR along the lines of a Web model: the user establishes a shared key, issues a request,
waits a short while, then receives the response?

Their solution used COTS6 secure coprocessors and assumed that a coprocessor can only hold a
fixed small number of records internally at one time. Their scheme consists of handling a query to a
PIR server by having a secure coprocessor read sequentially through all the records in the database
(which is kept on the host), keep the correct record internally and return it to the user. The running
time of a query is linear in the database size.

Asonov et al [2] then improved the Smith-Safford scheme by decreasing the processing time for
a query at the expense of a periodic preprocessing step. We elaborate on this scheme in the next
section.

2.4 Asonov’s Scheme

The setup for this scheme is that the database consists of N records, numbered from 0 to N-1. They
may or may not be originally encrypted, depending on whether the contents need to be kept private.
The records are stored on the host, and accessed from the secure coprocessor (the card) via a simple
API:

• Record-text read record(position) and

• write record(Record-text, position).

The Record text may be encrypted for reads, and will be encrypted and MAC’ed for writes. An
assumption is that at least two records can be stored on the card at a time.

The scheme is divided into two parts:

1. Preprocessing, where the database is shuffled such that the host has no information about the
positions of records in the shuffled version.

2. Retrieval, where the card fetches records from the shuffled database.

2.4.1 Preprocessing

Shuffling is done in O(N2) time, as follows. A uniform random shuffle vector V is generated such
that record number V[i] goes to position i of the shuffled database. Then, for each postion i, the

6Commercial Off The Shelf

2nd Annual PKI Research Workshop---Pre-Proceedings

112

card sequentially reads every record from the host, keeps record number V[i] internally, and writes
it out to position i of the shuffled database. The host does not know what V[i] is, so does not learn
anything about the record going into shuffled position i.

2.4.2 Retrieval

For the first record retrieved after a shuffle, the card simply gets the record’s shuffled position from
its shuffle vector V, and retrieves that position. For the nth retrieval (call it record Rn) after a shuffle,
the card re-fetches all n− 1 records previously retrieved, then fetches and returns Rn. If Rn was in
the n-1 already retrieved records, it is kept internally to be returned, and the nth record fetched is
a random one not previously touched.

3 Our Extensions and Prototype

We can solve the privacy problem for credential servers by using a PIR server for the information
source (e.g, the Shibboleth AA, or a certificate directory). Users could then have assurance that the
system operator is not observing their queries 7.

The question, then, is can we build a credential server using PPIR technology and COTS hard-
ware that performs reasonably well?

We decided that the outside interface should be LDAP9, currently the most popular directory
access protocol; we will make the limiting assumption that the querier can only specify one fully
named record. This limitation is not unreasonable—asking a directory for the certificates of all Bobs
does not seem like an indispensable operation.

We then consider the issues: Section 3.1 discusses extending PPIR to deal with named records;
Section 3.2 presents a new approach to the shuffling step that decreases the time from O(N2) to
O(N log N); Section 3.3 discusses our PPIR setup; Section 3.4 discusses our prototype implementa-
tion; and Section 3.5 discusses the overall credential server architecture.

3.1 Named Records via Hashing

Real database records are usually named as opposed to numbered. The approach we took to dealing
with names in this prototype was to implement the database using hashing with chaining. Thus,
hashing a record name yields a bucket number, and inside this bucket is the needed record. We
effectively ran the Asonov scheme with numbered buckets. Within a given bucket, a record was
retrieved by reading in all the records sequentially and keeping the right one.

The hash function we used is due to Dan Bernstein and was chosen as it was simple, seemed well-
recommended, and performed well compared to several others we tried. The most important metric
we used was the size of the largest bucket produced. The function is, for a string str[0..n-1]:

hash(str[0..i]) = hash(str[0..i-1]) * 33 ^ str[i].

Some other more complicated name resolution options we considered are
7For Shibboleth, further steps needed would be to make the HS8 privacy-protected too, or a reasonable guess could

be made at the identity of a request for attributes which comes soon after a login at the HS.
9Lightweight Directory Access Protocol

2nd Annual PKI Research Workshop---Pre-Proceedings

113

1. We could hold a data structure of all the record names inside the card, possibly with some
index for fast searching, and use this to look up numbers from names. If we assume names to
be 20 bytes on average, for 10,000 records this structure would be 200K memory minimum,
which could possibly be kept inside the card. Also possible would be to outsource the name
resolution to another card. This approach could also be useful with providing substring name
matching.

2. We could use a perfect hash function [11]. This needs to be constructed especially for the
current set of names, but then hashes each name into a unique bucket. Perfect hash functions
tend to come with an index whose size is comparable to the name set’s size, but since this
index would consist of about N integers (sized 2 bytes each), it would certainly be a lot smaller
than the full name table.

3.2 Private Shuffling with Permutation Networks

We have planned an alternative and faster shuffling algorithm which we shall sketch out here. It
is based on a Permutation network - a network of switches wired together in a fixed manner and
intended to perform a given permutation of its inputs [17]. A switch has two inputs and two outputs,
and it may cross the inputs, or pass them on straight. By propagating values along the wires and
through the appropriately set switches, any permutation of the input can be produced at the output.
An example 4-input network is shown in Figure 2. A permutation network for N inputs can be built
recursively as shown in Figure 3. [8] This network clearly consists of Θ(N log N) switches. Setting
all the switches to achieve a given permutation is possible with a Θ(N log N) algorithm [16, 1].

Straight
Switch

Crossed
Switch

3

2

1

0

0

1

3

2

Figure 2: A Permutation network with 4 inputs, performing the permutation 〈2, 3, 1, 0〉

Figure 3: A Permutation network for N in-
puts built from N switches and 2 networks
with N/2 inputs each. Each of the switches
on the left have one output wired to per-
muter A, and one output to B. The switches
on the right have their inputs similarly con-
nected. This construction is straighforward
but not entirely minimal—N/2 switches can
be removed while still enabling any permu-
tation to be executed [17].

N/2 input
Permuter

N/2 input
Permuter

N/2 switches

1
2
3
4
5

0

N−2
N−1

N/2 switches

A

B

2nd Annual PKI Research Workshop---Pre-Proceedings

114

Permutation networks have in fact been proposed for use in a related field—mix networks for
anonymizing email [1]. The similarity lies in the shared goal of erasing any observable relationship
between the inputs and outputs of a shuffle or mix net respectively.

A switch can be interpreted for our shuffling scenario as follows. The coprocessor reads in two
records (the inputs), possibly switches their places, and writes them out to the same two positions.
The host should be unable to tell if the two records were switched or not. This can be achieved by
reencrypting the records with new keys for example.

Finally, a shuffle using such a permutation network would consist of the card internally generating
a random permutation, generating a network for its chosen permutation, and then executing all the
switches in order (column-major order looks sensible). Generating the network takes Θ(N log N)
time, as does executing the switches.

3.3 System Setup

Our prototype runs in the IBM 4758 secure coprocessor with Linux [13]. The 4758 is a commercially
available device, validated to the highest level of software and physical security scrutiny currently
offered—FIPS 140-1 level 4 [15]. It has an Intel 486 processor, 4MB of RAM and 4MB of FLASH
memory. It also has cryptographic acceleration hardware. It connects to its host via PCI. Our host
runs Debian Linux, with kernel version 2.4.2-2 from Redhat 7.1 as needed by the 4758/Linux device
driver.

Linux is an experimental operating system for the 4758, which runs CPQ/++ in production,
but Linux has considerable advantages in terms of code portability and ease of development—
our prototype is written in C++, making extensive use of its language features and the Standard
Template Library, and it runs fine on the card with Linux.

Figure 4: An overview of our PIR prototype.
The card programs are shuffle which does
the shuffling, and pirserver which handles
retrievals. On the host, pirsearch performs
a search by passing the name to pirserver,
and card server handles DB access re-
quests from the card programs. Communi-
cation between the card and card server
is over SCC sockets, one of the mechanisms
provided for 4758 Linux to talk to the out-
side. We serialize data using the External
Data Representation (XDR) library in the
RPC package.

shuffled, encrypted
DB

cleartext
DB

�
��
�separate secure coprocessors

shuffle pirserver

� � �
� � �
� � �
� � �
� � �
� � �

�
��
�

name
record

pirsearch

card_server

3.4 PPIR Implementation

An overview of the components of our PPIR prototype is shown in Figure 4. Our implementation
of retrieval with hashing is illustrated in Figure 5. Shuffling in this prototype is a straightforward
implementation of the naive algorithm in Section 2.4.1. An implementation of shuffling with per-
mutation networks is in progress. We make our code available at
http://www.cs.dartmouth.edu/~sasho/privdir/.

2nd Annual PKI Research Workshop---Pre-Proceedings

115

Shuffle
Vector

Secure
Coprocessor

Hash

Name

Bucket#

0
1
2

N−1

0
1
2

N−1

Bucket #

0 1 2 4 5
Record #

Host

Database
Shuffled

Figure 5: The Retrieval Procedure. Once the card has identified the correct bucket number, it
retrieves all the records in that bucket, and keeps the correct one.

3.5 System Architecture

An overview of the whole system is shown in Figure 6. It consists of the PPIR system described in
Section 3.4 connected to an OpenLDAP server by means of a shell backend. The OpenLDAP server
has a variety of ways to access the actual data it provides LDAP access to. One of them is to run
a shell command to retrieve or update records.10 We wrote a perl script to allow the OpenLDAP
server to use our pirsearch program (see Figure 4). We tested this whole setup by sending LDAP
queries from the Sylpheed11 mail client to our PIR prototype.

Retrieval Shuffle

LDAP
Query

LDAP
Response

OpenLDAP
server

Shell
Backend

Host

LDAP Client

Record

Name

� � � � �
� � � � �

� � � �
� � � � Shuffled

DB

Figure 6: System Architecture. OpenLDAP is used to provide the gateway between our PPIR server
and LDAP clients.

10There are more operations besides query and update which are idiosyncratic to the LDAP protocol.
11http://sylpheed.good-day.net/

2nd Annual PKI Research Workshop---Pre-Proceedings

116

This setup is a temporary way to achieve the connection to LDAP, and it is clearly not root-
secure—secure even against an adversary running as root on the host—as queries are in the clear
on the host before being handed to pirsearch. Our plan for a secured connection all the way from
the client to the retrieval coprocessor is shown in Figure 7. It will make use of LDAP over SSL, and
use OpenLDAP libraries for parsing of LDAP queries, and construction of LDAP responses.

LDAP
Query

LDAP
Response

Retrieval
LDAP
Decoding/
Encoding Encrypted

Authenticated
Channel

Shuffle

LDAP Client

Host

� � � � �
� � � � �

� � � �
� � � � Shuffled

DB

� �� � � �� �� �� �
SSL Channel

Figure 7: Final System Architecture, using a third coprocessor to handle LDAP and SSL operations.
A separate coprocessor will likely be needed for these tasks because of space restrictions inside the
coprocessors.

4 Experimental Results

4.1 Performance

One of the main purposes of our prototype was to get a feel for how this PIR scheme performs in
practice in the credential server setting, and what may need to be improved to make it really usable.
The most interesting source of performance numbers was from the shuffling step, which is shown in
Table 1. The database size N was 1000, and hashing had resulted in every bucket holding 5 records.
The times shown are for one pass of the shuffle algorithm, where all the buckets are read by the card
in order to keep one of them to write to a given position in the shuffled database.

Record size (bytes) Time to Read 1000
Records (sec)

115 18
530 24
1345 34

Table 1: Read time during shuffling vs. Record size.

The times for a run of 300 retrievals is shown in Figure 8.

2nd Annual PKI Research Workshop---Pre-Proceedings

117

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 50 100 150 200 250 300

D
ur

at
io

n
in

 s
ec

on
ds

Retrieval number

Figure 8: Times for each of 300 sequential retrievals of random records in the database.

4.2 Hashing

The main price of using a fixed hash function is that collisions inevitably occur, and in this case
they are particularly damaging—since all buckets need to look the same to the host, they must all
hold the same number of records. In our case the largest bucket received 5 records from the hash
function, so we had to pad all the buckets to 5 records, thus having 4N dummy records—4000 for
our test database.

5 Analysis

5.1 Related Work

One of the mechanisms used in Oblivious RAMs [10] relies on private shuffling of memory addresses,
which is implemented using a sorting network—bitonic sorting. This is a network of comparators
(analogous to switches in the permutation network), whose structure depends only on the problem
size. It consists of Θ(N log2 N) comparators, thus being a log factor larger than a permutation
network of equal input size.

Another approach to private database shuffling comes from Asonov [3]. It consists of splitting
each record into p pieces to create p “database slices”, each of which has one piece of each record.
These slices are then shuffled, and reassembled. This approach can reduce the number of commu-
nications between the host and coprocessor from Θ(N2) to Θ(N

√
N). Asonov is in the process of

publishing further refinements and experiments [Personal Communication].

5.2 Prototype’s Shuffling

Several observations arise from the figures in Table 1. Firstly, a linear relationship between the
record size (s) and read time for 1000 records (t) is t ≈ 16 + s

75 . This confirms that there are
considerable overhead costs to the host-card communication, and that maximizing the amounts of
data transferred at a time is desirable.

Secondly, the whole shuffle, which consists of N scans through the whole database, would in this
case take 18, 000 seconds, or 5 hours, for the smallest record size. This brings into question the real
usability of the scheme with naive shuffling for larger but quite realistic database sizes like 10, 000
records—the prediction in that case is 500 hours, or almost 3 weeks—shuffle that!

2nd Annual PKI Research Workshop---Pre-Proceedings

118

5.3 Retrievals

From Figure 8, around the 300th retrieval the time reaches 3 seconds, which is a reasonable ceiling
on the duration of a query, so we may want to set up the system so that a single shuffled database
is used for about 300 queries.

5.4 Permutation Network Shuffling

A more detailed analysis of the expected running time of a permutation network is as follows. From
the recursive construction of Figure 3, we can determine that a network with N = 2n inputs will
have 2n−1 columns of N/2 switches each. If the switches are executed in column major order, each
column will consist of N record reads, and N record writes. Now if we approximate a running time
for one column as twice the time for reading N records, this should amount to about 36 seconds
for our N=1000 database. With 2dlog Ne − 1 = 19 columns, the switch execution stage should last
about 12 minutes, and it should dominate the shuffle time, so 20 minutes is a conservative estimate
of the total shuffling time.

For a larger database with say N = 10, 000, each column of the permuter should take about 6
minutes, and there will be 14× 2− 1 = 27 columns, for a total of 160 minutes spent permuting, so
perhaps 3 hours for the whole shuffle.

Our initial experiments with an implementation of a permutation network suggest that these
estimates are too optimistic, by constant factors, mainly due to the extra decryption and encryption
involved. In particular, each switch of the network requires a decryption followed by a re-encryption
(with a different key or IV) of the two records being switched. However the cost of these symmetric
crypto operations will be much reduced when we begin to use the crypto hardware of the 4758 secure
coprocessor—currently the TDES operations are done in software, and TDES stands to benefit a
lot from special-purpose hardware, like that in the 4758.

5.5 Name Resolution

As we wrote above, hashing required us to introduce 4N dummy records into the hashed database.
This brings about a factor of 5 increase in the running time of most procedures in the system. If
we use a perfect hash function, each record name would hash to a unique record number, and there
would be no need to carry the deadweight of dummy records. Thus our current running times for
shuffling and retrieval could be reduced by up to a factor of 5. The cost would be the complexity of
computing the perfect hash function when the name set changes (which should be infrequent).

In Table 2 we list a summary of our measured and predicted shuffle run times.

5.6 Consolidation and Feasibility

If shuffling with a permutation network is combined with a name lookup method with less overhead
than hashing with chaining, the shuffle time for a 10, 000 record database may be lowered from 3
to about one hour. In addition, reducing the hashing overhead should reduce retrieval times, as no
dummy records would need to be fetched. The largest number of retrievals off one shuffled database
should go up from 300 to perhaps 1000. If we have C coprocessors shuffling databases in parallel,
they can produce C shuffled databases an hour, which give 1000C queries. The system would be able
to deal with 1000C/3600 ≈ C/4 queries per second, answering each query in less than 3 seconds.

Interesting to note here is that there is no point in having a big collection of shufflers, as the

2nd Annual PKI Research Workshop---Pre-Proceedings

119

DB Size

PPPPPP
Scheme

A B C

1,000 5 hrs 20 mins 6 mins
10,000 3 weeks 3 hrs 1 hr

Schemes:
A—Naive Shuffling, Hashing with chaining
B—Permutation Network Shuffling, Hashing with chaining
C—Permutation Network Shuffling, Low Overhead Name Resolution

Table 2: All Shuffling Times in One Place. The 5 hours figure was measured. 3 weeks is a prediction
of our prototype’s time on larger input. The other numbers are predictions of schemes we have
analyzed in Section 5 and will be implementing.

retrieval coprocessor will not be able to deal with much more than one query in 3 seconds on
average—if the query rate goes higher when retrievals are taking close to 3 seconds, a queue will
quickly build and the response time will be really bad. Thus, the shuffling will no longer be such
a bottleneck, and parallelism (for sustaining a higher query rate) can be achieved by duplicating
shufflers as well as retrievers.

6 Future Work and Conclusions

We currently have a functioning prototype of a private credential directory accessible over LDAP. It
has some fairly serious performance shortcomings, which we are currently addressing. In particular
we are implementing a faster database shuffling algorithm, and faster resolution of record names. We
strongly believe, on the basis of our current measurements and the details of our proposed changes,
that these changes will yield usable performance. We will connect this next version of our prototype
to the certificate directory currently being rolled into operation for Dartmouth’s new campus PKI,
and so get real usage experience for the system. Dartmouth also plans to deploy a Shibboleth
prototype, so we will have a testbed for a private Shibboleth AA. We believe that this system has
realistic potential to address the problems of server privacy exposed at the beginning of the paper.

2nd Annual PKI Research Workshop---Pre-Proceedings

120

Acknowledgments The authors have received support from the Mellon Foundation, the NSF,
AT&T/Internet2, and the U.S. Department of Justice (contract 2000-DT-CX-K001). The views
and conclusions do not necessarily reflect those of the sponsors.

References

[1] Masayuki Abe and Fumitaka Hoshino. Remarks on mix-network based on permutation networks. In
Kwangjo Kim, editor, Public Key Cryptography, volume 1992 of Lecture Notes in Computer Science,
pages 317–334. Springer, 2001.

[2] Dmitri Asonov and Johann-Christoph Freytag. Almost optimal private information retrieval. In
Privacy Enhancing Technologies, LNCS, San Francisco, 2002. Springer.

[3] Dmitri Asonov and Johann-Christoph Freytag. Private information retrieval, optimal for users and
secure coprocessors. Technical Report HUB-IB-159, Humboldt University, 10099 Berlin, Germany,
2002.

[4] Stefan Brands. Rethinking Public Key Infrastructures and Digital Certificates; Building in Privacy.
The MIT Press, August 2000.

[5] Stefan Brands. A technical overview of digital credentials. At
http://www.credentica.com/technology/technology.html, Feb 2002.

[6] C. Cachlin, S. Micali, and M. Stadler. Computationally private information retrieval with
polylogarithmic communication. In EUROCRYPT, LNCS. Springer-Verlag, 1999.

[7] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan. Private information retrieval. Journal of the
ACM, 45:965–982, 1998.

[8] Thomas Cormen, Charles Leiserson, Ronald Rivest, and Cliff Stein. Introduction to Algorithms,
chapter 27. McGraw-Hill, second edition, 2001. Problem 27-3 on permutation networks.

[9] Marlena Erdos and Scott Cantor. Shibboleth architecture. Available from
http://shibboleth.internet2.edu/, May 2002. Version 5.

[10] Oded Goldreich and Rafail Ostrovsky. Software protection and simulation on oblivious RAMs.
Journal of the ACM, 43(3):431–473, 1996.

[11] Bob Jenkins. Minimal perfect hashing. http://burtleburtle.net/bob/hash/perfect.html, 2003.

[12] Sean Smith. Outbound authentication for programmable secure coprocessors. In 7th European
Symposium on Research in Computer Science, Oct 2002.

[13] Sean W. Smith and Steve Weingart. Building a high-performance, programmable secure coprocessor.
Computer Networks, 31:831–860, 1999.

[14] S.W. Smith and D. Safford. Practical server privacy using secure coprocessors. IBM Systems Journal,
40(3), 2001. (Special Issue on End-to-End Security).

[15] National Institute Of Standards and Technology. Security requirements for cryptographic modules.
http://csrc.nist.gov/publications/fips/fips140-1/fips1401.htm, Jan 1994. FIPS PUB 140-1.

[16] Eli Upfal. A permutation network. http://www.cs.brown.edu/courses/cs253/slide/class2.ps,
2000. Course Lecture Notes.

[17] Abraham Waksman. A permutation network. Journal of the ACM, 15(1):159–163, Jan 1968.

[18] Bennet S. Yee. Using Secure Coprocessors. PhD thesis, Carnegie Mellon University, 1994.

2nd Annual PKI Research Workshop---Pre-Proceedings

121

On the usefulness of proof-of-possession

N. Asokan, Valtteri Niemi, Pekka Laitinen
Nokia Research Center, Finland

{n.asokan,valtteri.niemi,pekka.laitinen }@nokia.com

Abstract

Public key infrastructure standards assert that proof-of-possession of private key is an essential requirement dur-
ing the enrollment process. Even though the justifications for this requirement seem to be well-known within the
PKI community, they do not appear to be documented anywhere. In this paper, we document and examine potential
rationales for proof-of-possession and discuss their merits. We conclude that if protocols and applications are de-
signed “properly”, proof-of-possession does not add any security. However, the world is not perfect. Many existing
applications and protocols are in fact not properly designed. Proof-of-possession is a useful safety precaution for
the users of such applications and protocols. But there is no simple automated way for a relying party application
to check whether proof-of-possession was done during enrollment. Therefore, we argue that designers of public key
protocolsmust notassume that CAs require proof-of-possession during enrollment.

1 What is proof-of-possession?
In a public key infrastructure (PKI), the process of submitting a certificate request to a certification authority (CA) or
a registration authority (RA) is known asenrollment. After enrollment, the CA will issue a certificate to the enrolled
public key. During enrollment, the end entity that submits the public key may be required to prove that it knows the
corresponding private key and that it controls the use of this private key. This is commonly referred to as theproof of
possession(PoP).

Every PKI standard asserts that PoP is essential. However, none of them explicitly lays out the threats that are
intended to be addressed by PoP. The rationales and implications of PoP have been discussed in standards meetings
and mailing lists [6, 7]. Yet, there does not appear to be any easily available or commonly known papers or articles that
document these issues. It appears to be yet another case of undocumented folklore within the communities involved.

In this paper, we examine the potential rationales for PoP and discuss their merits. Our goal is to clarify the
answers to the following questions:

• Should the designer of a new PKI require PoP during enrollment?

• Does the designer of a new public key based application or protocol benefit from having PoP done during
enrollment?

Our work was motivated by the on-going work in the 3rd generation partnership project (3GPP) for designing
support for subscriber certificates [10]. 3GPP security group considered various ways of securing the enrollment
messages. One of them was to use the cellular signaling channel which provides mutual authentication and integrity-
protection. This channel is severely bandwidth-limited. Thus it was necessary to check that every bit sent through
this channel is really essential. This prompted us to start investigating the conditions under which PoP is indeed
indispensable.

In the rest of the paper, we use the term “PoP” as it is customarily used, without any additional qualification. The
precise characterization is “proof-of-possession of private key during enrollment.” Public key protocols often involve
other types of proofs of possession: for example, every time a relying party verifies a signature, it is proof that the
signer possessed the signing key; “plaintext-aware” encryption schemes [8] include a proof that an entity claiming
to have produced a ciphertext actually knew (hence possessed) the plaintext. Such proofs of possession are not the
subject of this paper.

In Section 2 we begin by defining the ways in which a private key of an asymmetric cryptosystem is used. In
Section 3 we describe how the public key enrollment process is secured in PKIs. In Section 4 we describe attacks that
are not intended to be prevented by PoP, and in Section 5 we describe potential attacks thatcan beprevented by PoP.
In Section 6 we consider scenarios where mandating PoP is not advisable. In Section 7 we briefly describe the degree

2nd Annual PKI Research Workshop---Pre-Proceedings

122

to which existing PKI specifications require PoP. In Section 8 we consider other possible rationales for requiring PoP.
Finally, in Section 9 we summarize our findings.

2 Use of a private key
There are three primary ways in which a private key of an asymmetric key pair is used:

• commitment: By signing a message with the private key, the purported controller of the private key commits
himself to the signed message. Enabling non-repudiation is an example application of this kind.

• claim: By signing a message with the private key, or by decrypting a ciphertext (and demonstrating knowledge
of the plaintext), the purported controller of the private key can stake a claim for a benefit or ownership. For
example, if the signature is on a plaintext messagem and the signature is accompanied by an identity certificate
binding an entity X to the signature verification key, the claimed fact may be “X is certified to have control of
the signing key corresponding to this signature verification key, and therefore messagem signed by this key is
known to X and uttered by X.” In other words, message authentication is an example application of this kind.

• encryption: Of course, a keypair can also be used just for encryption. This has similar properties like the
“claim” use case.

In standard X.509v3 certificates, it is possible to use thekeyUsage or extKeyUsage parameters to indicate
the types of uses (e.g., “non-repudiation”) to which the public key certificate is limited.

3 Security of enrollment
To enroll in a PKI an end entity will send a certificate request to the CA/RA. A certificate request contains a claimed
public key, and any additional information, such as a claimed identity and attributes, and additional certificates in
support of the request. Attribute certificates do not contain a public key: instead they bind a name to a set of attributes.
When requesting an attribute certificate, the request may not contain public key. We do not consider this case further
because use of such certificates should be accompanied by an identity certificate that binds a public key to the said
name. Therefore PoP does not appear to be relevant when requesting attribute certificates.

The enrollment process must be secured so that the CA/RA can associate the submitted public key with the
correct authorizations allowed for the submitter. An example of such an authorization is the right to be bound to
the identity of a specific end entity. Typically this is done by distributing a shared one-time key or password ahead
of time, for example, by mailing scratch cards containing initial PIN codes to potential users of PKI. Such a key or
password is known as an initial authentication key. The initial authentication key will be used to authenticate and
integrity-protect messages in the enrollment process. There are also other ways of securing enrollment, for example
by using any existing or derivable security association between the end entity and the CA/RA, e.g., as done in the PIC
protocol [11]. This approach is applicable when we need to bootstrap a PKI from an existing infrastructure [10]. The
purpose of this authentication is to allow the CA/RA to determine whether and how to approve the certificate request.

4 Examples of attacks not prevented by PoP
The certificate request is authenticated as mentioned in Section 3. If the cryptographic transforms used are inappro-
priate, it will allow an attacker to compromise the security of the enrollment process: an attacker on the network can
change the contents of the request or fake a new request without being detected. We can call this the“weak password
attack.” PoP does not help against this attack. PoP is not intended to be a replacement for having to design appropriate
mechanisms for the security of enrollment.

If PoP is required as part of certificate request, it assures the CA/RA that the requestor had access to the private
key corresponding to the public key on which the certificate is requested.

Suppose the private key is used for commitments only, such as for non-repudiation. If PoP is not done during the
certificate request process, a legitimate end entity Alice can indeed obtain a certificate binding her name to the public
key of another end entity Bob. But this only leaves Alice, the supposed attacker, liable for commitments made by
Bob, who controls the private key and can make signatures. In other words, this is not a protocol attack. (However,
as described in Section 5.2.2, there are protocol attacks related to claim type uses.) In fact, Alice may use a slightly
different variation, as we discuss in Section 6, to delegate authority to Bob.

Note that Alice still cannot send an arbitrary messagemand claim that it belongs to and/or was sent by Bob. The
security of the enrollment process (Section 3) is intended to prevent Alice from being able to send arbitrary signed
message and fool the attacker into thinking that they came from Bob. See Section 5.1 for more discussion.

2nd Annual PKI Research Workshop---Pre-Proceedings

123

5 Attacks prevented by PoP

5.1 Replacing public key in enrollment request sent by victim

5.1.1 Attack description and assumptions

In a certificate request sent by Bob, the attacker replaces Bob’s public key by Alice’s public key. The effectiveness of
this attack is contingent on the following assumptions being valid:

1. Security of enrollment is weak: Normally, this attack is prevented by the mechanism for securing enrollment.
One aspect of securing enrollment is the protection of the certificate request message itself. As discussed in
Section 4, PoP is not relevant from this aspect. A second aspect of securing enrollment is the access control on
the devices used by the victim Bob. The access control mechanisms on Bob’s device may not be robust enough
to prevent the attacker from (i) changing the contents of the local public key repository without being detected,
or (ii) accessing the secret keys used to ensure the security of enrollment. We can call this the “Trojan attack.”

2. Although the attacker is able to insert a public key into Bob’s device, it is unable to insert a private key or
intercept the communication path between the signing algorithm and the calling application: if this were not
true, the attacker could insert a whole key pair into Bob’s device. Thereafter PoP is of no use. Note that Alice
need not suffer any harm by inserting a private key: it can be the private key of a keypair that the attacker
generated solely for this attack. Alternately, even if the attacker cannot insert the private key in the standard
place where private keys are stored on Bob’s device (e.g., a smart-card), it is enough if the attacker intercepts
private key operation requests or replaces the responses.

5.1.2 Type of uses

In commitment type uses, if the public key is a signature verification key, then Alice can make commitments (signa-
tures), have them supported by the certificate, and leave Bob liable for them.

In claim type uses, if the public key is an encryption key, then Alice can send it to a peer Carol and trigger Carol
into encrypting, with this key, some confidential data intended for Bob.

In either case any protection provided by PoP is subject to both the assumptions listed in Section 5.1.1 being true.
The assumptions are not very realistic because they require the access control on the victim’s device to be faulty in
a very specific manner. If the victim’s device does not have adequate access control, PoP does not help because the
attacker can make sure that the certificate request has the correct signature as described above in assumption 2. If the
victim’s device is indeed secure, then the Trojan attack should not succeed, and assumption 2 would not hold.

5.2 Using victim’s public key in own enrollment request

5.2.1 Attack description and assumptions

In a certificate request sent by Alice, she can use the public key of another legitimate end entity Bob. As explained
in the next section, the basic attack does not appear to rely on any strong assumption other than badly designed
applications or application protocols.

5.2.2 Type of uses

Without PoP, CA may issue Alice a certificate containing Bob’s public key. Depending on the type of use, this threat
can be turned into concrete attacks as follows.

In claim type uses

1. if the public key is a signature verification key, then Alice could falsely claim ownership of messages that were
signed by Bob. Note that if the application protocol would bind some identification of the sender within the
signed message, and the verifying party’s application would compare this identification with what is in the
certificate used to verify the signature, then this attack would not work. We can call this the “sloppy application
protocol attack.”

2. if the public key is a signature verification key, then Alice can mislead a peer Carol into revealing to her some
private data that Carol intended for Bob. This works as follows [12]:

Alice obtains a certificate for Bob’s public signature verification key. Then Alice waits until Bob sends a
signed, encrypted message and Bob’s certificate to Carol. Alice intercepts these. Alice does not know what the
contents of the message were. She then forwards this intercepted message to Carol along with the certificate she
obtained earlier. Carol concludes that the message actually came from Alice because all cryptographic checks

2nd Annual PKI Research Workshop---Pre-Proceedings

124

succeed. This might cause Carol to send some private information to Alice in the clear (e.g., something about
the contents of the message she just received).
Again, this is a variation of the “sloppy application protocol attack:” if the messaging protocol required that the
sender’s identity must be included in the signed text, Carol’s software would notice that the certificate and the
signed data do not match.

In commitment type uses, there does not appear to be any effective protocol attack as a result of this flaw. However,
there may be a software program like an e-mail client that does use public keys in both ways (commitment and
claim). If the application is not properly written, it may either not pay attention to the limited use of a certificate
(such askeyUsage set to “non-repudiation”), or if user is careless, she might not notice that the signature does not
authenticate the sender. In either case she may incorrectly conclude the sender is authenticated and act based on this
conclusion. For example, in example 2), suppose the certificate haskeyUsage set to “non-repudiation”, but the
e-mail client of Carol does not indicate this unambiguously. So Carol may be misled into assuming that the signature
and certificate authenticate the sender, and make the same conclusions as though the certificate is also intended for
“claim” type of uses. We can call this the “sloppy application attack.”

The attack against claim type use assumes that application software and application protocol designers may have
made some basic mistakes. The security of the users of such applications can benefit from mandatory PoP. The attack
against commitment type use can also be avoided if

1. a keypair has only one type of use, e.g., either authentication or non-repudiation1, and

2. the software application of the relying party handleskeyUsage/extKeyUsage restrictions correctly.

If it is difficult to ensure either of the above (e.g., it may be difficult to mandate the former, and unrealistic to
expect the latter) then PoP can help limit the damage. However, attempting to provide protection against sloppy
application designers is ultimately a doomed exercise.

6 Does PoP do any harm?
We saw that PoP could potentially offer some protection for users of badly designed applications and protocols. If
PoP has no harmful consequences, requiring PoP is a prudent safety precaution. So, the logical next question is
whether PoP does any harm. We consider the following factors.

• Bandwidth: PoP means that the requestor has to perform a private key operation. This in turn implies that
a large message (e,g., signature or encryption) needs to be sent between the requestor and the CA/RA. If the
certificate request channel is bandwidth constrained, size of messages becomes a factor. As we mentioned in
Section 1, this was the context in which we started to investigate whether PoP is indeed indispensable.

• Latency: To prevent against replay attacks the PoP protocol must ensure freshness. As usual, this can be
done using timestamps, which requires synchronized clocks. A better alternative is where the CA/RA sends
a challenge nonce. But this means that the certificate request procedure will typically contain an extra re-
quest/response pair.

• Novel applications: It appears that the need for PoP arose from the “traditional” PKI scenarios where the
certificates issued are identity certificates. In such cases, it is of course quite logical to try to prevent two persons
from attempting to get certificates for the same public key. However, as limited scope PKIs are becoming more
realistic and more prevalent, there may be new uses that are prevented or made harder by mandating PoP. For
example, suppose certificates are used for authorizing payments from a bank account. A use case may be for
Alice to obtain a certificate for Bob’s public key as a surprise gift voucher (so that Bob is allowed to spend a
certain amount of money which will be paid from Alice’s account). If PoP is required, then obtaining such a
certificate will require Bob’s involvement, which will eliminate the surprise factor, and hence the point of this
use case! Note that the certificates used in this case would not bind Alice’s identity to a public key. Instead, they
would bind some authorizations to a public key. In other words, they would be authorization certificates [4],
rather than identity certificates.
Although mandatory PoP will prevent a solution to this use case using standard certificates, it is of course
possible to design solutions using other types of constructs, e.g., by defining some form of delegation tokens.

Enrollment is a relatively rare occurrence. In typical scenarios, it does not have any real-time requirements.
Therefore, we conclude that in general, bandwidth and latency are not critical factors. While mandatory PoP may in
fact preclude some class of applications using certificates, there are other ways of designing these applications. Thus,
we conclude that PoP does no harm.

1Achieving non-repudiation requires a lot more than digital signatures; but discussion on the usefulness of “non-repudiation” as akeyUsage
is beyond the scope of this paper.

2nd Annual PKI Research Workshop---Pre-Proceedings

125

7 The place of PoP in current PKI specifications
The PKCS #10 specification [9], designed by RSA Laboratories, states the following:

“The signature on the certification request prevents an entity from requesting a certificate with another
party’s public key. Such an attack would give the entity the minor ability to pretend to be the originator
of any message signed by the other party. This attack is significant only if the entity does not know the
message being signed and the signed part of the message does not identify the signer. The entity would
still not be able to decrypt messages intended for the other party, of course.” (Section 3, Note 2 of [9]).

The threat described here is the sloppy application protocol attack we discussed in Section 5.2.2. Surprisingly, the
wording of the above text, quoted from PKCS #10, suggests that the impact of this attack is minor. Nevertheless
PKCS #10 mandates the use of PoP.

The Wireless PKI specification [13], designed by the precursor to the Open Mobile Alliance, states that PoP is
necessary “in order to avoid certain substitution attacks” (Section 4.1) but it does not describe the attacks themselves.

The IETF CMP specification [2] states that PoP is necessary “in order to prevent certain attacks and to allow a
CA/RA to properly check the validity of the binding between an end entity and a key pair” (Section 2.3 of [2]). It
does not describe what these attacks may be or whether they are limited to the case of identity certificates only.

The e-mail archives of the IETF PKIX working group [6, 7] contain records of extensive discussions on whether
PoP should be mandatory. The participants recognized both the assumptions under which PoP is useful (e.g., sloppy
application protocols) and the limitations that PoP may impose (e.g., precluding novel applications).

As a result of these discussions, the working group appears to have chosen to require PoP, butnot to mandate PoP
to be part of the certificate request protocol itself. The current CMP specification contains the following explanation:

“... it is REQUIRED that CAs/RAs MUST enforce POP by some means because there are currently many
non-PKIX operational protocols in use (various electronic mail protocols are one example) that do not
explicitly check the binding between the end entity and the private key. Until operational protocols that
do verify the binding (for signature, encryption, and key agreement key pairs) exist, and are ubiquitous,
this binding can only be assumed to have been verified by the CA/RA.”[2]

8 Rationales for justifying PoP
One of the primary reasons for requiring PoP seems to be to minimize potential damage due to

• badly designed application-level protocols, or

• badly designed end entity application software, or

• carelessness of an end entity user.

The attacks described in Section 5.2.2 may become possible due to one of the factors listed above. PoP could
potentially reduce the likelihood of the resulting attacks. CA operators therefore may view PoP as a way of protecting
them from liability arising from damage due to these factors.

However, currently there is no easyautomatedway for a relying party application to check if PoP was done during
enrollment. This is because there is no standard place in a certificate for the CA to indicate this. In order to benefit
from PoP, relying parties must make sure that they never use certificates issued by CAs that do not require PoP. For
example, users may have to examine that certification practice statements (CPSs) of CAs before accepting certificates
issued by them. Needless to say, this is not a pragmatic solution.

Therefore, any good application developer has to assume that PoP was not done at the time of enrollment. In
particular, an application developer must

• explicitly include all necessary identification and context information in the parts of application protocol mes-
sages that are cryptographically protected, (for example, a PKI-enabled e-mail client could include the name
of the sender in the signed text; signature verification should fail if this address does not match the name in the
certificate used to verify the signature.)

• require the use of different keys for different purposes, and

• consistently and correctly identify the purpose of a given key (e.g., by precisely defining the semantics of the
keyUsage attributes) so that it is not used for a different purpose.

Such rules are part of the general guidelines for well-designed cryptographic protocols discussed elsewhere [1, 3]
and are applicable in this context. The first rule was also repeatedly pointed out in the IETF PKIX mailing list
discussions [6, 7].

2nd Annual PKI Research Workshop---Pre-Proceedings

126

9 Conclusions
Several standards allude to unspecified attacks in justifying why PoP is needed. We discussed potential threats and
discussed how PoP can help reduce their impact. A well designed application protocol does not need PoP. However,
many existing protocols and applications are not well designed in this sense. PoP is useful as a safeguard for users of
such applications and protocols.

Mandating PoP has some drawbacks. It will preclude the use of standard certificates to achieve one class of use
cases where Alice is allowed to delegate authority to Bob by obtaining a certificate for Bob’s public key without Bob’s
involvement. Also, if the communication channel used for enrollment is resource constrained, it is necessary to check
if PoP is really needed for the application under consideration. But none of these drawbacks is substantial.

It is becoming increasingly clear that the successful uses of PKI tend to be for specific applications [5]. Designers
of application-specific PKIs can and should check if PoP is really needed for the applications of interest to them.

Thus we conclude that by and large, requiring PoP during enrollment is a useful safety precaution because of the
shortcomings in applications that are already widely deployed. Designers of new PKIs should require it, especially if
there is any likelihood that their PKI will be used with legacy applications.

However, as there is no simple automated way for a relying party application to check whether PoP was done
during enrollment, we argue that designers of new security protocols and applicationsmust notassume that CAs
require PoP during enrollment. They must follow the well known rules of secure protocol design referred to in
Section 8.

10 Acknowledgments
We thank the anonymous referees, Antti Väḧa-Sipil̈a, Jukka Virtanen, Kaisa Nyberg, Michael Waidner, Pasi Eronen,
Philip Ginzboorg, Olli Immonen, and the members of the 3GPP SA3 working group for their valuable feedback on
previous versions of this paper.

References
[1] Martín Abadi and Roget Needham. Prudent engineering practice for cryptographic protocols.IEEE Transac-

tions on Software Engineering, 22(1):6–15, January 1996.

[2] C. Adams and S. Farrel. Internet X.509 public key infrastructure: Certificate management protocols. Internet
Engineering Task Force, RFC 2510, March 1999.

[3] Ross Anderson and Roger Needham. Robustness principles for public key protocols. In Don Coppersmith,
editor,Advances in Cryptology; CRYPTO ’95, number 963 in Lecture Notes in Computer Science, pages 236–
247. Springer-Verlag, 1995.

[4] C. Ellison et al. SPKI Certificate Theory. Internet Engineering Task Force, RFC 2693, September 1999.

[5] Peter Gutmann. PKI: It’s Not Dead, Just Resting.IEEE Computer, 35(8):41–49, Auguist 2002.

[6] IETF PKIX Mailing list discussions. IETF PKIX mailing list archive, February 1997.
http://www.imc.org/ietf-pkix/old-archive-97/thrd3.html#00081 .

[7] IETF PKIX Mailing list discussions. IETF PKIX mailing list archive, October 1997.
http://www.imc.org/ietf-pkix/old-archive-97/threads.html#01062 .

[8] A. Menezes, P. van Oorschot, and S. Vanstone.Handbook of Applied Cryptography. CRC Press, 1996. Avaliable
from http://www.cacr.math.uwaterloo.ca/hac .

[9] RSA Laboratories. PKCS #10 v1.7: Certification Request Syntax Standard. RSA Laboratories, May 2000. Also
published as IETF RFC 2986.

[10] 3GPP security group. Support for subscriber certificates. Third generation partnership project
(3GPP), Security working group work item description, February 2002. Available from
http://www.3gpp.org/ftp/tsg sa/WG3 Security/TSGS3 22 Bristol/Docs/PDF/S3-
020162.pdf .

[11] Y. Sheffer, H. Krawczyk, and Bernard Aboba. PIC, A Pre-IKE Credential Provisioning Protocol, October 2002.
IETF ipsraworking group draftdraft-ietf-ipsra-pic-06.txt .

[12] Michael Waidner. Personal communication, August 2002.

[13] WAP Forum. Wireless application protocol, public key infrastrcutre definition. WAP forum, WAP-217-WPKI,
April 2001.

2nd Annual PKI Research Workshop---Pre-Proceedings

127

http://www.cacr.math.uwaterloo.ca/hac

Keyjacking: Risks of the Current Client-side Infrastructure

John Marchesini, S.W. Smith, Meiyuan Zhao
Department of Computer Science

Dartmouth College

{carlo,sws,zhaom}@cs.dartmouth.edu

April 21, 2003

Abstract

In theory, PKI can provide a flexible and strong way to authenticate users in distributed information systems. In
practice, much is being invested in realizing this vision via tools such as client-side SSL and browser-based keystores.
Exploring this vision, we demonstrate that browsers will use personal certificates to authenticate requests that the
person neither knew of nor approved (in some scenarios, direct migration from password-based systems to client-
side SSL makes things worse). We also demonstrate the easy permeability of these keystores, including new attacks
on medium and high-security IE/XP keys. We suggest some short-term countermeasures. However, against this
background, it is not clear that the current client-side infrastructure can achieve the PKI vision. A fundamental
rethinking of the trust, usage, and storage model might result in more effective tools for building a PKI.

1 Introduction

Because public-key cryptography can enable secure information exchange between parties that do not share secrets a
priori, PKI has long promised the vision of enabling secure information services in large, distributed populations.

In the last decade, the Web has become the dominant paradigm for electronic access to information services. The
Secure Sockets Layer is the dominant paradigm for securing Web interaction. For a long time, SSL with server-side
authentication—where, during the handshake, the server presents a public-key certificate and demonstrates knowledge
of the corresponding private key—was perhaps the most accessible use of PKI in the lives of ordinary users.

However, in the full vision of PKI, all users have key pairs—not just the server operators. Within the SSL specification,
a server can request client-side authentication—where, during the handshake, the client also presents a public-key
certificate and demonstrates knowledge of the corresponding private key. The server can then use this information for
identification, authentication, and access control on the services it provides to this client.

An emerging client-side PKI exploits the natural synergy between these two scenarios. Because the Web is the way
we do business and client-side SSL permits servers to authenticate clients:

• modern browsers1 now include personal keystores, for a user’s key pairs;

• enterprises (and other distributed populations) are arranging for users to obtain certified key pairs to live in these
keystores;

• providers of Web information services are starting to use client-side SSL as a better alternative than passwords
or to authenticate users;

• and even non-Web applications may typically expect to find and use the key pair resident in the browser keystore.

1Admittedly, due to Microsoft’s contention that the browser is part of the operating system, one might argue that the Internet Explorer (IE)
keystore on Windows is really part of Windows.

2nd Annual PKI Research Workshop---Pre-Proceedings

128

In previous work, we have examined the effectiveness of server-side SSL [33] and of digital signatures on docu-
ments [15]. In this paper, we examine the question: does this client-side PKI work?

• When browser-based keystores are used in contemporary desktop environments, is it reasonable for the user at
the client to assume that his private key is used only to authenticate services he was aware of, and intended?

• Is it reasonable for the user at the server to assume that, if a request is authenticated via client-side SSL, that
client was aware of and approved that request?

Our Agenda We wish to stress that we believe that PKI is a much better way than the alternatives to carry out
authentication and authorization in distributed, multi-organizational settings, for many reasons:

• PKI does not require shared secrets.

• PKI does not require a previously-established direct trust relationship between the two parties.

• PKI permits many parties to make assertions.

• PKI permits non-repudiation of assertions—Bob can prove to Cathy that Alice authorized this request to Bob.

In particular, we are not advocating password schemes.

However, rolling out client-side PKI and migrating existing information services to use it requires considerable re-
sources and effort. Weaknesses in the underlying technology risk undermining this effort. We provide a critical
examination of the current client-side PKI approach precisely because we want the PKI vision to succeed.

This Paper First, we lay out the background. Section 2 introduces how Web services work; Section 3 discusses (pre-
PKI) user authentication; Section 4 discusses the push to use SSL client-side PKI. Then, we discuss our exploration.
Section 5 frames the basic questions; Section 6 and Section 7 report the experiments. Finally, in Section 8 and
Section 9, we consider the implications.

2 Web Information Services

Currently, the Web is the dominant paradigm for information services. Typically, the browser issues a request to a
server and the server responds with material the browser renders.

Language of the Interaction From the initial perspective of a browser user (or the crafter of a home page), these
“requests” correspond to explicit user actions, such as clicking a link or typing a URL; these “responses” consist of
HTML files.

However, the language of the interaction is richer than this, and not necessarily well-defined. The HTML content a
server provides can include references to other HTML content at other servers. Depending on the tastes of the server
operator and the browser, the content can also include executable code; Java and Javascript are fairly universal. This
richer content language provides many ways for the browser to issue requests that are more complex than a user might
expect, and not necessarily correlated to user actions like “clicking on a link.”

As part of a request, the browser will quietly provide parameters such as the browser platform and the REFERER
(sic)—the URL of the page which contained the link that generated this request.

Issues such as caching at the browser site or an intermediate firewall can complicate this model further. [7]

In the current computing paradigm, we also see a continual bleeding between Web interaction and other applications.
For example, in many desktop configurations, a server can send a file in an application format (such as PDF or Word),
which the browser happily hands off to the appropriate application; non-Web content (such as PDF or Word) can
contain Web links, and cause the application to happily issue Web requests.

2nd Annual PKI Research Workshop---Pre-Proceedings

129

Web Information Services Surfing through hypertext documents constituted the initial vision for the Web—and,
for many users, its initial use. However, in current enterprise settings, the interaction is typically much richer: users
(both of the browser and server) want to map non-electronic processes into the Web, by having client users fill out
forms that engender personalized responses (e.g., a list of links matching a search term, or the user’s current medical
history) and perhaps have non-Web consequences (such as registering for classes or placing an Amazon order).

In the standard way of doing this, the server provides an HTML form element which the browser user fills out and
returns to a common gateway interface (CGI) script (e.g., see Chapter 15 in [22]).

This form element can contain input tags that (when rendered by the browser) produce the familiar elements of a
Web form: boxes to enter text; boxes (with a “browse”) tag to enter file names for upload; radio buttons; checkboxes;
etc. For each of these tags, the server may specify a name (which names the parameter being collected from the user)
and a default value. The server content associates this form with a submit action (typically triggered by the user
pressing a button labeled “Submit”), which transforms the parameters and their values into a request to specific URL.
(If the submit action specified the GET method, the parameters are pasted onto the end of the URL; if the POST
method, the parameters are sent back in a second request part.)

However, this submit URL specifies an executable script, not a passive HTML file, in the “Web directory” at the server.
When a server receives a request for such a script, it invokes the script; the script can interrogate request parameters,
such as the form responses, interact with other software at the server side, and also dynamically craft content to return
to the browser.

3 Authentication and Security

3.1 Authenticating the User

In enterprise settings, the server operator may wish to restrict content only to browser users that are authorized. In
a situation where the browser user is requesting a service via a form, the server operator may wish to authenticate
specific attributes about the user, such as identity and the fact that the user authorizes this request. The Web paradigm
provides several standard avenues to do this.

Client Address For one example, the server may restrict requests to client machines with specific hostname or IP
address properties.

Passwords With basic authentication (or the digest authentication variant), the server can require that the user
present a userid and password, which the browser collects via a special user interface channel and returns to the server.
The server requesting the authentication can provide some text that the browser will display in the password-prompt
box. Alternatively, the server may also collect such authenticators as part of the form responses from the user.

With these various forms of password-based authentication, the server operator would be wise to take steps to ensure
the passwords and other sensitive data are not exposed in transit, such as:

• by offering the entire service over an SSL channel;

• by having the form submitted by the POST method, so the responses are not cataloged in histories, logs,
REFERER fields, etc..

Indeed, if neither the user nor server otherwise expose a user’s password, and if the user has authenticated that he is
talking to the intended server, then a strong case can be made that a properly authenticated request requires the user’s
awareness and approval. The password had to come from somewhere!

Weaknesses Depending on the configuration of such a server, it is possible that the authentication happens only
once. In such a scheme, once a user has authenticated, subsequent requests may never require re-authentication.

2nd Annual PKI Research Workshop---Pre-Proceedings

130

Password-based systems also have other risks. Users may pick bad passwords or share them across services; the
authentication is not bound to the actual service (that is, we have no non-repudiation); the adversary may mount online
guessing attacks (Pinkus et al has recently considered some interesting countermeasures here [26]); users may not
check that they are connected to correct server, making them vulnerable to bogus sites that look similar (i.e. Spoofing
[6, 33, 34]).

Cookies The server can establish longer state at a browser by saving a cookie at the browser. The server can choose
the contents, expiration date, and access policy for this cookie; a properly functioning browser will automatically
provide this cookie along with any request to a server that satisfies the policy. Many distributed Web systems—such as
PubCookies [28]—use one of the above mechanisms to initially authenticate the browser user, and then use a cookie
to amplify this authentication to a longer session at that browser, for a wider set of servers.

Cookie-based authentication can also be risky. Fu et al [8] discuss many design flaws in Cookie-based authentication
schemes; PivX [31] discusses many implementation flaws in IE which allows an adversarial site to read other sites’
cookies.

3.2 Validating User Input

Besides authenticating the user, another critical security aspect of providing Web services is ensuring that the input is
correct.

Issues here can occur on two levels:

• An adversarial user can exploit server-side script vulnerabilities by carefully crafting escape sequences that
cause the server to behave in unintended ways. The canonical example here is a server using user input as an
argument in a shell command; devious input can cause the server to execute a command of the user’s choosing.

• On an application level, an adversarial user can change the request data, such as form fields or cookie values.
The canonical example here is a commerce server that collects items and prices via a form.

Standard good advice is that the script writer thoroughly vet any tainted user input [10], and also verify that critical
data being returned has not been modified [27].

4 Client-Side PKI

4.1 Overview

When prodded, PKI researchers (such as ourselves) will recite a litany of reasons why PKI is a much better way
than the alternatives to carry out authentication and authorization in distributed, multi-organizational settings. As we
mentioned in the introduction, browser-based keystores and client-side SSL are a dominant emerging paradigm for
bringing PKI to large populations. Some organizations currently using client-side SSL include Dartmouth College,
MIT, the Globus Grid project, IBM WebSphere, and many suppliers of VPN software.

On the application end, numerous players preach the client-side SSL is a better way to authenticate users than pass-
words. We cite a few examples culled from the Web:

• The W3C: “SSL can also be used to verify the users’ identity to the server, providing more reliable authentication
than the common password-based authentication schemes.” [30]

• Verisign: “Digital IDs (digital certificates) give web sites the only control mechanism available today that im-
plements easily, provides enhanced security over passwords, and enables a better user experience.” [14]

• Thawte: “Most modern Web browsers allow you to use a Personal Email Certificate from Thawte to authenticate
yourself to a Web server. Certificate-based authentication is much stronger and more secure than password-based
authentication.” [24]

2nd Annual PKI Research Workshop---Pre-Proceedings

131

• Entrust: “... identify or authenticate users to a Web site using digital certificates as opposed to username/password
authentication where passwords are stored on the server and open to attacks.” [5]

Recent research on user authentication issues also cite client-side SSL as the desired (but impractical) solution. [8, 26]

The clear message is that Web services using password-based authentication would be much stronger if they used
client-side SSL instead.

4.2 At the Server

How does this work?

As noted earlier, the secure sockets layer permits the browser and user to establish an encrypted, integrity-protected
channel over which to carry out their Web interaction: request, cookies, form responses, basic authentication data, etc.
The typical SSL use includes server authentication; newer SSL uses permit the browser to authenticate as well. The
server operator can require that a client authenticate via SSL, can restrict access based on how it chooses to validate the
client certificate; server-side CGI scripts can interrogate client-certificate information, along with the other parameters
available.

4.3 At the Browser

Typically, browser-based storage relies on some form of database system, such as Berkeley DB 1.85 [4], to store both
certificates and private key material in a “secure” manner.

Netscape/Mozilla Netscape stores its security information in a subdirectory of the application named .netscape
(Mozilla uses .mozilla). There are two files of primary interest: key3.db which stores the user’s private key, and
cert7.db2 which stores the certificates recognized by the browser’s security module.

Both of these files are binary data, stored in the Berkeley DB 1.85 format.Additionally, these files are password
protected so that any application capable of reading the Berkeley DB format is still required to provide a password to
read the plaintext or to modify the files without detection.

A detailed description of the techniques used to securely store users’ keys is beyond the scope of this paper, but we
point readers to [11, 12, 13, 19, 21] for details.

Internet Explorer/Windows IE stores the private key and certificate as a binary “blob” in the registry by default [3].
This absolves the key pair creator from having to worry about key management issues on the machine. This approach
makes the private key and certificate as secure as the underlying operating system, in that the operating system is
responsible for allowing/denying access to the registry.

Microsoft recommends against this behavior, noting that there is no password protection on the private key by default,
and that the key is only as secure as the user’s account [18]. This implies that if an attacker were to gain access to a
user’s account or convince the user to execute code with the user’s privileges, the attacker would be able to use the
private key at will, without having to go through any protections on the key (such as a password challenge).

One way to remedy the lack of password protection is to “export” the private key, placing it in a password protected
.pwl file (for IE 3 and earlier) or a .pfx file which stores the key in PKCS#12 (for IE 4 to current versions).

Additionally, there are two independent developments in Microsoft’s key store technology which are relevant to our
work.

First, all versions of the CryptoAPI since the version which shipped with IE 4 provide a means for displaying a
warning or a password prompt when the private key is being used. We refer to a key which displays a warning only as
a medium-security key and a key which asks for a password as a high-security key

2In December 2002, NSS 3.7 introduced cert8.db, but it is nothing radically different.

2nd Annual PKI Research Workshop---Pre-Proceedings

132

Second, the latest versions of Microsoft Windows (Win2000 and XP) give applications an interface for protecting data
called the Data Protection API (DPAPI). In short, DPAPI provides OS-level data protection services to applications,
allowing them to use the OS to store things like private keys and passwords. Applications use DPAPI via two functions
which are part of the CryptoAPI.

4.4 Historical Vulnerabilities

Netscape/Mozilla’s keystore has remained fairly static, and to the best of our knowledge, historical vulnerabilities are
also current vulnerabilities.

Microsoft’s IE, on the other hand, has gone through a number of revisions. Perhaps the most comprehensive list of
problems with Microsoft’s key storage system over the years comes from Peter Gutmann.

The first vulnerability applies to situations where the private key is stored in the registry. With a tool such as the
“Offline NT Password & Registry Editor” [23], it is possible for an attacker to access a user’s account given physical
access to the computer on which the account resides in a few minutes. Since registry-stored keys are not password
protected, an attacker can use the private key of the account’s owner at will for as long as they are logged on. Ad-
ditionally, an attacker could export the key to a floppy disk (password protecting it with a password that the attacker
chooses), and then use tools like Peter Gutmann’s or our modified version of OpenSSL to retrieve the key offline.

The second vulnerability comes from the format in which the private key is stored on disk once it has been exported
(in a .pwl or .pfx file). There is a tool named breakms, available from Gutmann’s web site [9], which performs a
dictionary attack to discover the password used to protect the file and outputs the private key.

Prior to our work, we have not seen attacks against medium-security or high-security keys, nor have we seen vulnera-
bilities demonstrated in DPAPI.

Recent anonymous postings[2] discuss potential vulnerabilities in Microsoft’s Digital Rights Management Scheme
(MS-DRM), but the private keys used in this scheme are included with the application (e.g. the Windows Media
Player) and shipped with the core system (i.e. blackbox.dll). Although interesting, this discussion is distinct
from the browser-based storage of personal private keys.

5 The Question

We believe PKI is valuable and that secure Web information services are important. We also realize that any deploy-
ment will require considerable effort and user education (as we participate in such a deployment here at Dartmouth).
Hence, we believe that it’s important to ask: Does it work?

If we encourage user populations to enroll in client-side PKI, and encourage service providers to migrate current
services to use client-side SSL authentication and to roll out new services this way, have we achieved the desired
goals: that service requests are authenticated from user A only when user A consciously issued that request?

To this end, we carried out a series of experiments in order to evaluate the effectiveness of using the browser and
client-SSL as a component of a client-side PKI. (However, some of our attacks have a wide range of applications, and
could potentially be used to subvert other authentication schemes as well. We focus on PKI because it is claimed to be
the strongest—and in theory, it could be).

Discussions of usability and security stress the importance of the system behaving as the user expects [35], and the
dangers in creating systems whose proper use is too complex [1, 32]. In the case of client-side PKI, we have two
classes of users to consider:

• The user of the client browser, who requests services

• The user of the server, who sets up and deploys the Web application that provides these services.

As a consequence, we weren’t focused on bizarre bugs (or extremely carefully constructed applications), but on general
usability. If users on either end follow the “path of least resistance”—standard out-of-the-box configurations and

2nd Annual PKI Research Workshop---Pre-Proceedings

133

advice—does it work?

Section 6 and Section 7 describe our experiments. Section 8 will consider countermeasures and implications.

6 Our Experiments: Usage of Keys

A basic assumption underlying client-side SSL is that the client’s certificate and private key are used only for SSL
requests that the client user was actually aware of and approved.

Is this true?

6.1 GET Requests

The language of Web interaction—even when restricted to HTML only, and no Javascript—makes it very easy for a
server SA to send content to a browser B, that causes the browser to issue an arbitrary request r to an arbitrary server.

If one wants this request r to be issued over SSL, we’ve found that a reliable technique is to use the HTML frameset
construction, itself offered over server-side SSL. Figure 1 sketches this scenario; Figure 2 shows some sample HTML.

Basic Techniques A frameset enables a server SA to specify that the browser should divide the screen into a
number of frames, and to load a specified URL into each frame. The adversarial server can specify any URL for these
frames. If the server is careful with frame options, only one of these frames will be visible at the browser. However,
the browser will issue all the specified requests.

This behavior appears to violate the well-known security model that “an applet can only talk back to the server that
sent it” because this material is not an applet.

We stress that this is different from full-blown cross-site scripting. SA is not is using a subtle bug to inject code into
pages that are (or appear to be from) other servers. Rather, SA is using the standard rules of HTML to ask the browser
to itself load another page.

Framesets and SSL In previous work [33], we noticed that if server SA offers a frameset over server-side SSL,
but specifies that the browser load an SSL page from SB in the hidden frame, then many browser configurations will
happily negotiate SSL handshakes with both servers—but (in the cases we tried) the browser will only report the SA

certificate.

So, we wondered what would happen if SB requested client-side authentication.

• In Mozilla 1.0.1/Linux (RedHat 7.3 with 2.4.18-5 kernel), using default options, the browser will happily use a
client key to authenticate, without informing the user.

• In IE 6.0/WindowsXP, using default options and any level key, the browser will happily use a client key to
authenticate, without informing the user, if the user has already client-side authenticated to SB .

If the user has not, a window will pop-up saying that the server with a specified hostname has requested client-
side authentication; which key, and is it OK? (Potentially, server keep-alive configurations could also force this
behavior.)

• In Netscape 4.79/Linux (RedHat 7.3 with 2.4.18-5 kernel), using default options, the browser will pop-up a
window saying that the server with a specified hostname has requested client-side authentication; which key,
and is it OK? Then the browser will authenticate.

The request to SB can easily be a GET request, forging response of a user to a Web form.

2nd Annual PKI Research Workshop---Pre-Proceedings

134

PSfrag replacements

Adversarial
server
SA

Browser B

Target server
SB

1. innocent request

2. evil frameset

3. stealth r, client-authenticated

4. hidden response

Figure 1: To borrow client-side authentication, the adversary needs to convince the browser’s user to visit an SSL
page at the evil server. Using the ordinary rules of Web interaction, the evil server can provide content that causes the
browser to quietly issue a SSL request, authenticated with the user’s personal certificate, to the victim server.

<html>
<frameset rows="*,1" cols="*,1" frameborder="no">

<frame src="f0.html" name="f0" scrolling="no">
<frame src="blank" name="b0" scrolling="no">
<frame src="blank" name="b1" scrolling="no">
<frame src="https://cobweb.dartmouth.edu:8443/cgi-bin/test.pl?

debit=1000&
major=None%3B%20I%27m%20withdrawing%20from%20the%20college"

name="f1" scrolling="no">
</frameset>
<noframes> no frames </noframes>
</html>

Figure 2: HTML permits an adversarial server to send a frameset to a browser. The browser will then issue requests to
obtain the material to be loaded into each frame. A deviously crafted frameset (such as the one above) appear to be an
ordinary page. If an adversarial server includes a form response in the hidden frame, the browser will submit an SSL
request to an arbitrary target server via GET. In many scenarios, browsers will use client-side authentication for the
GET; with the devious frameset, the user may remain unaware of the request, the use of his personal certificate, and
the response from the target.

2nd Annual PKI Research Workshop---Pre-Proceedings

135

<html>
<head>
<SCRIPT LANGUAGE=javascript>

function fnTemp()
{

document.myform.submit();
}

</script>
</head>
<body onload="fnTemp()">

<form name="myform" method="post"
action="https://cobweb.dartmouth.edu:8443/cgi-bin/test.pl">

<input name="debit" value="1000">
<input name="major" value="Hockey">
<input type="submit" value="Submit Form">
</form>
</body>
</html>

Figure 3: A web page such as this uses Javascript to cause the browser submit an SSL request to an arbitrary target
server via POST. In many scenarios, browsers will use client-side authentication for the POST. If an adversarial server
specifies that this page be loaded into a hidden frame, then the user may remain unaware of the request, the use of his
personal certificate, and the response from the target.

6.2 POST Requests

Some implementors preach that no sane Web service should accept GET response to Web forms. However, services that
use POST responses are also vulnerable. If we extend the adversary’s tools to include Javascript, then the adversarial
page can easily include a form element with default values, and an onload function that submits it, via an SSL
POST request, to SB . Figure 3 sketches this code.

Sending this page via a hidden frame further hides the request and the response.

Again, browsers will use the user’s personal certificate to authenticate this request.

6.3 Implications

As we noted earlier, it is continually touted that client-side SSL is superior to password-based authentication.

Suppose the operator of an honest server SB offers a service where authorization or authentication are important. For
example:

• Perhaps SB wanted to prove that its content was served to particular authorized parties (and perhaps to prove
that those parties requested it—one thinks of Pete Townshend or a patent challenge).

• Perhaps SB is offering email or class registration services, via form elements, to a campus population.

If SB had set up their site with server-side SSL, and required basic authentication or some other password scheme,
then one might argue that a service can be carried out in a user’s name only if that user authorized it, or shared their
password.

However, suppose SB uses “stronger” client-side SSL. With Mozilla and default options, a user’s request to SB can
be forged by a visit to an adversarial site SA. With IE and default options, a user’s request can be forged if the user
has already visited SB .

With Netscape or IE, a user’s request to SB can probably be forged without the user noticing if the adversarial site
simply claims that SA also requires client-side authentication. With this bogus claim—which sounds quite reasonable

2nd Annual PKI Research Workshop---Pre-Proceedings

136

in a campus enterprise environment—the user will expect to see the password prompts, etc. (and probably won’t notice
any fine print). A further concern is that the fine print expresses host name, which users may not necessarily be able
to correlate to URL or the content in specific browser real estate.

We note that this authentication-borrowing differs from the standard single-sign-on risk that, once a user arms their
credential, their browser may silently authenticate to any site the user consciously visits. In our scenario, the user’s
browser silently authenticates to any site of the adversarial site’s choosing.

Limits We could not demonstrate a way for the adversary, using the tools of sending standard HTML and Javascript
to users with standard browsers, to forge a response to a file upload input tag (see further discussion below) or to
forge REFERER fields (although telnet links look promising).

7 Our Experiments: Storage of Keys

In Section 6, the adversary can only borrow use of the client’s private key, under constrained circumstances. It would
be much more interesting to steal the key outright.

7.1 Stealing Netscape/Mozilla Keys from Foolish Users

In Netscape and Mozilla, the private key is stored in the key3.db file, as discussed in Section 4.3. Knowledge of this
file and the user’s keystore password enables easy extraction of the private keys.

There is a significant amount of information available describing the algorithms used to store the private keys and
certificates in the Netscape/Mozilla browser. As a result, there are a number of tools which can be used to view and
modify Netscape’s and Mozilla’s key stores.

The NSS Security Tools (available from Mozilla [19]) allow users to add and delete the key and certificate databases
directly. While it is possible to vandalize key databases, none of the tools seemed to give direct access to the private
key. NDBS 2.0, a free tool available from Carnegie Mellon University allows programmatic access to Netscape’s key
and certificate databases [13]. The tool is extremely powerful in that it enables applications to capture the private key
in a number of formats and do what they wish with it—store it to a file, use it to generate signatures, post it on a web
site, etc. NDBS is really a set of Java classes which enable programmers to write code which accesses the key store.

A simple social engineering attack can allow us to capture users’ private keys. The attack relies on a misleading
interface presented on a web page to trick users into sending us the file containing their private keys, the file containing
their certificate, and the password needed to access those files. Once collected, the items are given to a program which
uses NDBS to discover the private keys and forge the digital signatures.

The attack begins by users pointing their web browser to an official looking site that claims to be the Dartmouth
Authentic Really Secure Service (DARSS), which is advertised as some special service that requires PKI. The user is
told that the DARSS must verify the key pair, and ensure that the user is actually authorized to use the key. This is
done by filling out a form which points the browser to the files containing the private key and certificate 3 and prompts
the user for the password protecting the files. Note that the password input tag can have the type=password
option, so that the characters don’t echo on the string, in order to increase the user’s feeling of security.

This is a flat-out lie. The DARSS is not verifying anything, and the password is not used to check authorization. In
actuality, the files and password are shipped to a directory and archived, so that another program can discover and
collect the private keys and forge digital signatures.

The system has two main components, the front end which is the SSL site responsible for advertising the DARSS and
the form tricking the user into sending us their files and password, and the back end which is the system which uses
either NDBS (for Netscape keys) or OpenSSL (for exported IE keys) to open the files and capture the private key.

3In Netscape, the keys are in a default place relative to the user’s home directory, and the home directory is implicit if the user types in a relative
path.

2nd Annual PKI Research Workshop---Pre-Proceedings

137

7.2 Stealing Netscape Keys from Wiser Users

The attack of Section 7.1 above requires that the users are vulnerable to the social engineering technique of simply
asking for their password and keystore paths. Can we modify this attack to be effective against more cautious users?

Our lab has some Web spoofing experience [33, 34]. Drawing on these tricks, we easily constructed a server page
that opens a window that looks and acts very much like the standard Netscape classic-skin keystore password prompt.
(Our initial foray into Mozilla left a “Javascript” warning at the top; using the browser’s own alert pop-up did not
disable echoing of the password prompt.) Thus, for many Netscape users, the adversary can easily obtain the keystore
password.

The next step is to get the encrypted password files. The HTML spec permits the server to specify a default value for
input tags of type=file; and Netscape leaves keys in a known place, so that’s a start. A bit of experimentation
revealed a way to create submittable forms with type=file fields whose text boxes and “Browse” buttons were
not visible to the user (even without Javascript). However, then we ran into a stumbling block: the standard browsers
deliberately disregard the HTML spec, and do not actually render default values for type=file upload tags. Except
with explicitly buggy browser versions that were quickly patched, the user must actually type something. (It appears
we have hints of a trusted path from user to server!)

To get around this, we need to upgrade the adversary’s toolkit to include an executable running on the user’s platform.
This executable locates and sends back the encrypted key file. (It has been rumored that the password itself can be
found by careful inspection of the browser process’s address space, but we did not try that.)

The permeability of modern computing environments, plus the general lack of a trusted path from browser to user,
makes Netscape a risky place to leave client private keys.

7.3 Stealing IE Low-Security Keys

In older Windows platforms, obtaining client private keys was fairly straightforward, as discussed in Section 4.4.
Modern versions of Windows and IE have added features which make obtaining the client’s private key a bit more
challenging. Examples include:

• providing medium and high security options to the key generation functions, resulting in either a warning or a
password prompt when the private key is accessed by an application.

• giving all applications a means to request that the OS securely store data (such as a private key or password) via
the DPAPI.

However, these are just features; some applications (e.g. legacy applications) do not use these newer security features.
Of particular interest to us is the ability to generate a “low-security key”—a key which can be used by any application
running with the user’s privileges without warning the user that the key is in use. Of further interest is the fact that this
is the CryptoAPI’s default behavior.

Peter Gutmann raised serious concern over the CryptExportKey() function found in the CryptoAPI back in
1998[9]. Specifically, with the default key generation, any program running under the user’s privileges may call this
function and obtain a copy of the user’s private key.

We were curious to see if the latest versions of the CryptoAPI have remedied this issue. Our conclusion: “no”. We
were able to construct a small executable which, when run on a low-security (default) key, quietly exports the user’s
private key with no warning.

7.4 Stealing IE Medium-Security and High-Security Keys

The Windows CryptoAPI does permit users to bring in keypairs at “medium” or “high” security levels. With both of
these levels, use of the private key will trigger a warning window; in the high-security option, the warning window
requests a password.

2nd Annual PKI Research Workshop---Pre-Proceedings

138

Consequently, the attack of Section 7.3 may not work; when the executable asks the API to export the private key, the
user may notice an unexpected warning window. So our attack strategy has to improve.

7.4.1 API Hijacking

Before we discuss the specifics of stealing private keys, a brief introduction to the general method of API Hijacking is
in order. The goal of this attack is to intercept (hijack) calls from some process (such as IE) to system APIs (such as
the CryptoAPI).

Delay Loading API Hijacking uses a feature of Microsoft’s linker called “Delay Loading”. Typically, when a
process calls a function from an imported Dynamically Link Library (DLL), the linker adds information about the
DLL into the process (in what is referred to as the “imports section”). This topic is discussed in depth by Matt
Pietrik [25], but we present a very brief overview.

When a process is loaded, the Windows loader reads the imports section of the process, and dynamically loads each
DLL required. As each DLL is loaded, the loader finds the address of each function in the DLL and writes this
information into a data structure maintained in the process’s imports section known as the Import Address Table (IAT).
As the name suggests, the IAT is essentially a table of function pointers.

When a DLL has the “DelayLoad” feature enabled, the linker generates a small stub containing the DLL and function
name. This stub is placed into the imports section of the calling process instead of the function’s address. Now, when
a function in the DLL is called by a process for the first time, the stub in the process’s IAT dynamically loads the DLL
(using LoadLibrary() and GetProcAddress()). This way, the DLL is not loaded until a function it provides
is actually called—i.e. its loading is delayed until it is needed.

For delay loading to be used, the application must specify which DLLs it would like to delay load via a linker option
during the build phase of the application. So, how does one use delay loading on a program for which they can not
build (possibly because they don’t have the source code—i.e. IE)?

DLL Injection The answer is to redirect the IAT of the victim process (e.g. IE) to point to a stub which implements
the delay loading while the process is running.

The strategy is to get the stub code as well as the IAT redirection code into an attack DLL, and inject this DLL into
the address space of the victim process. Once the attack DLL is in the process, the IAT redirection code changes
the victim’s IAT to point to the stub code. At that point, all of the victim process’s calls to certain imported DLLs
will pass through the attack DLL (which imported DLLs are targeted and which functions within those DLLs are
specified by the attack DLL—i.e. the attacker gets to choose which DLLs to intercept). This implements a software
man-in-the-middle attack between an application and certain DLLs on which it depends.

The Windows OS provides a number of methods for injecting a DLL into an process’s address space (a technique
commonly referred to as “DLL Injection”). The preferred method is via a “Windows Hook”, which is a point in the
Windows message handling system where an application can install a routine which intercepts messages to a window.

7.4.2 Hijacking the CryptoAPI

Using the techniques above, we were able to construct a couple of programs which allowed us to intercept function
calls from IE to the CryptoAPI. This is particularly useful for stealing medium or high security private keys which
display warning messages when used (in a client-side SSL negotiation, for example).

The idea is to wait for IE to use the key (hence, displaying the warning or prompting for a password), and then get a
copy of the private key for ourselves—without triggering an extra window that might alert the user.

The Attack Essentially, the attack code is two programs: an attack DLL with the IAT redirection code and the delay
loading stubs, and one executable to register a hook which is used to inject the attack DLL into IE’s address space.

2nd Annual PKI Research Workshop---Pre-Proceedings

139

The strategy is:

• Get the attack DLL and executable onto the victim’s machine (perhaps through a virus or a remote code execu-
tion vulnerability in IE).

• Get the executable running. This installs a Windows hook which gets the attack DLL injected into IE’s address
space.

• Change IE’s IAT so that calls to desired functions in the CryptoAPI (crypt32.dll) are redirected to our attack
DLL.

• At this point, we have complete control and are aware of what IE is trying to do. For example, if we specify
CryptSignMessage() to be redirected in our attack DLL, then every time IE calls this function (e.g. to do
an SSL client-side authentication), control will pass to our code.

• We know that the user is expecting to see a warning in this case, so we take advantage of the opportunity to do
something nefarious—like export the private key. In our current demo, the adversarial code exports the private
key, so the warning window will say “exporting” instead of “signing” at the top4.

This could be remedied by hijacking the call which displays the warning. In fact, this would allow us to disable
all such warnings, but we did not implement this.

In sum, API Hijacking can lead to a number of quite effective attacks that can undermine many underlying security
mechanisms. In addition to getting the private key (as in our demo), it would be possible (and easier) to simply “use”
the private key to forge signatures.

8 Analysis

8.1 Short-Term Countermeasures

Many institutions, including our own, are working on trying to deploy client-side PKIs and Web information services
that use them.

As we have demonstrated, using standard browser-based keystores and believing the literature’s claims that client-SSL
along authenticates the user can be dangerous.

• Devious HTML can create scenarios where client-side authentication with a personal certificate does not imply
the person was aware of or approved this request.

• A single adversarial executable can remove the private key.

• Current user interfaces and default options governing a browser’s use of personal keys can be murky.

Those using client-side PKI should take note—particularly if they are migrating from password-based schemes.

Borrowing Authentication Certainly, competent and careful programming can increase the security of the system.
However, we have found that the “right thing to do” in many situations is not always so easy to find in the standard
literature. For example, none of the sources we cited touting the advantages of client-side SSL over passwords pointed
out that while a password in an SSL-protected form response can authenticate the user (because the requester knew
the password), client-side SSL provides no such guarantees.

One colleague suggested the use of hidden form fields. This is a good idea. At a minimum, we recommend that
providers of services intending to use personal certificate authentication do a two-step process: first, authenticate the

4In our demo, we fail the IE request, so the user sees a “404” error; however, more polite adversarial code might carry out the requested
cryptographic operation and return the response to the user.

2nd Annual PKI Research Workshop---Pre-Proceedings

140

requester and construct a form that includes hidden field containing the name of requester, a timestamp, all signed
(or MAC’d); then, check for this field on the form submission. So far, we have not been able to figure out how an
adversarial server can fool such a service (without using an implementation bug, such as code-injection).

Forcing browsers to periodically re-negotiate with the server via the server’s Keep-Alive can be used to kill SSL
sessions. This would make it a little trickier for the adversary to borrow authentication—e.g., more likely to trigger
warnings.

However, these approaches are still unsatisfactory in the long run: the person owning this personal certificate as at the
mercy of the server for correct and reasonable use of the private key. Further, history shows adding security after the
fact, rather than designing it in from the beginning, is not always effective.

Borrowing Keys To combat key theft, we recommend that deployers insist on medium-security and high-security
keys for IE (since this complicates the attack), and consider making keys non-exportable. Moving private keys to a
separate device (e.g., a token) can provide further protections against OS weaknesses.

As news continues to show [17], code injection and other malicious executables remain a constant risk in contem-
porary networked desktop environments. Using long RSA moduli does not help if the underlying platform is easily
permeable. We recommend that deployers not overlook the basics of aggressively maintaining system security on
machines housing private keys.

User Interfaces We also recommend that deployers very carefully explore the certificate use options in the browser
platforms in their user population, and educate users to choose wise configurations and pay attention to the implica-
tions. As noted earlier, many of the browsers we saw, when configured to warn of key use, only warned with the
hostname—so deployers would be wise not to mix different security domains on the same host.

8.2 Long-Term

On a deeper level, one might argue that the term “personal certificate” is a misnomer. In the best case, using a browser-
stored key for client authentication (via SSL) authenticates two HTTP endpoints. No person need be involved at all.
Even though much conventional wisdom implies client-side SSL can replace weaker authentication, SSL designers
state that client-side SSL is simply not intended to replace application-level security [29]. With client-side SSL (and
perhaps many single sign-on schemes), “what the user knows” has been replaced by “what some complex software on
the user’s desktop does in response to complex stimuli.”

A number of research directions arise here.

Usability Consequently, it would be interesting to re-consider the client Web authentication system, from the per-
spective of security and usability. To cite just a few design principles: [35]

• “The path of least resistance” for users should result in a secure configuration.

• The interface should expose “appropriate boundaries” between objects and actions.

• Things should be authenticated in the user’s name only as the “result of an explicit user action that is understood
to imply granting.”

One might quip that it has hard to find a principle here that the current paradigm does not violate.

We stress again that these principles should apply to both the client user, as well as the IT staffer setting up a Web
page.

Trusted Paths One natural area for further attention is a trusted path. Our earlier work [33] built trusted paths from
the browser to the user. We also need trusted paths in the other direction (e.g., a Web equivalent of the “secure attention

2nd Annual PKI Research Workshop---Pre-Proceedings

141

key”) and an easy way for Web service writers to invoke that. This may not be as much of a stretch as one might think;
already, the standard browsers depart from the HTML specification and require that a user type a value into a file
input tag. Wouldn’t an authenticate input tag be much easier than trying to work through cryptographic hidden
fields? Adding another level of personal certificate that only was invokable via such a tag (and perhaps even signed
something) would help. Indeed, in the online literature, we see that Netscape provides a signed form facility in Java
that forces some user involvement [20] (but IE does not provide native support); we also see some brief discussion for
authentication tags [16].

Until then, ongoing work [26] in using reverse Turing tests to defeat robotic probing could assist a server in setting up
a trusted path.

Another area for further attention is the user’s mental model of Web interaction. For this new authenticate tag (or
even current warning windows) to be effective, the screen material to which it applies should be clearly perceivable by
the user. Even adopting the “Basic Authentication” model of letting the server demanding the authentication provide
some descriptive freetext might help—instead of “hostname wants you to authenticate,” the browser window might
say “...in order to change your class registration—are you sure?”. (Netscape’s Signed Forms goes in this direction, but
it permits the server to provide HTML content that can enable some types of signature spoofing.)

To rephrase a point from our earlier work [33], the community insists on strict access controls protecting the client file
system from server content, but neglects access controls protecting the user’s perception of the client user interface.

Tokens with UI On a system level, we recommend that further examination be given to the module that stores and
wields private keys: perhaps a trustable subsystem with a trusted path to the user. As a device which has a very rich
and complex interaction with the rest of the world, browsers can often behave in unexpected and unclear ways. Such
a device should not be the cornerstone of a secure system.

Many researchers have long advocated that private keys are too important to be left exposed on a general-purpose
desktop. We concur. However, we also go further that the user interface governing the use of the private key is too
important to be left on the desktop—and too important to be left to the sole determination of the server programmer,
through a content language not designed to resist spoofing.

9 Conclusions

One might look at this work from a narrow or broad perspective.

From a narrow perspective, here’s what we do:

• We explicitly demonstrate that client-side authentication with personal certificates does not necessarily authen-
ticate the person. (In the hoopla surrounding client-side PKI, we had not seen this issue raised. Indeed, the
opposite is preached.)

• We explicitly demonstrate that browser-based keystores—even IE medium-security ad high-security keys—are
easily permeable in modern desktop environments. (We had not seen attacks on these keys, nor had we seen use
of our approach applied to cryptographic APIs.)

However, we intend this paper to have a broader perspective as well. We believe in PKI. Much work is being done in
many places to try to bring PKI to users; considerable investment of effort is being focused on the client-side browser
paradigm. We humbly suggest that some of this investment might be better spent rethinking the basic model.

Acknowledgments

The authors are grateful to our many colleagues—both in the Dartmouth PKI Lab and in the greater Internet2 community—for their
help and advice.

2nd Annual PKI Research Workshop---Pre-Proceedings

142

The authors have also received support from the Mellon Foundation, the NSF, AT&T/Internet2, and the U.S. Department of Justice
(contract 2000-DT-CX-K001). The views and conclusions do not necessarily reflect the sponsors.

References

[1] R. Anderson. Why Cryptosystems Fail. Communications of the ACM, pages 32–40, November 1994.

[2] Anonymous. Microsoft’s digital rights management scheme - technical details. http://cryptome.org/ms-drm.htm.

[3] AspEcrypt. Opening a Certificate Store. http://www.aspencrypt.com/task_certs.html.

[4] Berkeley DB. http://www.sleepycat.com.

[5] Buyer’s guide - web portal security solution. http://www.entrust.com/resources/pdf/buyers_guide.pdf,
November 2001.

[6] E. Felten, D. Balfanz, D. Dean, and D. Wallach. Web spoofing: An internet con game. In 20th National Information Systems
Security Conference, 1997.

[7] E. Felten and M. Schneider. Timing Attacks on Web Privacy. In ACM Computer and Communications Security, 2000.

[8] K. Fu, E. Sit, K. Smith, and N. Feamster. Dos and Don’ts of Client Authentication on the Web. In USENIX Security, 2001.

[9] Peter Gutmann. How to recover private keys for Microsoft Internet Explorer, Internet Information Server, Outlook Ex-
press, and many others - or - Where do your encryption keys want to go today? http://www.cs.auckland.ac.nz/
˜pgut001/pubs/breakms.txt.

[10] J. Hamilton. CGI Programming 101. CGI101.com, 1999.

[11] S. Henson. Netscape Certificate Database Info. http://www.drh-consultancy.demon.co.uk/cert7.html.

[12] S. Henson. Netscape Key Database Format. http://www.drh-consultancy.demon.co.uk/key3.html.

[13] Pisey Huy, Grace A. Lewis, and Ming-hsun Liu. Beyond the Black Box: A Case Study in C to Java Conversion and Product
Extensibility. Technical report, Carnegie Mellon Software Engineering Institute, 2001.

[14] Implementing web site client authentication using digital ids and the netscape enterprise server 2.0. http://www.
verisign.com/repository/clientauth/ent_ig.htm#clientauth.

[15] K. Kain, S.W. Smith, and R. Asokan. Digital Signatures and Electronic Documents: A Cautionary Tale. In Advanced
Communications and Multimedia Security. Kluwer Academic Publishers, 2002.

[16] S. Lawrence and P. Leach. User agent authentication forms. http://www.w3.org/TR/NOTE-authentform, Febru-
ary 1999.

[17] Microsoft security bulletin ms03-004. http://www.microsoft.com/technet/treeview/default.asp?
url=/technet/secu%rity/bulletin/ms03-004.asp, February 2003.

[18] Microsoft Authenticode Developer Certificates. http://www.thawte.com/getinfo/products/devel/
msauthenticode.html.

[19] Mozilla. NSS Security Tools. http://www.mozilla.org.

[20] Netscape form signing. http://developer.netscape.com/tech/security/formsign/formsign.html,
1999.

[21] Netscape Communications Corp. Command-Line Tools Guide : Netscape Certificate Management System, 4.5 edition, Octo-
ber 2001.

[22] J. Niederst. Web Design in a Nutshell (2/E). O’Reilly, 2001.

[23] Offline NT Password & Registry Editor. http://home.eunet.no/˜pnordahl/ntpasswd.

[24] Personal certificates. http://www.thawte.com/html/COMMUNITY/personal/.

[25] Matt Pietrek. Under the hood. Miscrosoft Systems Journal, February 2000.

[26] B. Pinkas and T. Sander. Securing Passwords Against Dictionary Attacks. In ACM Computer and Communications Security,
2002.

[27] Preventing html form tampering. http://advosys.ca/papers/form-tampering.html, August 2001.

[28] Pubcookie: open-source software for intra-institutional web authentication. http://www.washington.edu/
pubcookie/.

[29] E. Rescorla. SSL and TLS - Designing and Building Secure Systems. Addison Wesley, 2001.

2nd Annual PKI Research Workshop---Pre-Proceedings

143

[30] L. Stein and J. Stewart. The world wide web security faq. http://www.w3.org/Security/Faq/, February 2002.

[31] Unpatched ie security holes. http://www.pivx.com/larholm/unpatched/.

[32] A. Whitten and J.D. Tygar. Why Johnny Can’t Encrypt: A Usability Evaluation of PGP 5.0. In USENIX Security, 1999.

[33] E. Ye and S.W. Smith. Trusted Paths for Browsers. In USENIX Security, 2002.

[34] E. Ye, Y. Yuan, and Smith S.W. Web Spoofing Revisited: SSL and Beyond. Technical Report TR2002-417, Department of
Computer Science, Dartmouth College., 2002.

[35] K.-P. Yee. User Interaction Design for Secure Systems. http://zesty.ca/sid/uidss-may-28.pdf.

2nd Annual PKI Research Workshop---Pre-Proceedings

144

	papers2.pdf
	004.pdf
	Introduction
	Related Work
	The Building Blocks
	An intrusion-tolerant PAKE
	A password-adapted threshold RSA

	Intrusion-tolerant Password-enabled PKI
	Intrusion-tolerant virtual soft token
	The parameter selection

	Intrusion-tolerant virtual smartcard PKI

	Some Operational Considerations
	The user enrollment
	User authentication
	Password change

	Conclusion

	010.pdf
	What is proof-of-possession?
	Use of a private key
	Security of enrollment
	Examples of attacks not prevented by PoP
	Attacks prevented by PoP
	Replacing public key in enrollment request sent by victim
	Attack description and assumptions
	Type of uses

	Using victim's public key in own enrollment request
	Attack description and assumptions
	Type of uses

	Does PoP do any harm?
	The place of PoP in current PKI specifications
	Rationales for justifying PoP
	Conclusions
	Acknowledgments

	010.pdf
	What is proof-of-possession?
	Use of a private key
	Security of enrollment
	Examples of attacks not prevented by PoP
	Attacks prevented by PoP
	Replacing public key in enrollment request sent by victim
	Attack description and assumptions
	Type of uses

	Using victim's public key in own enrollment request
	Attack description and assumptions
	Type of uses

	Does PoP do any harm?
	The place of PoP in current PKI specifications
	Rationales for justifying PoP
	Conclusions
	Acknowledgments

