Archived copy from the original:
http://middleware.internet?.edu/dir/groups/docs/internet2-mace-dir-groups-best-practices-200210.htm

NSF Middleware Initiative Tom Barton
internet2-mace-dir-groups-best-practices-200210.html University of Memphis
Copyright © 2002 by UCAID and/or the respective authors October 2002

Comments to: nmi-support@nsf-middleware.org

Development of this document was supported with funding from the University of Memphis, Internet2, and the
NSF Middleware Initiative (Cooperative Agreement No. ANI-0123937).

Practices in Directory Groups

Abstract

Experiments and early experiences with the facilitation of authorization in applications and the facilitation of
group messaging with the use of directory services in institutions of higher education were surveyed. Several
concepts, good practices, open issues, and a few principles extracted from this are presented.

This document is a product of the Internet2 Middleware Initiative, and the Middleware Architecture
Committee for Education (MACE), published under the auspices of the National Science Foundation
Middleware Initiative (NMI). Internet? is a member of the Enterprise and Desktop and Integration
Technologies (EDIT) Consortium, participating in the NMI.

This is one of a growing set of documents created by MACE, detailing various issues surrounding the
planning, deployment, configuration, maintenance, and security of enterprise directories.

For additional information and related topics and resources see the following sites:

Internet2 Middleware Initiative: http//middleware.internet2.edu/
MACE: http//middleware.internet2.ed/MACE/
EDIT: http//www.nmi-edit.org/

NMI: http//www.nsf-middleware.org/

https://web.archive.org/web/20130203134847/http://middleware.internet2.edu/dir/groups/docs/internet2-mace-dir-groups-best-practices-200210.htm
mailto:nmi-support@nsf-middleware.org

Table of Contents

1.Introduction

2. Concepts and definitions
2.1. Types of aggregates

2.2. Group representations

2.3. Group update circumstances

2.4. Access use cases
2.4.1. Is X in groupA?

2.4.2. List all groups of which X is a member.
2.4.3. List all members of groupA.

2.4.4. Boolean combinations of groups.

2.4.5. Group scoping.

3. Managing directory groups

3.1. Apology: lack of standardization of directory ACLs
3.2. Types of groups

3.3. Group names & namespace overloading

3.4. Maintenance & indexing of membership attributes
3.5. Management of delegated groups

3.6. Personal groups

3.7. Maintaining referential integrity
3.8. Group math

3.9. Privacy and visibility of groups

3.10. Forward references

3.11. Aging groups
4. Using directory groups

4.1. Directory access controls

4.1.1. Application access to the directory

4.1.2. Helpdesk View of the the directory

4.2. White pages

4.3. Course management, portal, and application server systems
4.4. Group scheduling

4.5. Group messaging

4.6. Dialup & wireless authorization
4.7. Unix group maps

4.8. Referencing groups in applications
4.9. Don’t slurp!
5. Acknowledgements

6. References

7. Appendices
7.1. memberOf Algorithm

8. Contact Information

1.Introduction

Many higher education institutions have extended and adapted their core IT infrastructures to provide
enterprise directory services. Following practices exemplified by the Internet2 Early Harvest Best Practices
in Identification and Authentication [1] and the LDAP Recipe [2], their experiences have demonstrated the
significant value afforded by use of this type of architecture (cf. Internet2 Early Adopters Generic
Middleware Business Case [3]). It is expected that a similar value will be obtained by extending this
architecture to supply authorization and attribute services, so that the data for access-control policies need
not be independently provisioned within each application and service platform.

This document focuses on the representation of and access to information needed to implement an
infrastructure service to support automatic facilitation of access control processes and group messaging. The
details of particular models for role- or relationship-based access-control systems are not directly considered
here. Instead, this document explores the institutional-level groups deployment as a basis for enterprise
access-control and group messaging architectures.

There are several ways of representing group information, no one of which is innately better than another.
Which representations are implemented in an enterprise directory depends on

¢ how the group information will be maintained,

¢ how it will be most commonly accessed, and

¢ how potential interactions arise between the type of representation, the nature of the group (such as
size and privacy requirements), and capabilities of the particular directory service agent (DSA) being
used.

The document is organized into three main sections.

e Section 2 introduces several concepts and terms to enhance readability in the rest of the paper.

e Section 3 addresses several aspects of managing directory groups.

e Section 4 briefly offer examples applications that make use of directory groups, intended to stimulate
thought on what may be possible rather than to be a comprehensive catalog.

Terms being defined are underlined. Special technical terms, such as names of attributes and objectclasses,
are rendered in italics to improve readability.

2. Concepts and definitions

The notion of a "group" is so basic and common to so many different contexts that it can be difficult to
communicate effectively about this subject, unless the terms and scope are defined for a particular context.
This section will introduce and define terms and identify several related algorithms and concepts that together
frame the technical matters under consideration in this document.

It is convenient to organize these topics into four categories. The first one covers terms relating to types of
aggregates such as group, role, and dffiliation. The second category contains terms used to describe the
representation of the membership of a group, including static, dynamic, forward reference, and spatial.
The third category identifies terms used to classify groups according to how they are maintained. These are
automated, manual, enterprise, delegated, joinable, and personal. The fourth category lists the types of
queries that applications may use when accessing information concerning groups. Taken as a whole the four
categories address the basic concept of a group, how they are staged in an enterprise directory, how such
things are maintained, and how they may be accessed. These are all essential to understanding the use and
management of group information.

2.1.Types of aggregates

Here the term group is used to refer to any means of representing a collection of objects in an X.500
directory. It is important to distinguish between a group and a group object, which is an object in an X.500
directory whose schema is designed to express information about a group. Use of a group object is one way
to represent a group. Others will be discussed in section 2.2 (Group Representation).

The chief characteristic of a group is its membership, i.e., the set of objects that belong to the group. The
member objects may be of any type. Most often we are concerned with groups whose members are either
person objects or other group objects.

The term role refers to a way of identifying a set of entitlements. Entitlements are meant to translate into
actions mediated by other applications. For the purposes of this document they can remain an abstract
concept. Person and other types of objects are associated with one or more roles through a variety of
means. The collection of these roles, the objects that are assigned them, and the entitlements they are
associated with form a database that may be used by a role-based access-control system. A discussion of
the design of role-based access-control systems is beyond the scope of this document. The term is defined
here to distinguish it from a group. Likewise, the term relation, which figures in relationship based access-
control systems, should be distinguished from the usage of "group" in this document.

An affiliation is a special case of a relation between a person and an organization. The organization involved
may be implicit - that whose directory service holds affiliation information about the person. The types of
such relationships are sometimes only locally meaningful, although the eduPersonAffiliation controlled
vocabulary defines several affiliation values in use across much of higher education, including student,
faculty, staff, alum, and member (cf. [4]). Affiliations will often identify courses in which a person is a
student or an instructor, programs to which they belong, departments in which they are employed, status of
alumni involvement, or perhaps just their expression of interest in applying for admission or visiting the

campus.

2.2.Group representations

A static group is one represented by a group object that contains a multi-valued attribute listing the member
objects. That attribute is called its membership attribute. The groupOfNames and groupOfUniqueNames
objectclasses defined in X.521 ([5] and [6]) specify types of static group objects with membership attributes
member and uniqueMember, respectively.

Figure 1
—p ou=people
¢ uid=aaa
@ wid=bbb
L @ wd=ccc
OUSSIOUp s
cn=group &
con=group B

To illustrate a static group, consider the example directory information tree (DIT) in Figure 1. The object
cn=groupA , ou=groups, dc=foo, dc=edu could be the static group defined by the following LDIF (cf.
[71):

dn: cn=groupA, ou=groups, dc=foo, dc=edu
cn: groupA

member: uid=bbb, ou=people, dc=foo,dc=edu
member: uid=ccc,ou=people,dc=foo,dc=edu

A group is dynamic if its membership is expressed by evaluating an Idap url (cf. [8]). A corresponding group
object may, but does not have to, exist. Typically, the values of one or more attributes maintained in person
objects are used to define a group dynamically. In this case, the scope descriptors in the defining ldap url
specify a search of the DIT subtree containing person objects for everyone. An application will then execute
the defining ldap url to determine the group members at that moment. If a corresponding group object exists,
it should have a dynamic-membership attribute whose value is the ldap url that defines member objects. For
example, iPlanet’s groupOfURLs objectclass uses the memberURL attribute to store the defining ldap url.
A dynamic group without a corresponding group object might be thought of as existing only in an application
that executes the defining ldap url, but still is considered as a representation of a group within the directory.
For example, Apache’s mod_ldap module uses require group and require filter directives to enable
information in an Idap directory to be used for access control decisions. The first form checks membership in
static groups, while the second form checks membership in dynamic groups.

Let’s refer again to Figure 1 to help illustrate a dynamic group. Suppose that the person objects under
ou=people are partially defined by

dn: uid=aaa,ou=people,dc=foo,dc=edu
ou: student

dn: uid=bbb, ou=people, dc=foo, dc=edu
ou: staff

dn: uid=ccc, ou=people, dc=foo, dc=edu
ou: student
ou: staff

Then the following ldap url dynamically defines the group of people who are staff:
ldap://1ldap.foo.edu:389/ou=people, dc=foo, dc=edu?dn?2?(ou=staff)

Forward referencing is a practice in which an object's group memberships are listed as the values of an
attribute of the object. This attribute (and each of its values) is called a forward reference. For example, an
attribute named isMemberOf might be used to list the groups of which the object is a member. Typically, a
forward reference identifies actual group objects to which the member object belongs. The group objects
themselves may be static or dynamic. It should be noted that a forward reference could also be used merely
to tag members of groups without there being a corresponding group object. Such tags might also be used to
associate an object with other types of objects such as roles. Below in section 3.10: (Forward references),
we will consider how to implement forward referencing in greater detail.

An example of forward referencing is given by the following partial definitions of the person objects in Fig, 1:

dn: uid=aaa,ou=people,dc=foo,dc=edu
isMemberOf: groupB

dn: uid=bbb, ou=people, dc=foo, dc=edu
isMemberOf: groupA

dn: uid=ccc, ou=people, dc=foo, dc=edu
isMemberOf: groupA
isMemberOf: groupB

Those person objects with a groupA value of their isMemberOf attributes in fact belong to the static group
named groupA in the example of a static group above.

A group is considered spatial if its membership is inferred from the location in the DIT. We will also use the
term spatial more generally to refer to characteristics stemming from an object’s location within the DIT.

Referring once again to Figure 1, an example of a spatial group is the set of all objects immediately
subordinate to the ou=people organizationalUnit object.

Synthesis

The basic distinction between static and dynamic groups is how an object’s membership in the group is
determined. For static groups, an equality search of the group’s membership attribute determines the object’s
membership. For dynamic groups, an Idap query scoped to the object itself determines membership.
Forward references are a particular implementation of dynamic groups. Spatial groups are the original means
of representing groups and still the best choice for certain purposes. They too are special cases of dynamic
groups, since all objects in a given node of the DIT can be selected by an appropriate ldap url.

2.3.Group update circumstances

Much of the information represented in a directory is derived from external authoritative sources. The
method of updating group membership information may constrain how various groups are represented in the
DIT. It may also influence the nature of ACLs and other items controlling update access to them. For
example, most colleges probably prefer that their payroll and registrar’s offices do not maintain each other’s
core business systems. In planning how groups are to be maintained, consideration must be given to who or
what may modify which information for which groups. The choice of a type of group representation, the
spatial location of a group object, and the nature of an ACL mediating access to a group all affect this aspect
of directory design.

Such design decisions may be better informed if one recognizes the circumstances under which the update
process occurs. These circumstances include deciding whether the process is automatic or manual; and if
enterprise directory administrators manage it or delegate it to others with fewer directory-update privileges.
It is probably not wise to have both automated and manual processes routinely maintain information in the
same location (such as an isMemberOf attribute). Also, certain attributes of person, group, or other types of
objects should not be modifiable by (potential) delegates. The adjectives automated, manual, and delegated,
then, reflect the way a given group is updated.

A personal group is one that is created and maintained by end users. Personal groups chiefly are a
convenience provided to end users, permitting them to make autonomous use of certain enterprise
infrastructure services for purposes not necessarily related to the institution’s mission.

A group is joinable if end users are permitted to add or remove themselves from the group’s membership list.

Finally, institutional refers to groups that aren’t personal.
2.4.Access use cases

In this section, the basic group-information access-use cases will be presented.The way a group’s
information is most often accessed can strongly influence how it should be represented in the DIT, the nature
of ACLs controlling read access to that information, and the performance tuning of the DS As servicing the
ldap access requests. Even the number of directory replicas maintained to serve applications could be
affected. The implications of access will be addressed in subsequent sections of this document.

2.4.1.1s X in groupA?

This basic membership question is treated differently for dynamic and static groups. For static groups, a
(membershipAttributeName=DN) query is scoped to the group object groupA. For dynamic groups, the
search filter defining groupA is scoped to the object X. In both cases, the membership query response is
positive if the Idap query returns a nonempty selection. In the dynamic case, this by itself is sufficient. In the
static case, this is further complicated by the possibility that groupA may contain other groups as members
(subgroups). This can be resolved by substituting the query 2.4.2 List all groups of which X is a member
instead.

Examples of these follow. For these assume X has
dn:uid=aaa, ou=people,dc=foo, dc=edu
the static group groupA is a groupOfUniqueNames with

dn:cn=groupA, ou=groups, dc=foo, dc=edu

and the dynamic group groupB is given by the Idap url
ldap://1ldap.foo.edu:389/0ou=people, dc=foo, dc=edu?dn?2?(ou=staff)

Then the following two Idap urls respectively determine whether X is a member of the static group groupA
or a member of the dynamic group groupB:

ldap://1ldap.foo.edu:389/cn=groupA, ou=groups, dc=foo, dc=edu?dn?0?
(unigueMember=uid=aaa, ou=people,dc=foo,dc=edu)

ldap://1ldap.some.edu:389/uid=aaa, ou=people, dc=foo,dc=edu?dn?0?(ou=staff)
2.4.2.List all groups of which X is a member.

An efficient algorithm, outlined in Appendix 7.1: memberQf Algorithm, can be used to find all static groups
to which X belongs. The algorithm functions in a way that avoids recursively searching for memberships

through subgroups of static groups. Use of forward referencing (cf. section 3.10: Forward references) also
trivializes the DSA’s processing of this query in exchange for the effort needed to maintain forward
references.

2.4.3.List all members of groupA.

As with the question is X in groupA?, the constructed ldap query to list all members of groupA must be
phrased differently depending on whether A is static or dynamic. Statement 2.4.3 is also ambiguous when
considering that groups may have subgroups. Does it ask to list all values of groupA’s membership attribute,
or to list all objects belonging either to groupA or to any group having groupA as a supergroup? Its meaning
must be clarified in each application context.

Using the details of the example under Is X in groupA above, the membership of the static group groupA is
given by

ldap://1ldap.foo.edu:389/cn=groupA, ou=groups, dc=foo, dc=edu?uniqueMember?
0?(objectclass=*)

while the membership of the dynamic group groupB is given by
ldap://1ldap.foo.edu:389/ou=people, dc=foo, dc=edu?dn?2?(ou=staff)
2.4.4.Boolean combinations of groups.

It is likely that not all groups of significant value to applications and users will be provisioned within the
directory. Unions, intersections, and relative complements (all members of A not belonging to B) of existing
groups may need to be addressed to satisfy some applications. See section 3.8: (Group math) for a
discussion of handling this in a standard way.

2.4.5.Group scoping.

Queries of the form "which objects in groupA satisfy a given search filter" are analogous to the queries
formulated using Idap urls, except that whereas an Idap url scopes a search spatially using search base and
search scope parameters, these queries scope the search to a group. That’s group scoping.

Conceptually, this use case is like executing an ldap url whose scope specification is replaced by the
membership of a group. Since it is not possible to scope an Idap search to the membership of a static group,
using an ldap url to implement a group scoped query can only be considered for dynamic groups. In this case

a group scoped query can be formulated with an ldap url whose scope is a subtree of the one in the ldap url
defining the dynamic group, and whose search filter matches the search filter in the Idap url defining the
dynamic group ANDed with the desired search filter.

The group scoping problem for static groups can be overcome by reliance on forward references, since that
method effectively tags all objects with their group memberships with no spatial dependence whatsoever. For
example, assuming that the isMemberOf attribute is used for forward referencing and that groupA is a valid
forward reference value, the following ldap url might be used to determine which members of groupA are
static-group objects:

ldap://1ldap.foo.edu:389/dc=foo,dc=edu?dn?2?(&(isMember0f=groupA) (|
(objectclass=groupOfUniqueNames) (objectclass=groupOfNames)))

3. Managing directory groups

Automation of the provisioning of authorized and/or customized access to web content and applications, and
group messaging, provide motivation to implement large numbers of directory groups. Collected here are
several principles and practices pertinent to the design of any groups implementation.

This document does not attempt to contemplate the various technical and non-technical implementation
problems associated with gathering data from source systems and using that data to populate and maintain
static or dynamic group information in a directory. Neither does it posit any particular directory architecture.
A forthcoming "Group Implementers Guide" being discussed in the MACE-Dir working group should
address the down and dirty issues confronting the project manager of a groups implementation project. Also
see "Metadirectory Practices for the Enterprise Directory in Higher Education” [11] for a discussion of
directory provisioning.

3.1. Apology: lack of standardization of directory ACLs

The use of access controls internal to the directory is critical to the design. Unfortunately, at present there
are neither standard ways of referring to these nor standard methods of implementation in the leading
directory products. As a result, non-trivial directory designs cannot be vendor independent. Switching
enterprise DSA technologies is likely to cause disruption to many directory-enabled enterprise IT services.

Assertions in this document about ACL capabilities are based principally on experience with the ACL
implemented in iPlanet’s DSA and secondarily on ACL capabilities implemented in openLDAP. The writer
assumes that the ACL capabilities of all other leading DSA products are at least as powerful and expressive
as these.

3.2. Types of groups

Authorization is the determination of whether a given authenticated entity is is permitted to perform some
requested action. Customization is the adaptation of the user interface depending on the affiliation(s) of the
authenticated user and is typically used by course management systems and portals. The information required
by both drives many requirements for directory groups (note that personalization, which is the adaptation of
the user interface depending on preferences selected by the authenticated user, does not rely on group
information). That information may be obtained from traditional core business systems such as human
resources, financial records, student information, alumni information, physical facilities inventory, scheduling,
databases of computer account information, and a variety of ad hoc sources.

Three categories of groups determined from information in core business systems are:

e Enterprise groups, whichincludes faculty, staff, employees, various categories of employees as defined by
the payroll system, students, alumni, and various categories of computer-account holders.

® Departmental groups, which includes faculty, staff, or graduate assistants differentiated by department,
school, college, or other organizational division; and department heads (and above) differentiated by
organizational division.

® Academic groups, which includes students in each academic program, college, or level; and students (and
instructors) in each course section (per term) and in each course (for courses with multiple sections).

Some groups deriving from ad hoc institutional sources are:

¢ Application-specific groups, which accommodate the authorization or customization needs of an
enterprise application or service and are maintained in the enterprise directory rather than using application-
specific mechanisms. These provide a standard means of delegating the management of enterprise
applications and services through the maintenance of their application-specific groups. Examples include
groups used to control access to stored database queries, access to web or application-server mediated
processes or content, or access to network-access services, the access-control information for which is not
stored in core business systems.

e Activity-specific groups, which are similar to departmental groups for activities not modeled in core
business systems. Examples include student activity groups and those facilitating work-team activities.

Typically, update of personal, application, and activity specific groups is delegated. A chief distinction
between personal and the other two types is that of institutional value. Application and activity specific
groups may need to continue to exist even after the particular humans who maintain them leave the institution,
as opposed to personal groups (cf. section 3.6) which, under good practice, cease to exist when the
individual leaves the institution.

How these groups should be represented and how their membership information flows to applications is
determined by considering several factors:

¢ How and by whom each group will be maintained.
¢ The types of application access use cases each group will most typically need to satisfy.
¢ ACLs within the directory.

e DSA constraints such as processor limits or group size limits.

The remaining topics in this section should help to illuminate these considerations.

3.3. Group names & namespace overloading

Standards-based person and group objectclasses, and potentially others, require the cn attribute. All such
objects contribute to cn indices maintained by the DSA and, unless specifically excluded by ACLs or
scoping of Idap urls, are potential selectees of an Idap search referencing the cn attribute. Such searches are
a very common type of search conducted against many enterprise directories. A mature groups
implementation may produce a population of group objects in the directory even larger than the set of person
objects. This means that ordinary white pages searches will tend to have lots of group and person objects
returned together. That makes it harder for humans to find what they’re looking for, and can result in
pressure to relax DSA search limits. For this reason, there is a need to be concerned about the values
assigned to cn across all objects which possess that attribute.

Each institution will likely have its own version of a naming plan for groups, but a trend is emerging in which
group names are structured with a prefix indicative of its origin or scope followed by a more arbitrary name
presumably meaningful to group members, maintainers, or users. The group prefix selection algorithm tends
to follow a classification of groups along the lines illustrated in section 3.2: (Types of groups).

For example, enterprise groups might uniformly start with the prefix "All" or "University", such as "All
Faculty" or "University Enrollment Management Task Force". The prefix of a departmental group stems from
the name, possibly hierarchical, of the organizational element, such as "A&S Chemistry Graduate Assistants".

Similar prefixes are suggested by other categories in your groups taxonomy. Personal groups might be named
starting with "Personal".

The group naming convention at The University of Memphis is reproduced here for consideration:

Arealabel [SubArealLabel] DescriptivePhrase

"ArealLabel" is the name of the high level area most closely affiliated with the
group's membership or purpose, chosen from a list of labels for the Divisions,
Colleges, MajorProgramCodes, Courses, and a set of special labels ("All",
"University", "Personal').

The term "All" is applied to groups that span any finer division of the
university.

The term "University" is used as a prefix for groups representing university-wide
committees, roles, or other activities whose name is fixed.

Divisions are IS, B&F, Provost, Athletics, M&A, StudentAffairs, President.
Colleges are ACU, AS, CFA, EDU, ENG, FBE, GRA, LAW, NUR, and UC.
The "Course" is the 4-digit course number or the 7-digit course+section number.

"MajorProgramCode" is one of about 100 4-character program codes for the various
academic majors defined in SIS.

"Personal" would signify a group created by an end-user, should we ever enable
that. This value is the one exception to the rule that the ArealLabel reflects the
group's membership. In this case it reflects the group's pedigree, needed I think
to keep the name space for "administrative groups" separate from the namespace
for end-user created groups.

"DescriptivePhrase" is essentially what the group might be named independently of
the ArealLabel, the "real common name". Or it might, in conjunction with the
ArealLabel, be a completion of the "real common name".

A general principal is to prefix the name with a label identifying the group's
"area" or scope. Sometimes it is meaningful for there to be one or more
additional scopings. For example, a group established for a given department in a
given college. That's what "SubArealLabel" is for - a more specific scoping added
to the prefix of the "real group name".

Some applications, unrelated to cn indexing, may require that names of groups they reference be subject to
additional constraints. For example, names of group objects of the posixGroup objectclass, used to
represent Unix groups in Idap directories, must comply with group naming requirements for unix operating
systems.

3.4. Maintenance & indexing of membership attributes

Membership attributes for static groups such as member and uniqueMember should be equality indexed to
speed searches.

As membership for a static group changes, unless the change is a substantial fraction of the overall
membership, the values for these attributes should be incrementally maintained rather than replaced, i.e.,
deprecated values should deleted and new values added. For example, the following Idif fragment removes
one member and adds two new ones to the membership list of a group:

changetype: modify
delete: uniquemember
uniquemember: uid=uidl, ou=people, dc=foo0, dc=edu

add: uniquemember
uniquemember: uid=uid2, ou=people, dc=foo,dc=edu
uniquemember: uid=uid3, ou=people, dc=foo, dc=edu

3.5. Management of delegated groups

Some organizations find that certain aspects of enterprise IT provisioning are best managed outside of the
central IT organization. For example, the most expert knowledge and experience with institutional financial
information is likely to be found outside of IT. Such experts may be drawn on to write and load certain
stored queries into an enterprise decision support system. The maintenance of who is permitted such access
may be delegated to officials outside of IT who are familiar with persons possessing that expertise.

Such circumstances may be supported by a design in which directory chosen delegates administer groups
associated with the operation of an enterprise facility. A group management ACL (cf. [2]) in the directory
together with a directory enabled web application for managing attributes in group objects provide sufficient
infrastructure to support this.

The group management ACL grants users listed in the owner attribute of a group object management
privileges over the group. Among the types of information to consider granting management privilege to are
membership, ownership (to enable subdelegation), descriptive information, and certain mail related
information if the group is mail enabled. The cn attribute should not be modifiable by owners of delegated
groups so that group naming conventions can be upheld.

3.6. Personal groups

Personal groups enable end-users to facilitate authorization in their own web sites, particularly if those reside
on centrally provided web-hosting servers. They also provide a means for taking advantage of any directory
enabled group messaging facilities that may be available.

Such groups require special consideration with regard to spatial location, naming, and aging. They need to go
away when their creator does, and most cn substring searches should not select these. In particular, there is
a need to ensure that no personal group will ever be selected by an institutional process, e.g., for making an
access control decision in an institutional application or for sending a message to the members of an
institutional group.

Two different approaches to personal groups surfaced among the responses to the group practices survey,
although none could be said to be both a mature and fully satisfactory implementation. The types of
implementation considerations raised include:

¢ DIT location. Locate personal group objects under their creator’s person object as in
cn=uid=alid:MyGroup, ou=groups,uid=aulid, ou=people,dc=foo, dc=edu
or locate all personal group objects in a branch of the DIT designated for this purpose, as in
cn=uid=aUid:MyGroup, ou=personalGroups, dc=foo, dc=edu.

The former enforces a requirement that subordinate personal group objects to be removed before a person’s
person object can be deleted. The latter relies on a periodic external process to remove groups whose
owner no longer exists in the directory.

¢ Enforced naming convention. If the cn attribute will be used on personal groups, in particular if personal
groups will be static and use or extend the groupOfNames or groupOfUniqueNames objectclasses, then
there is a namespace issue to contend with (cf. section 3.3: Group names & namespace overloading). Using
a name stem such as "uid=aUid:" ensures that institutional groups and personal groups can always be
distinguished by their names. To enforce a naming convention, end users must not be enabled to directly
create their own personal groups. Instead, a privileged process must create and name the group and then

delegate management of it to the end user as described in section 3.5: (Management of delegated groups).
3.7. Maintaining referential integrity

As objects that may be members of static groups leave the directory, the groups of which they are members
need to have their membership attributes updated accordingly. This is an example of referential integrity (RI):
each DN value of a membership attribute should refer to an object that actually exists. Note that referential
integrity is an issue only for static groups.

There is no standard that embraces a means of maintaining referential integrity in an ldap directory. Novell’s,
iPlanet’s, Microsoft’s, and possibly other, directory products each include a proprietary means of maintaining
referential integrity. If either the vendor changes the nature of their referential integrity facility or if a directory
implementation includes custom objectclasses then relying on the vendor for referential integrity may not
work either.

To remain in control of this issue, an external referential integrity process will need to be constructed (aka "RI
dialysis machine"). An Idif dump of the directory is periodically processed to produce a set of changes
needed to maintain referential integrity, in accord with the advice in section 3.4: (Maintenance & indexing of
membership attributes).

Further requirements for an RI process will be mentioned below in sections 3.9: (Privacy and visibility of
groups) and 3.10: (Forward references).

3.8. Group math

A successful initial deployment of groups may bring further needs to light. Among these is the need to
construct new groups from institutional groups already being maintained. In some cases extending the set of
automated groups will best accommodate this, but some needs are better met by delegating the authority to
create new combinations. For example, a department or individual may wish to grant access to a resource to
all members of an institutional group except those on a short list they maintain. Depending on the application
involved, it may be easy, difficult, impossible, or otherwise undesirable to accomplish this in the application, if
it’s not done in the directory.

The basic set theoretic operations of union, intersection, and complement used to describe combinations of
groups don’t have good counterparts in either standard X.500 directory objects or in Idap. One might

represent a union as a new group whose members are the group objects being unioned, but there is no
general representation of the complement of a static group or of an intersection of static groups.

The problem of representing combinations of groups becomes more tractable for groups represented by
forward references. In this case the boolean operations in the search filter of an ldap url can be applied to
values of forward reference attributes to determine if a given object belongs to any specified combination of
groups, or to list the membership of a combination of groups, depending on how the Idap url is scoped. For
example, if an attribute named isMemberOf is used for forward referencing, then the ldap search filter

(&(isMemberOf=groupA) (! (isMemberO0f=groupB)))

selects all objects in the search scope belonging to groupA but not to groupB. If the search is scoped to a
specific object, the filter selects the object if and only if it belongs to the specified combination of groups. If
the search is scoped to the entire DIT, the complete membership of that combination of groups is selected,
provided that DSA search limits are not exceeded.

Forward referencing permits the representation of group combinations. This reduces the problem into two
sub problems: maintaining a forward reference attribute, and inserting appropriate ldap queries somewhere, if
not in the application. Let’s look at how to attack these sub problems.

Like any attribute, a given forward reference attribute should only be maintained by a single source to avoid
the possibility of one maintenance procedure undermining the work of another. One way to deal with this is
to rely on an external, periodically run process to automatically maintain a forward reference attribute. This
process is closely related to maintaining referential integrity of group membership attributes and might be
conveniently accomplished by the same program. This is discussed in section 3.10: (Forward references). It
is also worth noting that iPlanet Directory Server v5.x includes a "virtual" forward reference attribute (named
role) on all objects whose value is calculated by the DSA dynamically when it is read. This can be used
instead only if you are willing to rely on proprietary mechanisms and if privacy requirements do not preclude
it.

The second sub problem generally is outside the scope of this document. However, a directory enabled web
application can be created that uses a forward reference attribute to enable end-users (or any other group
deemed appropriate) to create their own directory resident groups out of combinations of previously existing
ones. Probably the most challenging task in designing this application is determining how to represent the set
of groups available to users that they may wish to combine.

3.9. Privacy and visibility of groups

Different organizations will have different requirements with regard to how widely disseminated knowledge of
the existence of a group or the membership of a group is permitted to be. Some leave all groups and their
memberships visible while some others locate group objects spatially according to a visibility policy
implemented using ACLs on containing ou’s. Below are descriptions of two, more sophisticated, approaches
to this contributed by group practices survey respondents.

Virginia Polytechnic Institute (VPI) designed their group implementation with visibility as a requirement. VPI
group members have a viewability attribute. Chad La Joie of VPI summarizes its use:

A user will have the option of setting their group visibility, defined as the
visible attribute in the member object, with one of three values. A value of
"public" means the user may be seen in any public listing of the group's
membership. A value of "group" means the person will only be visible to other
people in the group. A value of "private" means the person may never be displayed
in a group membership listing. It should be noted that a value of "private" does
not disallow services requiring this information to see group listings; it just

means they cannot display the list. This is to protect people who are in groups
that may be targeted for certain types of crude or bigotous behavior.

Brendan Bellina of Notre Dame describes another approach to provisioning privacy for static groups which
depends on a custom auxiliary objectclass being applied to a standard group object:

A group may be private or public. Viewing access to the membership list of public
groups may be open (unrestricted) or closed (restricted). The group type
(private, public-open, public-closed) is recorded in the ndGroupType attribute.
The membership lists of private groups are always viewable only to the group
owner(s). For all group types the owner of the entry can see all group attributes
including group common name (cn), description, group membership, and applications
that group members are authorized to by virtue of group membership (listed in the
ndAuthEligible attribute). Through the group administration utility a group owner
can update its membership list, and name (authorized applications must be updated
by the directory administrator to prevent admins from granting access to
directory administration utilities) (utility yet to be written).

A private group's existence is hidden from anonymous access. A member of a
private group can view the common name (cn), description, and owner of groups for
which he/she is a member. In order to view the names of the groups that a person
is a member of the person would need to bind and search all groups for the
existence of ndGroupMember and return cn.

The ndGroupMember for a group is only visible to members of the group. This
prevents a group member from using access to the uniquemember attribute to
determine the names of other members of the group. The problem solved by the
ndGroupMember attribute is described in the email snippet below by Jeremy McCarty
of the ND OIT Infrastructure Services group:

Since we'll have public groups with hidden (restricted) membership and public groups with public
(unrestricted) membership and hidden (private) groups, you cannot just search for all groups and
assume those returned are ones you can see because you are a member. You can do this for
hidden groups only. You can see your own dn in public groups with public membership, but for
public groups with hidden membership you'd need to be able to search uniquemember. The
problem with allowing searching against uniquemember for hidden membership is that you can
search for another dn (not just your own) and get back groups for that dn that the two share in
common (are both members of). | can't easily think of a way to limit this yet other than to hawe a
certain attribute (ndGroupMember) that would only be visible to members for searching (not
anonymously). Then you could search on this attribute as well or use its appearance in a group
listing to determine your membership.

The name, description, and owner of public groups, whether open or closed, are
visible to anonymous searching. This will allow non-members to search by name or
description for groups of possible interest and contact the group owner to
register. The ndGroupMember attribute is visible only to group members, allowing
a person to request a list of public groups to which they belong.

If a group has an open membership list then its uniquemember attribute can be
viewed by anonymous search. If the membership list is closed, then the
uniquemember attribute is accessible only to the group owner(s).

Note that neither of the preceding two methods encompasses use of forward referencing, nor is it clear how
they might be extended to accommodate it. But see the next section for more information.

3.10. Forward references

Certain issues raised elsewhere in this document can be resolved by use of forward references: chasing down
membership in subgroups (section 2.4.3: List all members of groupA.), scoping a search to a group’s
membership (section 2.4.5: Group scoping.), representing set theoretic combinations of groups (section 3.8:
Group math), and DN independent referencing of groups in applications (section 4.8: Referencing groups in
applications). This approach does not seem to have drawn much attention among directory designers in
higher education, and it is hoped that they will consider using this technique. It is also hoped that DSA
designers will give thought to implementing better ways to support its use as well as addressing its main
weakness — a difficulty in expressing privacy and visibility policy for groups represented as forward
references.

If it were possible to completely avoid use of static group objects and only use forward reference attributes
to designate group membership, then hypothetically the only aspect of forward reference management that
would remain is determining the ACLs that should pertain to forward reference attributes. It is unlikely that
many directory deployments can avoid use of static groups, because many off the shelf directory enabled
applications require them. Management of forward references is partly a referential integrity type problem.
As static group memberships change, corresponding changes to member objects’ forward reference
attributes must also occur, and vice-versa.

Processes that provision directory groups should be designed or extended to maintain forward referential
integrity. Unless such processes are the only way group membership can be impacted, which is unlikely to
either be the case or remain that way for long, maintaining forward referential integrity must be a primary task
of some piece of directory related technology.

There are two alternatives for maintaining forward referential integrity: capture relevant changes to the
directory and complement them as needed for referential integrity, or periodically run an external process that
examines an ldif dump of the directory to make the updates needed to maintain this integrity. The first might
be done in real time using methods proprietary to the DSA (e.g., iPlanet v5.x’s virtual role attribute; using a
plug-in API), by embedding the DSA within a suitable metadirectory architecture, or periodically by parsing
DSA change logs appropriately. The second approach can be done in a manner independent of DSA
particulars.

All supergroups of a forward referenced group should also be referenced in a forward reference attribute to
facilitate authorization and messaging applications. An object may have forward reference values for
supergroups of a group of which it is explicitly a member without necessarily being listed in the membership
attribute of any of the supergroups. So an algorithm that maintains forward referential integrity must take care
to add the object to a group’s membership attribute only when appropriate. One way to accomplish this, is
to run the memberOf algorithm (Appendix 7.1) for the object and compare the results with the values of its
forward reference attributes. Then add the object to the membership attribute of only those groups present in
the forward reference list but absent from the memberOf result.

The value syntax for a forward reference attribute must also be chosen carefully. Values might be either
abstract labels or DNs. The latter is possible only if group objects are always instantiated. A DN value
syntax is fragile with regard to the location of group objects within the directory. An abstract label syntax
avoids this problem and removes the necessity of instantiating a group object, thereby enabling forward
referencing of dynamic groups as well. When creating forward references to group objects it also becomes
necessary to give target group objects an attribute whose value is this label, so that forward referenced group
objects can be found with an equality search of group objects having that attribute. It is sufficient to use the
cn attribute of standard group objects as the value of forward reference attributes. However, it may be
desirable to extend the schema of group objects to include an attribute specifically for the purpose of
providing a target for forward reference values.

A forward referencing design is complicated by privacy requirements. It is not clear that current ACL
implementations are sufficiently expressive to provide access to a forward reference attribute in strict accord
with a particular directory privacy policy. To address this one might use ACLs to limit access to forward
reference attributes only to "blessed" applications, perhaps using a "read only service DNs" approach as
described in section 4.1: Directory access controls.

3.11. Aging groups

Groups not being automatically maintained by directory administrators, i.e., delegated and personal groups,
may eventually become unmanaged and unused and should be removed to reduce namespace overuse and
to avoid potential accidental misuse. Two models for doing this have emerged. A "keep alive" model is one in
which group objects have attributes containing an expiration date and contact information. An external
process runs periodically to notify contacts of groups past their expiration date and gives them an interval in
which to renew the group. Groups past expiration date plus a grace interval are removed. This approach
depends upon two things: groups being created by a tool that always sets the expiration date and gathers
contact information; and a mechanism to do renewals.

Another approach is an "inactivity timer" model. Each group has a last modify timestamp and contact
information associated with it. A periodic external process identifies all group objects whose last modify time
is older than a set period of time, the inactivity timeout. One or more notifications are given to group contacts
during a grace interval, at the end of which groups are deleted. Removal of a group is avoided by someone
"touching" it, causing an update to its last modified timestamp. Some DS As automatically supply last modified
timestamps for all objects. For others, a custom process, either external to the directory or an extension to
the DSA, will need to maintain a last modified attribute. In the case of an external process this might be done
by referring to appropriate DSA log files.

The contact information may be held in an attribute designed for this purpose. Alternatively, the DN valued
owner attribute of standard static groups may also serve as a pointer to contact information residing in the
object(s) it references.

The length of grace periods, default lifetimes for the keepalive model, and inactivity periods for the inactivity
timeout model, are purely local preference. A good practice is simply to employ some means consistently for
grooming of stale groups.

4.Using directory groups

This section contains brief descriptions of some particular and general types of applications that use directory
groups. It is hoped that these will stimulate thought concerning some of the good, bad, and debatable
practices chronicled here.

4.1. Directory access controls

Perhaps the most prevalent and earliest use of groups is to control access to objects and attributes within the
directory itself. The LDAP Recipe [2] included a section addressing this, which might also account for its
prevalence. Two best practices of this sort have surfaced since the LDAP Recipe was published:

4.1.1. Application access to the directory

Access to some attributes of person and other types of objects must be controlled in order to satisfy needs
for privacy or confidentiality. ACLs must deny anonymous viewing of these attributes. If any are needed by a
directory enabled application in order to provide service to people (and in most organizations this will be the
case), it is necessary for that application to bind to the directory in a non-anonymous way. The alternative is
to deny service to people requiring protection of their private directory data.

Directory enabled applications should each be assigned an object to bind to the directory as. This is called a
service DN. Access to attributes and objects that are required by some directory enabled applications and
are not anonymously viewable, should be made accessible to members of groups defined for this purpose.
ACLs referencing these groups specify the additional access privileges to be granted to member service
DNs. Each service DN should be made a member of all such groups needed by its application in order to
provide service.

Some schools lump all such needs into one group, a "read only service DNs" group. This group provides
read only access to the entire directory to member service DNs. The other extreme is to define one group
for each cluster of attributes and/or objects for which some application needs special access, and to make
each service DN a member of the smallest set of such groups needed for it to function. Local circumstances
will determine which model is chosen. The best practice is simply to use the service DNs approach to
controlling application access to the directory.

There are further operational benefits that stem from implementing service DN's, but discussion of these is
beyond the scope of this document.

4.1.2. Helpdesk view of the directory

Helpdesk and other personnel offering end-user technical support need access to information to help them
identify causes for common service issues. A group should be defined whose members are permitted read-
only access to attributes needed to fulfill the support function. The use of subgroups in this circumstance is
very likely. The subgroups will themselves contain DNs of different sets of people who have this common
need (e.g., central IT helpdesk staff, College helpdesk staff, etc.). This group and its subgroups will likely be
delegated.

Note that it may be necessary to provide FERPA training to individuals with a helpdesk view of the

directory. Also, integration between a helpdesk operation and the enterprise directory is a fertile area — many
possibilities exist beyond merely providing helpdesk operators with access to directory resident information
to facilitate their jobs.

4.2. White pages

White pages is usually the first deployed directory-enabled application, and is used to display contact and
affiliation information about people. Departmental affiliation data should be added to person objects to
facilitate white pages applications. Using the ou attribute has the benefit of supporting some off the shelf
clients that look there for what they deem "departmental" affiliation information. It should be either substring
or approximately (aka soundex) indexed to facilitate searching since ordinary people might not know exact
forms of official department names. General affiliation status, such as "faculty”, "staff", "student", "member",
"alum’, etc, may also be advantageously located in the ou attribute and used to constrain white pages
searches. With respect to students, programs of study and other academic affiliation information should not
be added to the values of any publicly viewable attribute to assist in maintaining a FERPA compliant
directory.

Two models for how to determine departmental affiliation values for each person are: (1) mine it out of
financial and payroll data, and (2) have independent business processes track it. Since financial and payroll
data exists for other purposes, the latter is probably best, but it may be that a campus must start with or
settle for the former. It can happen that, if affiliation data mined from financial systems are insufficiently
accurate in expressing actual organizational affiliation, pressure builds until new business processes are
implemented to gather more accurate data. An in-depth discussion of these models is beyond the scope of
this document.

How best to represent departmental affiliation information for applications other than white pages is an
interesting question for which insufficient experience could be found on which to base recommendations for
this document.

4.3. Course management, portal, and application server systems

Some application servers can be configured to reference an enterprise directory service for groups (e.g.,
J2EE). Others may have their own groups store in which some groups are integrated with the enterprise
directory by one-way synchronization processes.

Affiliation information is most critical to customizing a portal. Like application servers, some integrate with an
enterprise directory service and some provide their own customization mechanisms. In the latter case,
implementers will be required to develop custom processes to integrate the portal into the enterprise
infrastructure.

Course management systems are similar, with an additional requirement for representing specific roles such
as instructor, developer, and student for each section. As of this writing, directory integrated course
management systems implement proprietary group-like objectclasses for courses. The IMS standard (cf. [9])
describes how course related information should be transmitted between systems, but no standard yet exists
for the representation of courses in an ldap directory.

4.4. Group scheduling

Several popular enterprise-scale ldap enabled calendar products are available that can use directory resident
groups for group scheduling (e.g., invite the members of a group to a meeting). One caveat: watch out for
where it looks for (and stores) groups. Several undesirable effects can occur, all examples of muiltitasking of
data (generally a bad practice). End-users may be distracted by groups extraneous to scheduling purposes
that may also appear there. Or there may be institutional groups there with varying privacy or visibility
requirements, and the calendar service agent might not be able to honor those policies completely.

If possible, you may want to reconfigure the location used by the calendar for its groups so there is a part of
the DIT dedicated solely for scheduling-related groups. If this is not possible, and if non-calendar groups
can’t be relocated elsewhere, consider running the calendar against an application-specific directory if your
institutional metadirectory capabilities can support it.

4.5. Group messaging

Several of the institutions responding to the group practices survey provide a directory integrated group
messaging facility using either iPlanet Messaging Server or "maildap", a program included with the
openL.DAP distribution. Both of these products require that groups to which messages can be sent contain
attributes from an auxiliary objectclass that describes various details of how such email is to be processed.
Both also have the capability to use credentials learned via SMTP AUTH to determine if a submitter is
authorized to send a message to a given group. Both support use of iPlanet’s mailGroup objectclass for mail
enabling a group, although maildap can be configured to use alternatives as well.

Both static and dynamic group objects can be extended with mailGroup attributes, which make it very easy
to add group messaging to the set of directory enabled applications. For example, if person objects are
already maintained with attributes containing enterprise, departmental, or academic affiliation information,
then a dynamic group object can be quickly created that permits messaging to a group dynamically defined
by such attributes without having to first create metadirectory processes that maintain the membership
attribute of corresponding static group objects. Of course, DSA search limits on general purpose replicas
will likely require that a special purpose DSA replica be set up without search limits to support this use. This
replica will need to be protected by access controls to inhibit trolling of the directory.

On the other hand, traditional Mail List Manager (MLM) products such as listserv, sympa, listproc, and
majordomo (to name a few) implement mature designs for distributing mail to groups of recipients. They have
sophisticated mechanisms for allied purposes such as bounce detection & other subtleties of SMTP handling
of large distribution lists, archives, subscription, moderation, web-based administration, etc. Although sympa
now incorporates some ldap directory integration, to date most MLM products lack integration with
enterprise directories in several potentially valuable ways: subscription lists, authentication and access control
in the administrative interface, and access control in list submission.

It is highly desirable to have something approximating a marriage of the above types of facilities. This
marriage would create the ability to use mature MLM technology to send a message to a group maintained in
the directory so that the group need not be maintained in two places separately or so that a custom
integration process need not be created to synchronize it to the MLM database. There are some obstacles to
directory enabling this function. MLM subscription lists are typically joinable (and leavable) by end users,
whereas many directory groups may not be. This leads to what may become a commonplace group math
problem: how to configure an MLLM list so that it distributes to the membership of an institutional group (the
basis for the list’s existence), except that members of one manual group should be omitted and members of
another manual group should be included. For example, an office may wish to send messages to all faculty
except for a select few who wish to opt out, and to also include a set of non-faculty in the distribution.

Integration of the MLM administrative functions with the directory should produce the type of benefit typical
of directory enabling an application. Changes to the directory would automatically provision users’ access to
MLM administrative functions enabling authorized end users to autonomously create and manage mail lists.
Likewise, incorporating a directory enabled access control procedure at the point of message submission
supports the model of one-stop provisioning in the directory. In this case SMTP AUTH, an identity cert
embedded in the message, or other means must be found to pass the submitter’s identity through the SMTP
message submission point to the listserve software for an access control decision.

Happy marriages between directories and MLM products might be likelier to occur if objectclasses
associated with MLM style applications become standardized. But no significant work in this area appears to
have been undertaken since University of Michigan did the work underlying maildap and the IETF LASER
BOF produced their final draft [10], which influenced how current directory enabled messaging products use
the directory.

4.6. Dialup & wireless authorization

Modem pools and, increasingly, wireless access servers or wireless gateways, can refer both authentication
and authorization to external services by means of RADIUS or other similar protocols. This enables an
organization to integrate network access services (NAS) into the enterprise infrastructure by deploying
directory enabled NAS authentication and authorization servers. Modem pools traditionally have different
availability and session characteristics depending on affiliation information such as faculty, staff, student, and
sometimes departmental affiliation. Similarly, wireless "zones", i.e., sets of access servers or gateways, may
be provided to only serve specified groups, for example, the members of a given department or members of
a manual group created for the purpose of granting or limiting access to a given wireless zone. Should the
need arise, a NAS related attribute can also be added to person objects which can be set by authorized
persons to administratively deny access to one or more NAS services.

The University of Memphis has implemented a solution of this type that relies on a custom objectclass used
to define a NAS access control policy. The objectclass and its use in a RADIUS mediated authentication
and authorization exchange are detailed:

objectclass uofmnas
superior top
requires
cn,
nasaccesstype,
nasname,
nasprofile
allows
nasadmitfilter

cn: name of this UofMNAS object.

nasAccessType: one of "open", "closed", "userFiltered", "groupFiltered". An open
NAS service admits all authenticated users. One that’s closed admits nobody. User
and group filtered types rely on LDAP search filters to express access control
policy - either in terms of attributes in authenticated user’s object or in terms
of group memberships.

nasName: list of strings identifying this NAS service, typically names of NASes
providing this NAS service. Used by RADIUS server to find the UofMNAS object that
applies to a given session initiation request.

nasProfile: name of RADIUS server-based profile to apply to authorized sessions.

nasAdmitFilter: arbitrary LDAP search filter to be inserted into LDAP URL by the
RADIUS server to determine if authenticated user is permitted access to this NAS
service. If nasAccessType is "userFiltered", LDAP URL is scoped to the DN of the
authenticated user. If it’s "groupFiltered", search scope is entire LDAP
directory, but restricted to groupOfUniqueNames objects.

Attribute added to uMemphisPerson objectclass:
radiusDeny: "all" or list of nasNames for which to deny access.

Each NAS server sends its name in each RADIUS request packet in the '"NameOfNAS"
field. It is bound to a UofMNAS object expressing its access control policy by
having that name listed among the values of the nasName attribute. Dialup NASes
are further identified by using the "theNumberCalled" field from the RADIUS
request packet. It is appended to NameOfNAS, after a hyphen. So, a virtual modem
pool is identified as "NameOfNAS-theNumberCalled", i.e., that string appears in
the nasName attribute of the UofMNAS object expressing the applicable access
control policy.

The LDAP config script for the SteelBelted RADIUS server entails a variant
sequence of six LDAP query steps, summarized as follows.

Step 1 - Basic authentication. Search for object with uid=UserName, but also
require object to either be "active status" or a "guest" at UoM, and ensure that
the object’s radiusDeny attribute doesn’t prohibit access to the NAS service
being accessed.

Step 2 - Handle open NASes. If nasAccessType is open, finish authentication
process.

Step 3 - Setup for userFiltered access type. Obtain nasAdmitFilter for NAS object
if nasAccessType is userFiltered.

Step 4 - Apply user related access filter. Apply nasAdmitFilter to user object to
see if user meets access control policy. Reject if not, finish authentication
process if so.

Step 5 - Setup for groupFiltered access type. Obtain nasAdmitFilter for NAS
object if nasAccessType is groupFiltered.

Step 6 - Apply group related access filter. Apply nasAdmitFilter, augmented with
an "AND objectclass=groupOfuUniqueNames" clause, to entire LDAP directory to see
if user meets access control policy. Reject if not, finish authentication process
if so.

Examples of use include
1. All UoM People modem pool. Open to all active UoM people and official guests.

nasName: gelion-6783600
nas Name: sirion-6783600
nasAccessType: open

2. Faculty/Staff modem pool. Open only to faculty and staff, which status is
automatically maintained in people objects’ "ou" attribute.

nasName: gelion-6784600

nasName: sirion-6784600
nasAccessType: userFiltered
nasAdmitFilter: ou=Faculty/Staff

3. Typical residence hall wireless access, for which the default policy is that
only residents may access.

nasName: WS109-Al

nasName: WSLBY-A1l

nasName: WS127-Al

nasName: WS207-Al

nasName: WS221-Al

nasName: WS231-Al

nasName: WS309-Al

nasName: WS323-Al

nasName: WS337-Al
nasAccessType: groupFiltered
nasAdmitFilter: (|(cn=West Hall Residents)(cn=Network Services))

4.7. Unix group maps

Although no first hand experiences were reported in the survey responses collected for this document, as of
the time of this writing, certain unixes using the Naming Services Switch, including Solaris and Linux, can
resolve unix group names and memberships (and other standard "maps" such as passwd, shadow, services,
network, and netgroups) using an Idap directory. Groups in the group map are instances of the
posixGroup objectclass, which is a static group. Users belonging to such groups also have their person
objects extended to include the posixAccount and shadowAccount objectclasses.

4.8. Referencing groups in applications

Use of DN outside of the directory itself is a fragile practice that breaks whenever objects may need to be
moved around within the DIT. It is better to use a layer of indirection and rely on a spatially invariant
reference to a group. With standard group objectclasses, that most often will take the form of a cn= search
for objects with appropriate objectclass. For example,

(&(cn=groupA) (| (objectclass=groupOfuUniqueNames)
(objectclass=groupOfNames)))

will select groupA wherever it may be located.

On the other hand, some common applications (like Apache, for example) use an ACL syntax that requires
use of DNs to specify a static group. A forward reference attribute can be used instead to circumvent use of
DNs in such cases. For example, rather than

require "cn=groupA, ou=groups, dc=foo, dc=edu"
one can use

require filter "(isMemberOf=groupA)"
4.9. Don’t slurp!

Shurping is an application practice of retrieving all members of each group being referenced. A few
applications may require this, but most should take advantage of other application access use cases (cf.
section 2.4) better suited to whatever the application’s function is. Slurping can cause a performance hit on
the DSA and also cause directory designers to worry about where directory information may be cached so
long that it becomes stale or is exposed to inappropriate release.

5. Acknowledgements

The experience (and patience!) of many people is represented in this document. Special thanks are due to
the participants in the Internet2 Middleware Initiative’s MACE-Dir-groups working group, to the members
of the NMI Integration Testbed, to Internet2 staffers Renee Frost, Ellen Vaughan, and Lisa Hogeboom for
millipedes of legwork, and to Ann West and Jeanette Fielden for bravely attempting to ungarble the original
form of this document. All errors, misrepresentations, and opaque manners of expression are solely the
author’s.

This work was supported in part by the NSF Middleware Initiative - NSF 02-028.
6.References

[1] Early Harvest Technical Workshop, "Identifiers, Authentication, and Directories: Best Practices for
Higher Education", 9 May 2000.

http://middleware.internet?2.edu/docs/internet2-mi-best-practices-00.html

[2] Michael Gettes, "A Recipe for Configuring and Operating LDAP Directories",

http://middleware.internet?.edu/dir/docs/ldap-recipe.htm

[3] Early Adopters Generic Middleware Business Case, http2//middleware.internet?2.edu/earlyadopters/draft-
internet2-ea-mw-business-case-00.pdf

[4] "eduPerson 1.0 Specification", http//www.educause.edu/netatedu/groups/pki/eduperson/spec.pdf

[5]"The Directory: Selected Object Classes", ITU-T Recommendation X.521, 4th edition, 1999

[6]Wahl, M., "A Summary of the X.500(96) User Schema for use with LDAPv3", RFC 2256, December
1997.

[71Good, G., "The LDAP Data Interchange Format (LDIF) - Technical Specification", RFC 2849, June
2000.

[8]Howes, T., Smith, M., "The LDAP URL Format", RFC 2255, December 1997.

[9]"IMS Enterprise Specification", http://www.imsglobal.org/enterprise/index.cfm.

[10] Lachman, Hans and Shapiro , Gregory Neil, "LDAP Schema for Intranet Mail Routing", draft-
lachman-laser-ldap-mail-routing-02, no formal archival home but still floating about the Internet.

[11] Jones, Richard et al., "Metadirectory Practices for Enterprise Directories in Higher Education",
http//middleware.internet?2.edu/dir/metadirectories

https://web.archive.org/web/20130203134847/http://middleware.internet2.edu/docs/internet2-mi-best-practices-00.html
https://web.archive.org/web/20130203134847/http://middleware.internet2.edu/dir/docs/ldap-recipe.htm
https://web.archive.org/web/20130203134847/http://middleware.internet2.edu/earlyadopters/draft-internet2-ea-mw-business-case-00.pdf
https://web.archive.org/web/20130203134847/http://www.educause.edu/netatedu/groups/pki/eduperson/spec.pdf
https://web.archive.org/web/20130203134847/http://www.imsglobal.org/enterprise/index.cfm
https://web.archive.org/web/20130203134847/http://middleware.internet2.edu/dir/metadirectories

7. Appendices
7.1. memberOf Algorithm

Assume for the moment that only static groups are employed and that DN's of both people and groups may
appear in group membership attributes. There is a fairly straightforward algorithm for determining the set of
all static groups of which a given givenDN is a member.

Al: Initialize the set memberships and the set newGroups to the set of all static groups in which givenDN is
a member with an ldap search selecting groups in which givenDN appears in any membership attribute.

A2: Find all groups to which any group in newGroups belongs with an Idap search selecting all groups in
which any newGroup DN appears in any membership attribute. Replace newGroups with those elements of
the selected set of groups that do not appear in memberships, then add all elements of newGroups to
memberships.

A3: Repeat A2 until newGroups is empty.

The resulting memberships is all groups to which givenDN belongs directly, together with all supergroups of
those groups to any number of levels.

The maximum number of iterations in the above algorithm is less or equal to the depth of group nesting plus
the length of the longest cycle of nested groups in the search scope. The algorithm is pretty efficient if group
membership attributes are equality indexed. It suffers from a possible interaction with the DSA's search limit,
i.e., if you've lots of groups you'd want to ensure that these searches are not constrained by a search limit.

The algorithm avoids the problem of trying to determine if givenDN belongs to a given group by referring
first of all to the membership list of the given group, and trying to chase that down through possible
subgroups. The algorithm does provide more information than might be needed (i.e., you know whether or
not givenDN belongs to the given group, but you can also answer any other group membership question for

givenDN).

The algorithm doesn't particularly care which finite set of static group objectclasses are used - they simply
appear as ANDed objectClass= clauses in the ldap search filter.

This algorithm is similar to what is used by the iPlanet v4.X web server in evaluating an ACL containing a
group reference.

8. Contact Information
Tom Barton
University of Memphis

Email: tbarton@memphis.edu

mailto:tbarton@memphis.edu

