
OIDC and OAuth2 
at LBNL v2

Greg Haverkamp



Where we were
● Homegrown OP/AS based on PyOIDC (productionalized example OP)
● Proprietary introspection API
● Proprietary revocation API
● Used only for IdM apps with grander plans
● Didn't trust it enough to push toward other users; too many modifications of 

underlying library to keep up-to-date



IdM Applications
● Account Admin API (aa)
● Account Manager (IdM/Help Desk/Cybersecurity)
● Password Change (Everyone)
● Password Reset (Not enough people)
● Account Activation (All new/returning/reactivated users)
● Activation Password Generator (HR)



Broader goals for OIDC and OAuth2
● OIDC as "easier" SSO protocol/future-hedging
● Integrate with Shibboleth IdP (don't want to duplicate efforts, esp w/MFA)
● Avoid excessive integration requirements
● Easy to integrate new protocol additions to the stack



General goals for upgrade
● OIDC Certified solution
● Expand/clean up/broaden access to Identity APIs
● Provide exemplar for others at the lab developing APIs
● Support mobile applications
● Integrate with our investments in Shibboleth MFA
● Support Account Activation Codes and Password Reset Codes (non-Shib)



How we arrived at Connect2Id
● Second choice
● Certified, and updated for new additions to OIDC and OAuth2 monthly 

(developed by the Nimbus developers)
● Externalized authentication and consent - easy to support all three of our 

required authentication methods (SAML, Activation Code, Reset Code)
● Variable token lifetime per issuance
● Pluggable UserInfo
● Pluggable JWT handling





What haven't we gotten to?
● JWT authorization grants (service accounts)
● Client info communicated to Shib IdP
● UserInfo from Shibboleth (rather than LDAP)
● Client management for enterprise use



Questions?
gahaverkamp@lbl.gov




