Performance Working Group:
Firewalls: A Contrabulous Fabtraption That Embiggens Cromulent Networking
Topic: Networking Issues for Life Sciences Research
July 17-18, 2013
Lawrence Berkeley National Laboratory
Berkeley, California

• Building on the success of Joint Techs, meeting will bring together technical experts in a smaller setting with domain scientists.
• Workshop will include a slate of invited speakers and panels.
• Format to encourage lively, interactive discussions with the goal of developing a set of tangible next steps for supporting this data-intensive science community
• Four sub-topic areas: Network Architectures, Workflow Engines, Public and Private Cloud Architectures, and Data Movement Tools
• Website: http://goo.gl/v1YL3
• Proposals Due: May 17, 2013, 11:59 PDT
Firewalls: A Contrabulous Fabtraption That Embiggens Cromulent Networking

Contents

• **State of the Campus**
• When Security and Performance Clash
• “The Science DMZ”, or “The Words You Will Hear 100s of Times This Week”
• Discussion
State of the Campus – A Word Of Caution…

- To be 100% clear – the firewall is a useful tool:
 - A layer or protection that is based on allowed, and disallowed, behaviors
 - One stop location to install instructions (vs. implementing in multiple locations)
 - Very necessary for things that need ‘assurance’ (e.g. student records, medical data, protecting the HVAC system, IP Phones, and printers from bad people, etc.)

- To be 100% clear again, the firewall delivers functionality that can be implemented in different ways:
 - Filtering ranges can be implemented via ACLs
 - Port/Host blocking can be done on a host by host basis
 - IDS tools can implement near real-time blocking of ongoing attacks that match heuristics
State of the Campus - Clarifications

• I am not here to make you throw away the Firewall
 – The firewall has a role; it’s time to define what that role is, and is not
 – Policy may need to be altered (pull out the quill pens and parchment)
 – Minds may need to be changed

• I am here to make you think critically about campus security as a system. That requires:
 – Knowledge of the risks and mitigation strategies
 – Knowing what the components do, and do not do
 – Humans to implement and manage certain features – this may be a shock to some (lunch is never free)
The end goal is enabling true R&E use of the network

- Most research use follows the ‘Elephant’ Pattern. You can’t stop the elephant and inspect it’s hooves without causing a backup at the door to the circus tent

- Security and performance can work well together – it requires critical thought (read that as time, people, and perhaps money)

- Easy economic observation – impacting your researchers with slower networks makes them less competitive, e.g. they are pulling in less research dollars vs. their peers
Firewalls: A Contrabulous Fabtraption That Embiggens Cromulent Networking

Contents

• State of the Campus
• *When Security and Performance Clash*
• “The Science DMZ”, or “The Words You Will Hear 100s of Times This Week”
• Discussion
What does a firewall do?

- Streams of packets enter into an ingress port – there is some buffering
- Packet headers are examined. Have I seen a packet like this before?
 - Yes – If I like it, let it through, if I didn’t like it, goodbye.
 - No - Who sent this packet? Are they allowed to send me packets? What port did it come from, and what port does it want to go to?
- Packet makes it through processing and switching fabric to some egress port. Sent on its way to the final destination.

Where are the bottlenecks?

- Ingress buffering – can we tune this? Will it support a 10G flow, let alone multiple 10G flows?
- Processing speed – being able to verify quickly is good. Verifying slowly will make TCP sad
- Switching fabric/egress ports. Not a huge concern, but these can drop packets too
- Is the firewall instrumented to know how well it is doing? Could I ask it?
When Security and Performance Clash

- Lets look at two examples, that highlight two primary network architecture use cases:

 - Totally protected campus, with a border firewall
 - Central networking maintains the device, and protects all in/outbound traffic
 - Pro: end of the line customers don’t need to worry (as much) about security
 - Con: end of the line customers *must* be sent through the disruptive device

 - Unprotected campus, protection is the job of network customers
 - Central networking gives you a wire and wishes you best of luck
 - Pro: nothing in the path to disrupt traffic, unless you put it there
 - Con: Security becomes an exercise that is implemented by all end customers
Brown University Example

- Totally protected campus, with a border firewall
Brown University Example

- Behind the firewall:

Throughput test between Source: perfsonar.hep.brown.edu(138.16.167.36) -- Destination: perf1g.colorado.edu(198.59.55.26)

Graph Key
- Blue: Src-Dst throughput
- Green: Dst-Src throughput

Time:
- 02Nov
- 03Nov
- 04Nov
- 05Nov
- 06Nov
- 07Nov
- 08Nov

Throughput (Mbps):
- 0
- 100M
- 200M
- 300M
- 400M
- 500M
- 600M
- 700M
- 800M

11 – © 2013 Internet2 – J. Zurawski zurawski@internet2.edu
Brown University Example

- In front of the firewall:

![Graph showing throughput test]
Brown University Example – TCP Dynamics

- Want more proof – let’s look at a measurement tool through the firewall.
 - Measurement tools emulate a well behaved application
- ‘Outbound’, not filtered:
 - nuttcp -T 10 -i 1 -p 10200 bwctl.newy.net.internet2.edu
 - 92.3750 MB / 1.00 sec = 774.3069 Mbps 0 retrans
 - 111.8750 MB / 1.00 sec = 938.2879 Mbps 0 retrans
 - 111.8750 MB / 1.00 sec = 938.3019 Mbps 0 retrans
 - 111.7500 MB / 1.00 sec = 938.1606 Mbps 0 retrans
 - 111.8750 MB / 1.00 sec = 938.3198 Mbps 0 retrans
 - 111.8750 MB / 1.00 sec = 938.2653 Mbps 0 retrans
 - 111.8750 MB / 1.00 sec = 938.1931 Mbps 0 retrans
 - 111.9375 MB / 1.00 sec = 938.4808 Mbps 0 retrans
 - 111.6875 MB / 1.00 sec = 937.6941 Mbps 0 retrans
 - 111.8750 MB / 1.00 sec = 938.3610 Mbps 0 retrans

 - 1107.9867 MB / 10.13 sec = 917.2914 Mbps 13 %TX 11 %RX 0 retrans 8.38 msRTT

13 – © 2013 Internet2 – J. Zurawski zurawski@internet2.edu
‘Inbound’, filtered:
- `nuttcp -r -T 10 -i 1 -p 10200 bwctl.newy.net.internet2.edu`
- 4.5625 MB / 1.00 sec = 38.1995 Mbps 13 retrans
- 4.8750 MB / 1.00 sec = 40.8956 Mbps 4 retrans
- 4.8750 MB / 1.00 sec = 40.8954 Mbps 6 retrans
- 6.4375 MB / 1.00 sec = 54.0024 Mbps 9 retrans
- 5.7500 MB / 1.00 sec = 48.2310 Mbps 8 retrans
- 5.8750 MB / 1.00 sec = 49.2880 Mbps 5 retrans
- 6.3125 MB / 1.00 sec = 52.9006 Mbps 3 retrans
- 5.3125 MB / 1.00 sec = 44.5653 Mbps 7 retrans
- 4.3125 MB / 1.00 sec = 36.2108 Mbps 7 retrans
- 5.1875 MB / 1.00 sec = 43.5186 Mbps 8 retrans
- 53.7519 MB / 10.07 sec = 44.7577 Mbps 0 %TX 1 %RX 70 retrans 8.29 msRTT
Brown University Example – TCP Plot (2nd)

sequence number = thr2.newyorkx.ee.net.internet2.edu:45075 => perfsonar.hep.brown.edu:10200 (time sequence graph)
Brown University Example – Side By Side
Unprotected campus, protection is the job of network customers
Initial Report from network users: performance poor both directions
 – Outbound and inbound (normal issue is inbound through protection mechanisms)

From previous diagram – CoE firewall was tested
 – Machine outside/inside of firewall. Test to point 10ms away (Internet2 Washington)

```
jzurawski@ssstatecollege:~> nuttcp -T 30 -i 1 -p 5679 -P 5678 64.57.16.22
5.8125 MB / 1.00 sec = 48.7565 Mbps 0 retrans
6.1875 MB / 1.00 sec = 51.8886 Mbps 0 retrans
...
6.1250 MB / 1.00 sec = 51.3957 Mbps 0 retrans
6.1250 MB / 1.00 sec = 51.3927 Mbps 0 retrans
...
184.3515 MB / 30.17 sec = 51.2573 Mbps 0 %TX 1 %RX 0 retrans 9.85 msRTT
```
Observation: `net.ipv4.tcp_window_scaling` did not seem to be working
- 64K of buffer is default. Over a 10ms path, this means we can hope to see only 50Mbps of throughput:
 - `BDP (50 Mbit/sec, 10.0 ms) = 0.06 Mbyte`

Implication: something in the path was not respecting the specification in RFC 1323, and was not allowing TCP window to grow
- TCP window of 64 KByte and RTT of `1.0 ms <= 500.00 Mbit/sec.`
- TCP window of 64 KByte and RTT of `5.0 ms <= 100.00 Mbit/sec.`
- TCP window of 64 KByte and RTT of `10.0 ms <= 50.00 Mbit/sec.`
- TCP window of 64 KByte and RTT of `50.0 ms <= 10.00 Mbit/sec.`

Reading documentation for firewall:
- *TCP flow sequence checking* was enabled
- What would happen if this was turn off (both directions?)
The Pennsylvania State University Example

- jzurawski@ssstatecollege:~> nuttcp -T 30 -i 1 -p 5679 -P 5678 64.57.16.22
- 55.6875 MB / 1.00 sec = 467.0481 Mbps 0 retrans
- 74.3750 MB / 1.00 sec = 623.5704 Mbps 0 retrans
- 87.4375 MB / 1.00 sec = 733.4004 Mbps 0 retrans
- ...
- 91.7500 MB / 1.00 sec = 770.0544 Mbps 0 retrans
- 88.6875 MB / 1.00 sec = 743.5676 Mbps 28 retrans
- 69.0625 MB / 1.00 sec = 578.9509 Mbps 0 retrans
- ...
- 2300.8495 MB / 30.17 sec = 639.7338 Mbps 4 %TX 17 %RX 730 retrans 9.88 msRTT
The Pennsylvania State University Example

- Impacting real users:

![Graph showing network traffic data]

- Inbound: Current: 114.02M Average: 59.64M Min: 8.91M Maximum: 197.53M
- Total In: 19.99 TB
- 95th Percentile In: 113.33 mbit in
- Min In, Max In
- Zero Line

- Outbound: Current: 121.85M Average: 56.68M Min: 3.12M Maximum: 245.30M
- Total Out: 19 TB
- 95th Percentile Out: 155.8 mbit out
- Min Out, Max Out
- Total In+Out: 116.97 TB

Thurs 2/14/2013, AM
Firewalls: A Contrabulous Fabtraption That Embiggens Cromulent Networking

Contents

• State of the Campus
• When Security and Performance Clash
• “The Science DMZ”, or “The Words You Will Hear 100s of Times This Week”
• Discussion
Science DMZ (?)

• A staple of the meeting circuit for several years

• What is it really?
 – “Blueprint”, not a specific design
 – Approach to network architecture that preserves the ability to securely manage two different worlds
 • Enterprise – BYOD, IP Phones, Printers, HVAC, things you don’t know enough about to trust, and shouldn’t
 • Research – Well defined access patterns, Elephant flows, (normally) individuals that can manage their destiny with regards to data protection
Science DMZ – Pro/Con on Generalities

• Pro:
 – Unspecified nature makes the pattern fungible for anyone to implement
 – Hits the major requirements for major science use cases
 – A concept that “anyone” should be able to understand on a high level

• Con:
 – Unspecified nature implies you need your own smart person to think critically, and implement it for a specific instantiation
 – Those that don’t do heavy science (or don’t know they do) may feel “it’s not for us”
 – A concept easy to treat as a ‘checkbox’ (hint: CC-NIE schools – are you stating ‘we have perfSONAR’ and moving on?)
When Rubber Meets the Road

- Lets start with the generic diagram:
There are 4 areas I am going to hit on, briefly (note the last one is not ‘pictured’):

- Network Path
- Adoption of “New” Technology
- Security
- User Outreach
Engineers ‘get it’

- No one will dispute that protected and unprotected path will have benefits (and certain dangers).
- $100G isn’t cheap (10 and 40 are). You don’t have to go 100, implementing the architecture with existing technology is a perfectly good way forward.
- You still need a security professional (if you don’t have one already) for the secured and non-secured paths. Learn to love your IDS just as much as your firewall and shapper …

Tuning is important. Small buffers (as seen previously) make data movement sad. This means servers, and network devices

Ounce of prevention – you need monitoring, and you certainly need training in how to use the performance tools to debug. You will be debugging (bet me a $1 if you honestly think you won’t be…)

28 – © 2013 Internet2 – J. Zurawski zurawski@internet2.edu
Adoption of “New” Technology

- SDN, perfSONAR, etc. etc.
 - We will keep making acronyms, don’t worry
- What matters in all this? Being able to make your job easier
 - perfSONAR = insurance policy against risky behavior.
 - Will tell you if you have done things wrong, and warn you if something breaks.
 - Crucial for your campus, and costs only the price of a server, and getting an engineer up to speed on how to use it
 - SDN will be a game changer. Is it ready for production (?) – hard to say. The ability to afford more control over the network to the end user relies on applications (and end users) getting caught up. Hint.
- There will be more changes in the future, it’s the nature of the game. R&E needs to be about certain risky moves away from the norm
Security

• I can spend an entire deck on this, but to keep it short:
 – Component based security is wrong. Needs to be a system.
 – System:
 • Cryptography to protect user access and data integrity
 • IDS to monitor before (and after) events
 • Host-based security is better for performance, but takes longer to implement. Firewalls are bad on performance but easy to plot down in a network. Attack vector from the “inside” is prevented.
 • Let your router help you – if you know communication patterns (and know those that should be disallowed), why not use filters?
 – Campus CI Plan. Make one, update it often. Shows funding bodies you know what is going on and have plans to address risks, and foster growth
• Economic argument – if you are non-competitive for grants because you cheaped out on security, are you better in the long run?
User Outreach

• The unstated factor:
 – Could you name your top 10 (5? 3?) network users? Do you know where their traffic is going? Do you know why? Should you care?
 – Simple solution – (net | s)flow monitoring (pick a brand, many are good).
 • Top 10 src/dst for some period of time, go and talk to the researchers.
 • Ask them what they are doing, how they are doing it, and if its going ok.
 – Campus CI days – was a sponsored thing, but why not have one ‘just because’?
 • Gets IT and research talking.
 • Identifies areas of growth; areas of friction
 – Requires an outgoing person – hire a research engineer.
 • Someone who knows what a network is, and can translate statements like “the beamline will be firing at 200Khz 2 times a week and generating 2PB of data a year” into “they need 40Gbps and a clear path to 4 international sites as well as the domestic routing table”
Firewalls: A Contrabulous Fabtraption That Embiggens Cromulent Networking

Contents

- State of the Campus
- When Security and Performance Clash
- “The Science DMZ”, or “The Words You Will Hear 100s of Times This Week”
- Discussion
Firewalls: A Contrabulous Fabtraption That Embiggens Cromulent Networking

Jason Zurawski – zurawski@internet2.edu
Senior Research Engineer, Internet2

http://www.internet2.edu/research